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We propose a flexible yet computationally efficient approach for building 
Gaussian process models for computer experiments with both qualitative and 
quantitative factors. This approach uses the hypersphere parameterization to 
model the correlations of the qualitative factors, thus avoiding the need of 
directly solving optimization problems with positive definite constraints. This 
method is easy to compute and can be implemented straightforwardly in 
standard computational environments like R and Matlab. The effectiveness of 
the proposed method is successfully illustrated by several examples.  
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1. INTRODUCTION 

Computer models are now ubiquitous in almost all fields. The standard statistical framework 

for the design and analysis of computer experiments assumes that all the factors are quantitative 

(Santner, Williams, and Notz 2003; Fang, Li, and Sudjianto 2005).  In many areas, however, 

computer models can contain both qualitative and quantitative factors. For example, 

computational fluid-dynamics program for studying data center thermal dynamics can involve 

qualitative factors such as “air diffuser unit location”, “hot air return vent location” and “power 
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unit type” (Qian, Wu, and Wu 2008). Rawlinson, Furman, Li, Wright and Bartel (2006), and Han, 

Santner, Notz, and Bartel (2009) discussed knee models in biomechanical engineering for 

investigating wear mechanisms of total knee replacements that can have qualitative factors such 

as “prosthesis design” and “force pattern”. Furthermore, a set of multi-fidelity computer models 

with the same quantitative factors (Kennedy and O’Hagan 2000; Qian, Seepersad, Joseph, Allen, 

and Wu 2006; Qian and Wu 2008) can be treated collectively as a computer model with a 

common set of quantitative factors and a qualitative factor to describe the different accuracy of 

the original models (Han et al. 2009).  

Several methods are now available for building Gaussian process based emulators with 

qualitative and quantitative factors. Qian et al. (2008) proposed a general framework for building 

Gaussian process models with qualitative and quantitative factors. Their method uses an 

unrestrictive correlation structure for the quantitative factors and requires the use of special 

optimization methods in the estimation to guarantee the positive-definiteness of the assumed 

correlation structure. It is possible to significantly simplify the computational complication of 

their method by taking a restrictive correlation function for the qualitative factors (McMillian, 

Sacks, Welch, and Gao 1999; Joseph and Delaney 2007; Qian et al. 2008), but these restrictive 

correlation functions lacks the flexibility of capturing various types of correlations of the 

qualitative factors. Different from Qian et al. (2008), Han et al. (2009) introduced some 

hierarchical Bayesian Gaussian process models with these two types of factors and used Markov 

chain Monte Carlo (MCMC) methods for the computation.   

 We propose a flexible yet computationally efficient approach to this emulation problem. Our 

approach inherits the flexibility of the unrestrictive correlation structure for the qualitative 

factors used in Qian et al. (2008) but replaces their complicated estimation procedure with a 

clever parameterization using the hypersphere decomposition, originally proposed in Rebonato 

and Jackel (1999) for modeling the correlations of some financial models. This new 

parameterization essentially turns some optimization problems with positive-definite constraints 

into standard and easy to compute optimization problems with box constraints. The proposed 



- 3 - 

method is easy to compute and can be implemented straightforwardly in standard computational 

environments like R and Matlab.  

 The remainder of the paper is organized as follows. Section 2 gives the general model 

structure. Section 3 presents estimation and prediction procedures. Section 4 discusses some 

computational issues. Section 5 provides several examples to illustrate the effectiveness of the 

proposed method. Section 6 concludes the article with a brief summary and concluding remarks.   

