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SUMMARY

Inferences for spatial data are affected substantially by the spatial configuration of the network of sites where
measurements are taken. In this article, criteria for network design that emphasize the utility of the network for
prediction (kriging) of unobserved responses assuming known spatial covariance parameters are contrasted with
criteria that emphasize the estimation of the covariance parameters themselves. It is shown, via a series of related
examples, that these two main design objectives are largely antithetical and thus lead to quite different ‘‘optimal’’
designs. Furthermore, a hybrid design criterion that accounts for the effect that the sampling variation of spatial
covariance parameter estimates has on prediction is described and illustrated. Situations in which the hybrid
optimal design resembles designs that are optimal with respect to each of the other two criteria are identified. An
application to the optimal augmentation of an acid deposition monitoring network in the eastern US is presented.
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1. INTRODUCTION

Inferences for spatial data are affected substantially by the spatial configuration of the network of sites

where measurements are taken. Because kriging is usually the ultimate objective of a geostatistical

analysis, most authors who have considered network design for geostatistical data have emphasized

the utility of designs for prediction. Invariably, these design considerations are made under an

assumption that the second-order dependence (as characterized by either the covariance function or

the semivariogram) is known, except possibly up to a scale parameter. Examples of this work include

Bras and Rodriguez-Iturbe (1976), McBratney, Webster, and Burgess (1981), Yfantis, Flatman, and

Behar (1987), Barnes (1989), and Cressie, Gotway, and Grondona (1990). The design criteria

considered by these authors are generally either the average kriging variance (prediction error

variance) or the maximum kriging variance over the region of interest, or some minor modification

thereof.
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Inasmuch as the second-order dependence of geostatistical data must in practice be estimated,

however, a total emphasis on prediction under an assumption of known dependence parameters, with

no regard for the utility of the design for the estimation of those parameters, may be ill-advised.

Motivated by this concern, several authors have considered design criteria for good estimation of

dependence parameters. Russo (1984) considered a design to be optimal if it minimized the dispersion

of lags (i.e., distances between data locations) within the lag classes used for semivariogram

estimation, while Warrick and Myers (1987) proposed a criterion that measures how well the lag

distribution corresponding to a design conforms to a prespecified distribution. Zimmerman and Homer

(1991), Müller and Zimmerman (1995, 1999), and Zhu and Stein (2005) focused instead on criteria

more directly related to estimation quality, such as minimizing the determinant of the asymptotic

covariance matrix of covariance parameter estimates.

This article has two purposes. The first is to demonstrate that the two design objectives of

efficient prediction assuming known dependence on the one hand, and efficient estimation of

dependence parameters on the other, are largely antithetical and thus often lead to very different

optimal designs. The second purpose is to introduce a hybrid design criterion that emphasizes

prediction but accounts for the additional prediction uncertainty incurred due to the estimation of

covariance parameters, and show how designs that are optimal with respect to this criterion

compare to designs that are optimal with respect to the other two types of criteria. Unlike the design

objective of mean parameter estimation, none of the three design objectives considered herein has a

well-developed optimal design theory; consequently, we will use a series of examples, some small

and some large, to investigate these issues empirically. An application to an acid deposition network

in the eastern US will also show how designs that are optimal with respect to the three types of

criteria compare to each other.

2. DESIGN FOR KRIGING WITH KNOWN DEPENDENCE PARAMETERS

Consider the following standard data-model framework for geostatistical data. We suppose that a

continuous, spatially-varying quantity, Z, is to be observed at a predetermined number, n, of points

s1; . . . ; sn in a region of interest D. Let Zðs1Þ; . . . ; ZðsnÞ represent the observations taken at these

points. These observations are modeled statistically as a spatially incomplete sample of one realization

of a random field or stochastic process fZðsÞ : s 2 Dg. Assume further that the random field’s mean is

a linear function of unknown parameters, i.e., E½ZðsÞ� ¼ Pp
i¼0 �ifiðsÞ where f0ðsÞ � 1 and the

remaining fi’s are known functions of observed covariates (e.g., the spatial coordinates of s). Also

define the covariance function by Cðs; uÞ ¼ cov½ZðsÞ; ZðuÞ�. In this section, we assume that the

covariance function is known.