2.  THE GENERAL MODEL 

Consider a computer model with an input vector ࢝  ൌ ሺ࢞௧, ௧ሻ௧ࢠ , where ࢞ ൌ ሺݔଵ, … ,   ூሻ௧ݔ

consists of all the quantitative factors, ࢠ ൌ ሺݖଵ, … ,  ௃ሻ௧ consists of all the qualitative factors, andݖ

݉ ௝ has ௝ܾ levels. Letݖ ൌ ∏ ௝ܾ
௃
௝ୀଵ . Throughout, the factors in ࢠ are assumed to be categorical 

but not ordinal. The response of the computer model at an input value ࢝ is modeled as 

ሻ࢝ሺݕ ൌ ࢼሻ࢝௧ሺࢌ ൅  ሻ,                               (1)࢝ሺߝ

where ሻ࢝ሺࢌ  ൌ ሺ ଵ݂ሺ࢝ሻ,… , ௣݂ሺ࢝ሻሻ࢚  is a set of p user-specified regression functions, ࢼ ൌ

ሺߚଵ, … ,  ሻ is assumed to be a࢝ሺߝ ௣ሻ௧ is a vector of unknown coefficients and the residualߚ

stationary Gaussian process with mean 0 and variance ߪଶ.  

   The model in (1) has a similar flavor to the standard Gaussian process model with 

quantitative factors, which models the response ݕ at an input value ࢞ as 

ሻ࢞ሺݕ ൌ ࢼሻ࢞௧ሺࢌ ൅  ሻ,                               (2)࢞ሺߝ

where ሻ࢞ሺࢌ  ൌ ሺ ଵ݂ሺ࢞ሻ, … , ௣݂ሺ࢞ሻሻ࢚  is a set of p user-specified regression functions, ࢼ ൌ

ሺߚଵ, … ,  ሻ is assumed to be a࢞ሺߝ ௣ሻ௧ is a vector of unknown coefficients and the residualߚ

stationary Gaussian process with mean 0 and variance ߪଶ , and some correlation function 

,ଵሻ࢞ሺߝ൫ݎ݋ܿ ଶሻ൯࢞ሺߝ ൌ ,ଵ࢞ሺܭ  ଶሻ. A popular choice of the correlation function for model (2) is the࢞

Gaussian correlation function 

,ଵ࢞ሺܭ  ଶሻ࢞ ൌ expሼെ∑ ߶௜ሺݔଵ௜ െ ଶ௜ሻଶூݔ
௜ୀଵ ሽ.                       (3) 

The model in (2) has been implemented in various packages such as the Matlab toolbox DACE 
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(Lophaven, Nielsen, and Sondergaard 2002b).  

   We now discuss how to specify a valid correlation structure for ߝሺ࢝ሻ associated with the 

model in (1). This specification is challenging because ࢝  involves both qualitative and 

quantitative factors. For convenience, let ܿଵ, … , ܿ௠ denote m categories, corresponding to the m 

level combinations of the factors in ࢠ. Without confusion, we use ࢝ ൌ ሺ࢞௧, ܿ௤ሻ௧ ሺݍ ൌ 1,… ,݉ሻ 

to denote the factors involved in the computer model under consideration. Following Qian et al. 

(2008), for two input values ࢝௜ ൌ ሺ࢞௜௧, ܿ௜ሻ௧ ሺ݅ ൌ 1,2ሻ , the correlation between ߝሺ࢝ଵሻ  and 

  ଶሻ is defined to be࢝ሺߝ

,ଵሻ࢝ሺߝ൫ݎ݋ܿ ଶሻ൯࢝ሺߝ ൌ ݎ݋ܿ ቀߝ௖భሺ࢞ଵሻ, ଶሻቁ࢞௖మሺߝ ൌ ߬௖భ,௖మܭሺ࢞ଵ,  ଶሻ,             (4)࢞

where ߬௖భ,௖మ is the cross-correlation between categories c1 and c2. In our numerical examples, 

we use the Gaussian correlation function in (3) and (4) becomes  

,ଵሻ࢝ሺߝ൫ݎ݋ܿ ଶሻ൯࢝ሺߝ ൌ ߬௖భ,௖మ expሼെ∑ ߶௜ሺݔଵ௜ െ ଶ௜ሻଶூݔ
௜ୀଵ ሽ ,                (5) 

where the unknown roughness parameters ߶௜ will be collectively denoted as ઴ ൌ ሼ߶௜ሽ.  