Under the model just described, the best (in the sense of minimizing the prediction error variance)

linear unbiased predictor (BLUP) of Zðs0Þ, the realized but unobserved value of Z at an arbitrary point

s0 2 D, is the so-called universal kriging predictor, which is given by

Ẑðs0Þ ¼ ½cþ XðX0R�1XÞ�1ðx� X0R�1cÞ�0R�1z ð1Þ

Here, c is the vector whose ith element is Cðsi; s0Þ; X is the matrix whose ijth element is fj�1ðsiÞ and
which is assumed to have full column rank; R is the matrix whose ijth element is Cðsi; sjÞ; x is the
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vector whose jth element is fj�1ðs0Þ; and z is the data vector with ith element ZðsiÞ. The minimized

prediction error variance associated with Ẑðs0Þ, also called the kriging variance, is given by

�2
Kðs0Þ ¼ varðẐðs0Þ � Zðs0ÞÞ ¼ Cðs0; s0Þ � c0R�1cþ ðx� X0R�1cÞ0ðX0R�1XÞ�1ðx� X0R�1cÞ ð2Þ

Now let S be the set of all possible points where observations may be taken. We assume throughout

that S is either D, a subregion of D, or a finite set of points inD. Suppose we wish to choose a subset of

n points from S that are optimal, in some sense, for the purpose of kriging. As noted previously, the

two most commonly used design criteria for this purpose are the average kriging variance

1

jSj
Z
D

�2
KðsÞ ds or

1

jSj
X
i2S

�2
KðsiÞ

(depending on whether S is a region or a finite point set) and the maximum kriging variance,

maxs2S �2
KðsÞ. Here jSj is either the volume of S (if S is D or a subregion of it) or the number of points

in S. An n-point design is optimal with respect to one of these criteria if it minimizes the criterion over

all possible n-point designs, each point taken from S.
The top panel of Figure 1 displays optimal designs for the first in a series of toy examples.

Throughout the entire series, S is a 5� 5 square grid of points with unit spacing and n ¼ 4. In this first

example, observations are assumed to arise from a stationary process on S with unknown constant

mean and an isotropic exponential covariance function given by Cðs; uÞ ¼ �2expð�ks� uk=�Þ. For
greater interpretability we put � ¼ expð�1=�Þ and reparameterize the covariance function as

Cðs; uÞ ¼ �2�ks�uk; then � represents the correlation between adjacent points in S. For each value

of � ¼ 0:01; 0:02; . . . ; 0:99, we obtained the four-point design that minimizes

KðhÞ ¼ max
s2S

�2
Kðs; hÞ ð3Þ

Figure 1. Locally K-optimal designs for the toy example. All designs pertain to the no-nugget model. Top row: Constant mean

case, with left panel corresponding to � ¼ 0:01; 0:02; . . . ; 0:21, middle panel corresponding to � ¼ 0:22; 0:23, and right panel

corresponding to � ¼ 0:24; . . . ; 0:99. Bottom row: Planar mean case, with left panel corresponding to � ¼ 0:01; 0:02; . . . ; 0:64

and remaining panel corresponding to � ¼ 0:65; . . . ; 0:99
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by complete enumeration of all possible designs. There are 25
4

� � ¼ 12 650 four-point arrangements in

S, but due to the symmetry of S with respect to rotations of 90�, 180�, and 270� and with respect to

reflections, many of these are equivalent to each other. In fact, there are 2012 equivalence classes or

distinct designs, and in our figures we shall always display just one member of a class.

We call a design that minimizes KðhÞ for given h a ‘locally K-optimal’ design (where the K is for

kriging). The values of � considered here result in three distinct K-optimal designs. In all three of

these, the four design points tend to be relatively far apart, expanding outward slightly as the spatial

correlation increases. This type of design is intuitively reasonable, as it prevents any prediction site

from being too far from any design point. We note that if the mean was known, the K-optimal design

would minimize the maximum distance between design points and prediction sites. The four-point

design that achieves this would have an ‘‘interior square’’ arrangement, with each design point being

along a diagonal of the 5� 5 grid, equidistant from the center point and a corner point of S. On the

other hand, if all of our interest was on estimating an unknown mean as precisely as possible, the

optimal design would be the ‘‘four-corner’’ design, i.e., the design with points at the four extreme

corners of S, because this design renders the observations at design points as nearly uncorrelated as

possible. The locally K-optimal designs represent compromises between the interior square and four-

corner designs.

The bottom panel of Figure 1 displays locally K-optimal designs for a situation exactly the same as

that just described, except that the process is taken to have a planar mean function, i.e.,

E½ZðsÞ� ¼ �0 þ �1xþ �2y (with �0; �1; �2 unknown). Because the model matrix, X, is different in

this case, it is not surprising that the locally K-optimal designs are different, at least for some values of

�. (Note also that a few of the 2012 distinct designs, for example those with all four points in the same

row or column, must be excluded from consideration when the mean is planar because they render the

mean function parameters non-estimable.) It is interesting that the four-corner design is optimal when

the spatial correlation is weak to moderate, but when the spatial correlation is sufficiently strong the

optimal design contracts slightly inward to coincide with the locally K-optimal design for the constant

mean case. The optimality of the four-corner design when the spatial correlation is weak to moderate is

reasonable in light of the well-known fact that the four-corner design is D-optimal for estimating a

planar mean, i.e., it minimizes the determinant of the covariance matrix of estimated planar mean

parameters, when there is no spatial correlation.

Adding a nugget to the covariance function can also affect which designs are locally K-optimal,

though it appears that the effect is slight. When the mean was constant and a nugget equal to either

25 or 50% of the overall sill was added, the three designs displayed in the top panel of Figure 1

remained locally K-optimal, but the range for � over which the design was optimal shifted very

slightly (e.g., the lower endpoint for the third design moved from 0.24 to 0.22 as the nugget increased

from 0 to 50% of the sill). In the case of a planar mean and the same two nuggets, the four-corner

design was the K-optimal design uniformly over all values of �.
The limitations of studying a four-point design in a 5� 5 design space are obvious, hence we also

considered a series of larger examples in which we took S to be a 100� 100 grid and n ¼ 50. We

considered the same mean functions (constant and planar) and nuggets (0, 25, and 50% of the sill) as in

the toy examples; however, since complete enumeration of all designs is not feasible in this case we

limited � to three values (0.2, 0.5, and 0.8) and obtained designs by a simulated annealing algorithm,

starting from a completely random initial design. (For details on the use of simulated annealing in a

spatial design context, see van Groenigen and Stein (1998) or Lark (2002).) Here � represents the

correlation, in the no-nugget case, between sites in S 20 grid spacings apart, which makes

the correlation scale for the overall extent of S comparable to what it was for the toy examples.
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For each combination of mean function, nugget, and � the algorithm was repeated three times, from a

different initial design each time, to verify reproducibility of the essential features of the design. The

results were consistent across these repetitions, so for brevity we just display a design obtained from an

arbitrarily chosen one.

Figure 2 displays the locally K-optimal designs obtained for the larger example. Only the no-nugget

case is included in Figure 2, as the effect on the designs of adding a nugget was imperceptible. The top

panel, corresponding to the constant mean case, shows the locally K-optimal designs to be ‘regular,’ in

the sense that the points are rather uniformly dispersed over the study region, with no two points close

to each other. This is true regardless of the strength of spatial correlation, and is consistent with the toy

example and with previously published findings (e.g., McBratney, Webster, and Burgess, 1981;

Yfantis, Flatman, and Behar, 1987). In the planar mean case shown in the bottom panel, however, the

locally K-optimal designs have a preponderance of points near the periphery of the design space;

indeed the points tend to pile up in two opposite corners. This too is consistent with the toy example,

and essentially the same interpretation made for the toy example is plausible here; that is, that

prediction in the planar mean model is enhanced substantially by improved estimation of the slope

parameters, which will occur for designs with more high-leverage (peripheral) points.

We also examined designs that minimize the average (rather than the maximum) kriging variance

over the grid points, both for the toy example and the larger example. While these designs were not

necessarily identical to the locally K-optimal designs shown in Figures 1 and 2, qualitatively they were

very similar.

Our overall conclusion is that the strength of the spatial correlation and the size of the nugget have

relatively little effect on the K-optimal design, but that the choice of mean function has a tremendous

effect. When the mean is constant, the best designs are very regular; when the mean is planar the best

designs have most of their points along the periphery of the design space.