 For (5) to be a valid correlation function, the ݉ ൈ݉ matrix ࢀ ൌ ൛߬௥,௦ൟ must be a positive 

definite matrix with unit diagonal elements (PDUDE) (Qian et al. 2008). Departing from Qian et 

al. (2008), here ࢀ is modeled by using the hypersphere decomposition, originally introduced by 

Rebonato and Jackel (1999) for modeling correlations for financial applications.  

This parameterization provides a simple yet flexible way to model a PDUDE matrix. It 

consists of two steps. In step 1, a Cholesky-type decomposition is applied to ࢀ given by 

ࢀ ൌ  ௧,                                       (6)ࡸࡸ

where ࡸ ൌ ሼ݈௥,௦ሽ is a lower triangular matrix with strictly positive diagonal entries. In step 2, 

each row vector ൫݈௥,ଵ, … , ݈௥,௥൯ in ࡸ is modeled as the coordinate of a surface point on an 

r-dimensional unit hypersphere described as follows. For ݎ ൌ 1, let ݈ଵ,ଵ ൌ 1 and for ݎ ൌ

2,… ,݉, use the following spherical coordinate system 
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൞
݈௥,ଵ ൌ cos൫ߠ௥,ଵ൯,                                                                                       
݈௥,௦ ൌ sin൫ߠ௥,ଵ൯ ··· sin൫ߠ௥,௦ିଵ൯ cos൫ߠ௥,௦൯ , ݏ ݎ݋݂ ൌ 2,… , ݎ െ 1,    
݈௥,௥ ൌ sin൫ߠ௥,ଵ൯ ··· sin൫ߠ௥,௥ିଶ൯ sin൫ߠ௥,௥ିଵ൯,                                       

             (7) 

where ߠ௥,௦ א ሺ0,  ௥,௦ isߠ ௥,௦ involved in (7). Because eachߠ ሻ. Collectively, denote by દ allߨ

restricted to take values in (0, π), the diagonal entry ݈௥,௥  in ࡸ  is strictly positive, thus 

guaranteeing that ࢀ  is a positive definite matrix. In addition, ߬௥,௥ ൌ ∑ ݈௥,௦ଶ௥
௦ୀଵ ൌ 1  ሺݎ ൌ

1,… ,݉ሻ by (7), implying that ࢀ must have unit diagonal elements. Thus, the matrix ࢀ under 

this parameterization is always a PDUDE. For illustration, consider the case with ݉ ൌ 3. In step 

1, a 3 ൈ 3 PDUDE  

ଷࢀ ൌ ൥
1 ߬ଵଶ ߬ଵଷ
߬ଵଶ 1 ߬ଶଷ
߬ଵଷ ߬ଶଷ 1

൩                                 (8) 

is decomposed as  

ଷࢀ ൌ ଷ௧ࡸଷࡸ ൌ ൥
1 0 0
݈ଶଵ ݈ଶଶ 0
݈ଷଵ ݈ଷଶ ݈ଷଷ

൩ ൥
1 ݈ଶଵ ݈ଷଵ
0 ݈ଶଶ ݈ଷଶ
0 0 ݈ଷଷ

൩,                    (9) 

In step 2, ሺ݈ଶଵ, ݈ଶଶሻ are transformed into a 2D spherical coordinate system as 

൜݈ଶଵ ൌ cosሺߠଶଵሻ
݈ଶଶ ൌ sinሺߠଶଵሻ 

                                 (10) 

and ሺ݈ଷଵ, ݈ଷଶ, ݈ଷଷሻ are transformed into a 3D spherical coordinate system as 

ቐ
݈ଷଵ ൌ cosሺߠଷଵሻ                
݈ଷଶ ൌ sinሺߠଷଵሻcosሺߠଷଶሻ
݈ଷଷ ൌ sinሺߠଷଵሻsinሺߠଷଶሻ,

                             (11) 

where ߠ௥,௦ can be calculated based on the following relations: 

ቐ
߬ଵଶ ൌ cosሺߠଶଵሻ                                                                        
߬ଵଷ ൌ cosሺߠଷଵሻ                                                                        
߬ଶଷ ൌ cosሺߠଶଵሻcosሺߠଷଵሻ ൅ sinሺߠଶଵሻsinሺߠଷଵሻcosሺߠଷଶሻ.

            (12) 

  In (10) and (11), ሺ݈ଶଵ, ݈ଶଶሻ are the coordinates of a point on the half unit circle given by 

݈ଶଵଶ ൅ ݈ଶଶଶ ൌ 1 and ݈ଶଶ ൐ 0 as shown in Figure 1(a); ሺ݈ଷଵ, ݈ଷଶ, ݈ଷଷሻ are the coordinates of a 

surface point on the unit hemisphere given by ݈ଷଵଶ ൅ ݈ଷଶଶ ൅ ݈ଷଷଶ ൌ 1 and ݈ଷଷ ൐ 0 as shown in 
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Figure 1(b).  

(a) (b) 

 

 

Figure 1. (a) Point ሺ݈ଶଵ, ݈ଶଶሻ on the half unit circle. (b) Point ሺ݈ଷଵ, ݈ଷଶ, ݈ଷଷሻ on the unit 

hemisphere. 

  The proposed parameterization has several major advantages. First, it turns the complicated 

PDUDE constraint on ࢀ into simple box constraints ߠ௥,௦ א ሺ0,  ௥,௦ takeߠ ሻ. Second, becauseߨ

values in ሺ0,   can be either positive or negative, thus possible to capture ࢀ ሻ, the entries inߨ

various correlations across different categories. Third, any PDUDE matrix and દ  has a 

one-to-one correspondence, i.e., a PDUDE matrix with any arbitrary structure can be 

parameterized using a set of દ values and any given દ always gives a PDUDE matrix.  

For situations with multiple qualitative factors, instead of using the correlation function in (5), 

one can take a product form  

,ଵሻ࢝ሺߝ൫ݎ݋ܿ ଶሻ൯࢝ሺߝ ൌ ,ଵ࢞ሺߝ൫ݎ݋ܿ ,ଵሻࢠ ,ଶ࢞ሺߝ ଶሻ൯ࢠ ൌ ቂ∏ ௝߬,௭ೕభ,௭ೕమ
௃
௝ୀଵ ቃ expሼെ∑ ߶௜ሺݔଵ௜ െ ଶ௜ሻଶூݔ

௜ୀଵ ሽ, 

(13) 

where each matrix ࢀ௝ ൌ ൛ ௝߬,௥,௦ൟ ሺݎ, ݏ ൌ 1,… , ௝݉ሻ is a PDUDE that is modeled by using the 

parameterization given by (4) and (5). This formulation can significantly reduce the number of 

parameters when the number of qualitative factors involved in the model is not small. 

3.  ESTIMATION AND PREDICTION 
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   Suppose the computer model under consideration is evaluated at n different input values, 

  ௪ࡰ ൌ ሺ࢝ଵ
଴,ڮ ௡࢝,

଴ሻ , with the corresponding responses denoted by ࢟ ൌ ሺݕଵ , … , ௡ሻ௧ݕ . The 

parameters in model (1) to be estimated are ߪଶ,  ઴ and દ. We use the method of maximum,ࢼ

likelihood to estimate these parameters and denote the resulting estimators by ߪොଶ, ෡,ࢼ ઴෡   and દ෡ . 

The log-likelihood function of ࢟, up to an additive constant, is  

െଵ
ଶ
ሾ݊logሺߪଶሻ ൅ log|ࡾ| ൅ ሺ࢟ െ ࢟ଵሺିࡾሻ௧ࢼࡲ െ  ଶሿ,                (14)ߪ/ሻࢼࡲ

where ࡲ ൌ ሺࢌሺ࢝ଵ
଴ሻ, … , ௡࢝ሺࢌ

଴ሻሻ࢚ is an ݊ ൈ  is the correlation matrix whose ࡾ matrix and ݌

ሺ݅, ݆ሻth entry is ܿݎ݋ ቀߝሺ࢝௜
଴ሻ, ෡ ࢼ ,௝଴൯ቁ defined in (5) or (13). Given ઴ and દ࢝൫ߝ  and ߪොଶ are  