Figure 2. Locally K-optimal designs for the larger example. Rows of panels, from top to bottom, correspond to constant and

planar means; columns, from left to right, correspond to � ¼ 0:2, 0.5, 0.8
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3. DESIGN FOR ESTIMATION OF COVARIANCE PARAMETERS

Now let us suppose that the covariance function is known only up to a parameter vector h, and that we
wish to design a network that is optimal, in some sense, for estimating h. Of course, such a design may

depend on the particular estimator, ĥ, and on the particular measure of that estimator’s quality that is to

be used. One design approach, which was proposed by Müller and Zimmerman (1999), is to maximize

the determinant of the information matrix associated with a nonlinear generalized least squares

estimator of h. A related approach, which was used by Zhu and Stein (2005) and is also used here, is to

assume that the underlying process is Gaussian and maximize the determinant of the information

matrix associated with either the maximum likelihood (ML) estimator or residual maximum

likelihood (REML) estimator of h. The rationale for these criteria is that the inverse of the information

matrix is, under regularity conditions, the asymptotic covariance matrix of the corresponding

estimator of h; thus for sufficiently large samples it should provide a reasonable approximation to

the determinant of the intractable mean squared error (MSE) matrix

MðhÞ ¼ E½ðĥ� hÞðĥ� hÞ0�

Let IMLðhÞ and IREMLðhÞ represent the information matrices associated with the ML and REML

estimators of h, respectively. The ijth element of IMLðhÞ is given by

1

2
tr R�1 @R

@�i
R�1 @R

@�j

� �

and the ijth element of IREMLðhÞ is given by

1

2
tr P

@R
@�i

P
@R
@�j

� �

where P ¼ R�1 � R�1XðX0R�1XÞ�1X0R�1. For brevity, we shall limit our presentation to designs

that are optimal with respect to ML estimation; results corresponding to REML estimation are quite

similar except when the size of the design is small and the number of mean parameters is large. Note

that maximizing jIMLðhÞj is equivalent to minimizing jBMLðhÞj, where BMLðhÞ ¼ I�1
MLðhÞ, the large-

sample approximation to MMLðhÞ. We shall use jBMLðhÞj as a design criterion, calling a design that

minimizes it for a particular h a locally CP-optimal design (where CP refers to covariance

parameter). For economy of expression, we shall cease using the subscript ML and will simply

denote BMLðhÞ by BðhÞ.
To explore the kinds of designs that are optimal with respect to this criterion, we begin again with

the series of toy examples introduced in the previous section. We consider only the case of a constant

mean function, since BðhÞ is invariant to the choice of mean function. (As noted previously,

estimability considerations require that a few designs be excluded when the mean is planar, but this

has minimal effect on which designs are optimal.) Also, BðhÞ is invariant to translations of the design;
hence, the aforementioned collection of equivalence classes of designs with respect to rotations and

reflections can be reduced to an even smaller collection of equivalence classes, and again we will

display only one member of a given class.

Figure 3 shows the seven four-point locally CP-optimal designs obtained by taking

� ¼ 0:01; 0:02; . . . ; 0:99, for a model with no nugget. In all of these designs, the points are clustered

640 D. L. ZIMMERMAN

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2006; 17: 635–652



to some degree. When � is sufficiently small the design is a compact cluster, but as � increases the

cluster tends to elongate into a linear ‘‘strand’’ and may disperse somewhat. This is in marked contrast

to the characteristics of locally K-optimal designs. It would appear that the presence of some small

lags in the design is very useful for precise estimation of covariance parameters but not for prediction

(with known covariance parameters). Indeed, these two design objectives are largely antithetical; for

instance, the K-optimal design when � ¼ 0:5 and the mean is constant (the design in the rightmost

panel in the top row of Figure 1) is the 14th worst design (out of 2012) for minimizing jBðhÞj, and the
CP-optimal design under the same circumstances (middle panel in top row of Figure 3) is the 15th

worst with respect to K-optimality. This is established more definitively by examining the rank

correlations between KðhÞ and jBðhÞj over the entire population of distinct four-point designs (see

Table 1). These correlations, denoted by rK;CP, are negative except when the spatial correlation is very

strong.

Locally CP-optimal designs for a model with a nugget equal to zero are displayed in Figure 4. Note

that this model is not equivalent to the no-nugget model when using jBðhÞj as a criterion, since IðhÞ
for this model is of larger dimensions (3� 3 vs. 2� 2) and some of its terms involve partial derivatives

of the covariance matrix with respect to the nugget. Figure 5 displays locally CP-optimal designs for a

model with nugget equal to 50% of the sill. We see that the locally CP-optimal designs corresponding

to the zero-nugget model are quite similar to their counterparts for the no-nugget model. The 50%

nugget case is not greatly different, but there is some indication that the clusters of points are less

inclined to be aligned linearly.

Figure 3. Locally CP-optimal designs for the toy example, in the case of a constant mean and no nugget. Moving from left to

right within rows, the panels correspond to the following ranges for �: � ¼ 0:01; . . . ; 0:33; � ¼ 0:34; . . . ; 0:61; � ¼ 0:62; 0:63;

� ¼ 0:64; 0:65; � ¼ 0:66; . . . ; 0:70; � ¼ 0:71; � ¼ 0:72; . . . ; 0:99
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It may be argued that it is not appropriate to use a criterion based on standard asymptotic theory in

the context of four-point designs, and even less so for the zero-nugget case, for which the standard

asymptotic theory does not apply due to non-regularity (the nugget lies on the boundary of the

parameter space). Note, however, that the usefulness of jBðhÞj as a design criterion relies not on its

Table 1. Rank correlations between the K-optimality, CP-optimality, and
EK-optimality criteria over the population of 2012 distinct designs in the toy

example

� rK;CP rK;EK rCP;EK

Constant mean, no nugget
0.1 �0.97 �0.95 0.97
0.2 �0.93 �0.89 0.96
0.3 �0.88 �0.75 0.88
0.4 �0.81 �0.07 0.20
0.5 �0.74 0.73 �0.52
0.6 �0.64 0.94 �0.55
0.7 �0.27 0.98 �0.17
0.8 0.21 0.99 0.25
0.9 0.29 1.00 0.30

Constant mean, 50% nugget
0.1 �0.92 �0.86 0.98
0.2 �0.87 �0.79 0.97
0.3 �0.80 �0.69 0.97
0.4 �0.72 �0.57 0.94
0.5 �0.65 �0.42 0.87
0.6 �0.50 �0.38 0.91
0.7 �0.30 �0.37 0.97
0.8 �0.16 �0.34 0.93
0.9 0.03 �0.28 0.83

Figure 4. Locally CP-optimal designs for the toy example, in the case of a constant mean and 0% nugget. Moving from left to

right within rows, the panels correspond to the following ranges for �: � ¼ 0:01; . . . ; 0:20; � ¼ 0:21; . . . ; 0:29; � ¼ 0:30; . . . ;

0:86; � ¼ 0:87; . . . ; 0:99

642 D. L. ZIMMERMAN

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2006; 17: 635–652



quality as an approximation to jMðhÞj but on the monotonicity of its relationship with jMðhÞj. If this
relationship is monotonic, then the two criteria will rank designs in the same order. In order to

investigate the extent to which this relationship is monotonic, we obtained an estimate, M̂ðhÞ, of the
ML estimator’s finite-sample MSE matrix for a given h, and used its determinant as a criterion in

place of jBðhÞj. It is not computationally feasible to do this for all 99 values of � and all 2012 distinct
four-point designs, hence we considered only three values of � (0.2, 0.5, and 0.8) and only 102 four-
point designs for each �. These designs were obtained by first ranking all 2012 designs according

to their value of the K-optimality criterion for that of �, and then selecting the designs in positions

1, 21, 41, . . ., 2001, 2012 in the list. The estimation of the MSE matrix was accomplished by

simulating 1000 realizations of a Gaussian process over the design space and obtaining, from

the subset of simulated data corresponding to each design, the ML estimator of h, say ĥij (where i

indexes the simulations and j indexes the designs). To ensure the existence of an ML estimator for

every simulation, we took the parameter space for h ¼ ð�; �2Þ0 to be ½0; :99� � ð0;1Þ. From these

estimators, we calculated

M̂jðhÞ ¼ 1

1000

X1000
i¼1

ðĥij � hÞðĥij � hÞ0

which estimates MjðhÞ, the MSE matrix corresponding to the jth design. The rank correlations

between jM̂jðhÞj so obtained and the jth design’s value of jBðhÞj ranged from 0.37 when � ¼ 0:2 to

0.50 when � ¼ 0:8. More to the point, the particular design that minimized jBðhÞj also generated the

smallest value of jM̂jðhÞj when � ¼ 0:5, and the second smallest value of jM̂jðhÞj when � ¼ 0:2 and

� ¼ 0:8. Based on this, and in light of the sampling variation of M̂jðhÞ, it seems reasonable to conclude