෡ࢼ ൌ ሺࡲ௧ିࡾଵࡲሻିଵࡲ௧ିࡾଵ࢟,             
ොଶߪ ൌ ൫࢟ െ ෡൯ࢼࡲ

௧
࢟ଵሺିࡾ െ .݊/෡ሻࢼࡲ

                          (15) 

Substituting (15) into (14), ઴෡  and દ෡  can be obtained as 

 (઴෡ ,દ෡ሻ ൌ argminሺ઴,દሻሼ݊logሺߪොଶሻ ൅ log|ࡾ|ሽ.                    (16) 

  This optimization problem only involves box constraints ߠ௥,௦ א ሺ0,  ሻ for દ,  much simplerߨ

than the positive definite constraints of the estimation procedure in Qian et al. (2008).  Note that   

the problem in (16) can be solved by using standard non-linear optimization algorithms in R or 

Matlab.  

  The fitted model can be used to predict the response value ݕ at any untried point in the 

design space. Given all the estimated parameters, the empirical best linear unbiased predictor 

(EBLUP) of y at any input value ࢝଴ is  

଴ሻ࢝ොሺݕ ൌ ෡ࢼ଴ሻ࢝௧ሺࢌ ൅ ࢟෡ିଵሺࡾො଴௧࢘ െ  ෡ሻ,                      (17)ࢼࡲ

where ࢘ො଴ ൌ ሺܿݎ݋ෞ ሺߝሺ࢝଴ሻ, ଵ࢝ሺߝ
଴ሻ, … , ෞݎ݋ܿ ሺߝሺ࢝଴ሻ, ௡࢝ሺߝ

଴ሻሻ௧ and ࡾ෡  is the estimated correlation 

matrix of ࢟.  Similar to its counterpart for the standard Gaussian process model in (2) with 

quantitative factors (Santner et al. 2003; Fang et al. 2005), the EBLUP in (17) smoothly 

interpolates all the observed data points. The features of the function ݕሺ࢝ሻ can be visualized by 

plotting the estimated functional main effects and interactions of the predictor ݕොሺ࢝ሻ . In 

estimating these functional ANOVA effects, for a qualitative factor, it suffices to average over the 
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predicted response values for all the levels of that factor.  

4.  COMPUTATIONAL ISSUES 

  If the design set ࡰ௪  has some cross-array structure (Wu and Hamada 2009) between the 

design for the quantitative factors ࢞  and the design for the qualitative factors ࢠ , the 

optimization problem in (16) can be further simplified. This is in the same spirit of the simplified 

iterative estimation procedure in Qian et al. (2008). First consider the model in (5) and assume 

that across the m categories defined in Section 2, the same set of input values ሺ࢞ଵ, … , ௡೎ሻ࢞
௧ are 

chosen for the quantitative factors x. Hence, ࡰ௪  can be expressed as a cross array of  ࡰ௫    ൌ

ሺ࢞ଵ,ڮ ,    ௖ࡰ ௡೎ሻ and࢞ ൌ ሺ1,ڮ ,݉ሻ.  Then ࡾ can be simplified to the Kronecker product of 

two smaller matrices given by 

ࡾ ൌ  (18)                                       ,ࡴ ۪ ࢀ

where ࡴ  is the ݊௖ ൈ ݊௖  matrix whose (݆ଵ ,  ݆ଶ )th entry is ܭ൫࢞௝భ, ۪ ௝మ൯and࢞  denotes the 

Kronecker product. By the positive definiteness of the three matrices in (18) and properties of 

Kronecker product (Graham 1981), we have that  

ଵିࡾ ൌ  ଵ                                   (19)ିࡴ ۪ ଵିࢀ

and 

log|ࡾ| ൌ log|ࡴ ۪ ࢀ| ൌ logሺ|ࢀ|௡೎ ڄ ௠ሻ|ࡴ| ൌ ݊௖log|ࢀ| ൅ ݉log|(20)          .|ࡴ 

  Plugging (19) and (20) into the objective function in (16) can significantly simplify the 

complication of the computation of the problem. Given the close connection between the 

proposed model in Section 2 and the standard Gaussian process model with quantitative factors 

in (2), available numerical techniques for the latter such as those dealing with singularity of 

correlation matrices and inverting correlation matrices (Lophaven, Nielsen, and Sondergaard 

2002a) can be readily adapted to the former. 