Figure 5. Locally CP-optimal designs for the toy example, in the case of a constant mean and 50% nugget. Moving from left to

right within rows, the panels correspond to the following ranges for �: � ¼ 0:01; . . . ; 0:18; � ¼ 0:19; . . . ; 0:30; � ¼ 0:31; . . . ;
0:70; � ¼ 0:71; 0:72; � ¼ 0:73; . . . ; 0:75; � ¼ 0:76; � ¼ 0:77; . . . ; 0:79; � ¼ 0:80; � ¼ 0:81; . . . ; 0:88; � ¼ 0:89; . . . ; 0:99
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that the general features of designs that have small values of the determinant of the ML estimator’s

exact mean squared error matrix will coincide with those that have small values of jBðhÞj.
We also investigated the use of jBðhÞj as a design criterion for the larger example introduced in the

previous section. For this example, we deem the sample size (which is 50) to be sufficiently large for

the ranking of designs with respect to jBðhÞj to be a very good approximation to the ranking with

respect to jMðhÞj; some evidence in support of this is provided by Zhu and Stein (2005, Figure 3).

Figure 6 displays locally CP-optimal designs corresponding to constant and planar mean functions,

and to the same values of � and nugget used previously for the larger example. Looking first at the case

of a constant mean and no nugget, we see that the three locally optimal designs all have a substantial

proportion of points regularly spaced along the boundary, and the remainder are in a small number of

relatively large clusters of contiguous points—the clusters themselves located rather haphazardly in

the design space. Some of these clusters are linear strands or have linear segments, a phenomenon

we also observed in the toy example. The interior of the design space is rather empty, save for the

occasional cluster. This pattern of points has the effect of creating many small lags and many

large lags. The case of a planar mean and no nugget is not greatly different, though there appears to be

a few less points within clusters and a few more points regularly spaced within the interior. The

designs are significantly different, however, when the nugget is 50% of the sill. In both the constant

and planar mean cases with a 50% nugget, the locally optimal design consists of clusters of a small

number (2–5) of points. As � increases, so does the average number of points per cluster and the

dispersion of those points within clusters. Furthermore, when the mean is constant, the vast majority of

clusters are located near the design space’s periphery and are regularly spaced along it, whereas when

the mean is planar most clusters are regularly spaced within the interior (although there is a cluster in

each corner).

The overall conclusion we make from these results is that for purposes of good estimation of

covariance parameters, a design should have a much greater number of small lags than will occur in a

K-optimal design or, for that matter, in a completely random arrangement of points. The design should

have many large lags as well. Such a distribution of lags is achieved by a pattern of regularly spaced

clusters, most of which lie along the periphery of the design space. Another conclusion is that the

nugget has a much greater effect than the strength of spatial correlation on CP-optimal design.

4. DESIGN FOR KRIGING WITH ESTIMATED COVARIANCE PARAMETERS

Neither of the design approaches discussed in the previous two sections fully address the prediction

problem of most practical interest, which is to predict the unobserved value of Zðs0Þ when the spatial

dependence parameters are unknown. The standard predictor in this situation, known as the E-BLUP

(empirical BLUP), is given by an expression identical to Equation (1) but with R evaluated at ĥ, an
estimate of h, rather than at the hitherto-assumed-known h. That is, if we let p1ðz; s0; hÞ be the known-
covariance-parameter BLUP at s0 given by Equation (1), then the E-BLUP at s0 is given by

p2ðz; s0Þ ¼ p1ðz; s0; ĥÞ.
The sampling distribution of the E-BLUP is only partially understood. Remarkably, it is known

to be unbiased under very weak conditions; however, an explicit expression for the variance of the

E-BLUP’s prediction error, i.e.

m2ðs0; hÞ ¼ varðp2ðz; s0Þ � Zðs0ÞÞ
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has not been derived. In practice, m2ðs0; hÞ is usually estimated by substituting ĥ for h in Equation (2),
the expression for the variance of the BLUP prediction error. Harville and Jeske (1992) and

Zimmerman and Cressie (1992) considered the performance of this method for estimating

m2ðs0; hÞ, and also proposed the following approximation:

m2ðs0; hÞ¼: �2
Kðs0; hÞ þ tr½Aðs0; hÞHðhÞ� ð4Þ

Figure 6. Locally CP-optimal designs for the larger example. Rows of panels, from top to bottom, correspond to constant mean

and no nugget, planar mean and no nugget, constant mean and 50% nugget, planar mean and 50% nugget. Columns, from left to

right, correspond to � ¼ 0:2, 0.5, 0.8
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where Aðs0; hÞ ¼ var½dðz; s0; hÞ�, dðz; s0; hÞ ¼ @p1ðz; s0; hÞ=@h, HðhÞ is a matrix that either equals or

approximates the MSE matrixMðhÞ, and trð�Þ denotes the trace of a square matrix. If h is estimated by

maximum likelihood, then a natural choice forHðhÞ is BðhÞ. Zimmerman and Cressie (1992) and later

Abt (1999) found this approximation to be much closer than �2
Kðs0; hÞ to m2ðs0; hÞ in many, though not

all, situations they considered.

Accordingly, here we investigate optimal design for kriging with estimated covariance parameters

using as a criterion the maximum value of the E-BLUPs asymptotic approximate prediction error

variance over all sites in S,
EKðhÞ ¼ max

s2S
f�2

Kðs; hÞ þ tr½Aðs; hÞBðhÞ�g ð5Þ

We call a design that minimizes this criterion for a given h a locally EK-optimal design (where EK

stands for empirical kriging). Observe that criterion (5) combines a measure of quality of design with

respect to prediction with known covariance parameters, namely �2
Kðs; hÞ, with a measure of quality

with respect to covariance parameter estimation, tr½Aðs; hÞBðhÞ�. We may, therefore, expect that EK-

optimal designs may lie somewhere between the extremes of K-optimal and CP-optimal designs.

Figures 7, 8, and 9 display locally EK-optimal designs for the toy example, in the case of a constant

mean and a model with no nugget, 0% nugget, and 50% nugget, respectively. In all three cases of

nugget, the optimal design is highly clustered when � is small and thus is identical or bears a

resemblance to the corresponding CP-optimal design. In the no-nugget and 0% nugget cases, however,

the design points become dispersed as � increases and the EK-optimal design begins to resemble or

coincide with the corresponding K-optimal design. In the case of a 50% nugget, the attenuation of

Figure 7. Locally EK-optimal designs for the toy example, in the case of a constant mean and no nugget. Moving from left to

right within rows, the panels correspond to the following ranges for �: � ¼ 0:01; . . . ; 0:17; � ¼ 0:18; . . . ; 0:21; � ¼ 0:22;

� ¼ 0:23; 0:24; � ¼ 0:25; 0:26; � ¼ 0:27; . . . ; 0:31; � ¼ 0:32; . . . ; 0:41; � ¼ 0:42; � ¼ 0:43; � ¼ 0:44; . . . ; 0:47;

� ¼ 0:48; 0:49; � ¼ 0:50; . . . ; 0:99
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clustering is much less pronounced, so that the EK-optimal design resembles or coincides with the CP-

optimal design for all values of � we considered. Further corroboration of this behavior is obtained by

examining the rank correlations between KðhÞ and EKðhÞ, denoted by rK;EK, and the rank correlations
between jBðhÞj and EKðhÞ, denoted by rCP;EK, across the population of distinct four-point designs

Figure 8. Locally EK-optimal designs for the toy example, in the case a constant mean and 0% nugget. Moving from left to

right within rows, the panels correspond to the following ranges for �: � ¼ 0:01; . . . ; 0:33; � ¼ 0:34; � ¼ 0:35; 0:36;

� ¼ 0:37; . . . ; 0:40; � ¼ 0:41; . . . ; 0:73; � ¼ 0:74; . . . ; 0:99

Figure 9. Locally EK-optimal designs for the toy example, in the case of a constant mean and 50% nugget. Moving from left to

right within rows, the panels correspond to the following ranges for �: � ¼ 0:01; . . . ; 0:56; � ¼ 0:57; . . . ; 0:61, 0:67;

� ¼ 0:62; . . . ; 0:66; � ¼ 0:68; . . . ; 0:74; � ¼ 0:75; . . . ; 0:77; � ¼ 0:78; � ¼ 0:79; . . . ; 0:85; � ¼ 0:86; . . . ; 0:99
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(see Table 1). When the mean is constant and there is no nugget, rK;EK moves from very close to �1

when the spatial correlation is weak, to very close to þ1 when the spatial correlation is strong. In the

case of a 50% nugget, rK;EK is negative for all values of � considered, though this negative correlation

does weaken as � increases. Note that the behavior of rCP;EK is non-monotonic, but that it is close to 1

over all values of � in the case of a 50% nugget.