5.  EXAMPLES 

In this section, we provide numerical illustration to demonstrate the effectiveness of the 
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proposed method. For comparison purpose, we consider the following four methods for 

modeling computer experiments with qualitative and quantitative factors.  

a. The individual Kriging method, denoted by IK. This method fits the data associated with 

every level combination of the qualitative factors separately using the standard Gaussian 

model in (2) and (3) with a constant mean (Santner et al. 2003).  

b. The exchangeable correlation method, denoted by EC. This method fits a single integrated 

Gaussian process model with qualitative and quantitative factors. For the quantitative factors, 

the Gaussian correlation function is used and for the qualitative factors, the exchangeable 

correlation function, i.e., ߬௥,௦ ൌ ܿ  ሺ0 ൏ ܿ ൏ 1ሻ for ݎ ്  is used. This correlation function ,ݏ

was used by Joseph and Delaney (2007) and Qian et al. (2008).  

c. The multiplicative correlation method, denoted by MC. The multiplicative correlation 

function (McMillian et al. 1999; Qian et al. 2008) has the following form: 

߬௥,௦ ൌ ௥ߠሼെሺ݌ݔ݁ ൅ ݎሾܫ௦ሻߠ ് ,௥ߠሿሽ  ሺݏ ௦ߠ ൐ 0ሻ. 

d. The proposed method discussed in Section 3, denoted by UC, which stands for unrestrictive 

correlation.   

Some comparisons of these methods are worth mentioning. First, the methods in b to d all use 

a single Gaussian process model to analyze all available data, whereas the IK method, also 

called the independent analysis in Qian et al. (2008), fits distinct Gaussian process models in (2) 

to the data collected at different level combinations of the qualitative factors, thus ignoring 

possible correlations among different categories. Second, the UC method takes a far more 

flexible correlation structure than the EC and MC methods and thus is expected to produce 

superior results. Third, the correlation function for the qualitative factors of the UC method is 

essentially “structure free” and hence can capture both positive and negative cross-correlations 

across different categories, which cannot be modeled by the MC method.   

 From the modeling perspective, these models are interconnected to each other. All of them fit 

Kriging type emulators with qualitative and quantitative factors but have different degrees of 

flexibility in modeling the correlations of the qualitative factors. The IK model does not borrow 
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information among the data from different categories. It is refined by the EC method based on a 

simple function for capturing cross-correlations among categories, which in turn is enhanced by 

the MC method using a more flexible correlation structure. The correlation function of the UC 

method drastically improves those of the EC and MC methods, rendering the most flexible 

model among all the methods. This viewpoint provides a logical basis for setting initial 

correlation parameter values for these methods. In particular, we found the following modeling 

fitting procedures work well in our numerical examples. (1) In analyzing an example with the 

EC method, one is recommended to first use the IK method to model the data and then use the 

estimated parameters to determine initial values of the roughness parameters when fitting the 

same data using the EC method. (2) When fitting an MC or UC model, initial values of the 

correlation parameters can be set based on the estimated parameters from a fitted EC model to 

the same data.  

5.1  An example with both positive and negative cross-correlations 

  This example considers an experiment with one quantitative factor, ݔଵ, taking values on [0, 1] 

and one qualitative factor, ݖଵ, with three levels. The response of the experiment is known to take 

the following form:  

ݕ ൌ ቐ
cosሺ6.8ݔߨଵ/2ሻ      if  ݖଵ ൌ 1 
െcosሺ7ݔߨଵ/2ሻ      if  ݖଵ ൌ 2 
cosሺ7.2ݔߨଵ/2ሻ      if  ݖଵ ൌ 3.

                          (21) 

Figure 2 compares the three curves of the function at different levels of ݖଵ. In the absolute scale, 

these curves are similar to one another. Since the second equation in (21) contains a negative 

sign, the curve with ݖଵ ൌ 2 is negatively correlated with the curves with ݖଵ ൌ 1 and ݖଵ ൌ 3, 

while the curve with ݖଵ ൌ 1 is positively correlated with the curve with ݖଵ ൌ 3. 
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Figure 2. Three curves of the function values with ݖଵ ൌ 1 (─), ଵݖ ൌ 2 (─ ·) and ݖଵ ൌ 3 (···). 

For each level of ݖଵ, the training data were obtained by using a Latin hypercube design of 

eight runs for ݔଵ on [0, 1], and the testing data were then taken at 20 equally spaced points of 0, 

1/19, 2/19, …, 1. The root mean squared errors (RMSEs) of the testing data were calculated for 

the four models to assess prediction accuracy. This procedure of data generation, modeling fitting 

and prediction accuracy assessment was repeated 100 times. Figure 3 compares the RMSEs of 

the four methods.   

 
Figure 3.  Boxplots of the RMSEs of the four methods for Example 5.1. 

The mean values of the 100 RMSEs for the four models described in the beginning of Section 

5 are 0.0392, 0.0391, 0.0365 and 0.0191, respectively, indicating that the UC method achieves 

the best prediction performance. Figure 4 depicts the boxplots of the cross-correlation parameters 
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߬ଵ,ଶ, ߬ଵ,ଷ and ߬ଶ,ଷ estimated in the UC and MC methods.   

(a) (b) 

  
 Figure 4.  Boxplots of the estimated cross-correlation parameters of the MC method, given 
in (a), and those of the UC method, given in (b), where (i, j) denotes the cross-correlation of 

the ith and jth ݖଵ levels. 

As indicated by Figure 4, the UC method correctly captures both the positive and negative 

cross-correlations of this example, whereas the MC method fails to catch the two negative 

correlations of the second level of  ݖଵ due to the positiveness constraint in the cross-correlation 

matrix of this method. This flexibility of the method UC explains its superior performance in this 

example.   

5.2  An example from Han et al. (2009)   

  We now compare the UC method with some existing methods using an example from Han et 

al. (2009).  This example uses the following quadratic function with one quantitative factor 

ଵݔ א ሾ0,1ሿ and one three-level qualitative factor ݖଵ  

ݕ ൌ ቐ
b଴ଵ ൅ bଵଵݔଵ ൅ bଶଵݔଵଶ      if  ݖଵ ൌ 1 
b଴ଶ ൅ bଵଶݔଵ ൅ bଶଶݔଵଶ      if  ݖଵ ൌ 2 
b଴ଷ ൅ bଵଷݔଵ ൅ bଶଷݔଵଶ      if  ݖଵ ൌ 3.

                     (22) 

  Following Han et al. (2009), the training data and testing data were generated as follows. The 

first two levels of the function were evaluated at {0, 0.25, 0.5, 0.75, 1} and the third level at {0.5, 

0.75, 1}. There were three processes to produce true quadratic curves for the testing. In each 

process, nine coefficients of the three testing function were randomly drawn from normal 
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distributions with the same standard deviation of 0.01. The expected values of (b଴ଵ, b଴ଶ, b଴ଷ, 

bଵଵ, bଵଶ, bଵଷ, bଶଵ, bଶଶ, bଶଷ) for the three processes were (1, 0, -1, 6, 4, 5, -6, -6, -6), (1, 0, -1, 

0, 6, 5, 2, -6, -6) and (1, 0, -1, 6, 6, 6, -6, -6, -6), respectively. The testing data were obtained only 

for ݖଵ ൌ 3 at points {0.5, 0.51, …, 1.00} and RMSEs were calculated. The above procedure of 

data generation, modeling fitting and assessment of prediction accuracy was repeated 30 times 

for all three processes with independent random samples of b௜௝s drawn each time.  

Tables 1~3 compare the RMSEs of the four methods discussed in the beginning of Section 5 

together with (1) SHB: a “surfacewise hierarchical bayes” predictor; (2) KOH method; (3) 

HQQV: the hierarchical Bayesian model proposed by Han et al. (2009). The results presented in 

the tables for the last three methods were extracted from the corresponding figures in Han et al. 

(2009).  

Table 1. Some quantiles of the RMSEs for process 1 of the seven methods 

Quantile SHB KOH HQQV IK EC MC UC 
25% 0.102 0.012 0.029 0.0951 2.73E-4 1.16E-3 2.51E-4 

50% 0.120 0.034 0.030 0.0969 2.84E-4 1.21E-3 2.66E-4 

75% 0.130 0.039 0.031 0.0984 3.02E-4 1.24E-3 4.37E-4 

 
Table 2. Some quantiles of the RMSEs for process 2 of the seven methods 

Quantile SHB KOH HQQV IK EC MC UC 
25% 0.090 0.008 0.028 0.0950 0.0177 0.0154 7.41E-3 

50% 0.112 0.009 0.031 0.0952 0.0179 0.0155 7.49E-3 

75% 0.126 0.010 0.032 0.0980 0.0180 0.0157 7.54E-3 

 
Table 3. Some quantiles of the RMSEs for process 1 of the seven methods 

Quantile SHB KOH HQQV IK EC MC UC 
25% 0.083 0.051 0.025 0.0928 5.01E-4 7.02E-4 3.70E-6 

50% 0.098 0.058 0.026 0.0933 5.40E-4 7.26E-4 5.13E-6 

75% 0.103 0.059 0.027 0.0936 5.68E-4 7.52E-4 6.58E-6 

These tables suggest that the UC method consistently outperforms all competing methods in 

this example except that it gives an RMSE similar to that of the EC method for the 75% quantile 
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in Table 1. In particular, the UC method gives far better results in Table 2 than all other methods 

for process 2, which involves both positive and negative cross-correlations among the levels of 

the qualitative factor.  

5.3  A data center computer experiment   

Here we reanalyzed the data of the data center computer experiment given in Qian et al. (2008) 

by using the UC method with the product correlation structure in (13). This experiment studies 

the thermal dynamics of an air-cooled data center system using a computational fluid dynamics 

program in Flotherm. The goal of the experiment is to predict airflow and heat transfer in the 

electronic equipment of the data center. Each run of this experiment takes hours or even days to 

complete. This experiment contains five quantitative factors, ݔଵ, ,ଶݔ ,ଷݔ ,ସݔ ,ହݔ  and three 

qualitative factors, ݖଵ, ,ଶݖ  is ,ݕ ,ଷ, with 2, 4, and 3 levels, respectively. The response variableݖ

the temperature at a selected location of the system. There are 67 observations and 24 level 

combinations of three qualitative factors; which implies that on average each level combination 

has less than 3 observations.   

 The form of ࢌሺ࢝ሻ௧ࢼ  used in Qian et al. (2008) is retained in our analysis. For this example, 

we take the product correlation function in (13). Following Qian et al. (2008), we use a 

leave-one-out cross-validation procedure to assess prediction accuracy of our method where the 

model correlation parameters and correlation matrices are obtained based on all data points and 

are not recomputed each time. The RMSE of our method is 1.70, similar to 1.88 of the method in 

Qian et al. (2008). However, our method gains significant computational efficiency. It took less 

than 20 seconds on a PC with Intel Core2 Duo CPU at 2.00GHz to fit the proposed method to 

this example, whereas fitting the method in Qian et al. (2008) with 400 iterations to the same 

example took more than 3 hours on a double-core PC running a Linux system.  

6.  SUMMARY AND DISCUSSION 

We have proposed a new method for modeling computer experiments with qualitative and 
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quantitative factors. This method uses a new parameterization for modeling the correlations 

among the levels of the quantitative factors, which simplifies complicated constrained 

optimization problems to easy to compute problems. Several examples clearly demonstrate that 

this method compares favorably with existing methods. This work deals with modeling computer 

experiments with these two types of factors. The interested reader is referred to Qian and Wu 

(2009) for a framework on design construction for such experiments. All computations used in 

this paper are done in MATLAB programs, which are available from the authors.  
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