The behavior of the locally EK-optimal designs in the case of a planar mean is generally quite

similar to that for the constant mean case, so we will not elaborate on it.

The quality of approximation (5) in this toy example is again open to question, indeed perhaps even

more so than the approximation of the ML estimator’s finite-sample covariance matrix by BðhÞ, due to
the additional level of approximation introduced in approximation (5). Consequently, we performed

another simulation study, which was similar to the previous one but went a step further. The extra step

was to use the ML estimate of h computed from each simulation (using the same parameter space for h
as before) to obtain the E-BLUP at all 25 grid sites, then square the difference of these E-BLUPs and the

simulated data at corresponding sites, and finally average these over the 1000 simulations. This average

squared difference at each site is an estimate of the E-BLUPs finite-sample prediction error variance at

that site, and its maximum over S can be used instead of approximation (5) as a design criterion. We

computed rank correlations, over the 102 designs, between approximation (5) and its estimated finite-

sample counterpart. These correlations ranged from 0.63, when � ¼ 0:2, to 0.97 when � ¼ 0:8. Based
on this, and in light of the sampling variation in the estimates of the E-BLUPs’ finite-sample prediction

error variances, it seems reasonable to conclude that, even in a case with a sample as small as in our toy

example, the general features of designs that have small values of EKðhÞ will coincide with those that

minimize the maximum of the E-BLUP’s finite-sample prediction error variances.

Finally we consider EK-optimal designs in the context of the larger example. Figure 10

shows locally EK-optimal designs corresponding to the same combinations of �, mean function,

and nugget used previously for this example. We see that in all cases the EK-optimal design is similar

to its K-optimal counterpart (Figure 2) on a global scale, i.e., in terms of overall spatial coverage and

extent, but that it has a few small clusters in it, thereby borrowing the small-scale features of its CP-

optimal counterpart (Figure 6). Thus, we conclude that a modest number of very small lags in the

design, while of no use for prediction with known covariance parameters, is beneficial for empirical

prediction.

5. APPLICATION: OPTIMAL AUGMENTATION OF AN ACID DEPOSITION

MONITORING NETWORK

As a final example, and one which is perhaps more representative of the types of design problems

actually encountered in practice, we consider the optimal augmentation of one site to an existing acid

deposition network. We base our analysis on data collected in 1983 at the 19 cities of the Utility Acid

Precipitation Study Program (UAPSP) network in the eastern US (see Figure 11). Several analytes

were measured in the study, but we restrict attention to total annual hydrogen ion deposition. The data

(in units of � mole Hþ=cm2) and their corresponding latitude–longitude coordinates are given by

Cressie, Gotway, and Grondona (1990), who also considered a one-site augmentation problem for this

network, but one that assumed known covariance parameters and used a different prediction-based

criterion than we used here. Zimmerman and Homer (1991) likewise used these data to obtain one-site

augmentations of the network that were optimal with respect to estimation of certain functions of the

covariance parameters.
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In practical situations in which an existing network may be augmented, it is often the case, due to

political or logistical considerations, that the candidates for addition are rather few. Accordingly, we

suppose that the site to be added to the network comes from the set of 11 candidates displayed together

with the existing sites in Figure 11. Incidentally, this is the same set of candidates used in both

references cited in the previous paragraph. Furthermore, based on the analyses presented in these

Figure 10. Locally EK-optimal designs for the larger example. Rows of panels, from top to bottom, correspond to constant

mean and no nugget, planar mean and no nugget, constant mean and 50% nugget, planar mean and 50% nugget. Columns, from

left to right, correspond to � ¼ 0:2, 0.5, 0.8
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previous works, we adopted a Gaussian random field model for these data, with quadratic mean

function

E½ZðsÞ� ¼ �0 þ �1xþ �2yþ �3x
2 þ �4xyþ �5y

2

and isotropic exponential covariance function CðrÞ ¼ �2expð�r=�Þ. Here, r represents great-circle

distance in units of 100miles. ML estimates (and their estimated standard errors) of the quadratic

mean parameters were as follows: �̂0 ¼ 5:24 (0.40), �̂1 ¼ 0:203 (0.071), �̂2 ¼ 0:056 (0.13),

�̂3 ¼ �0:047 (0.016), �̂4 ¼ 0:057 (0.024), �̂5 ¼ �0:057 (0.031). ML estimates of the covariance

parameters were �̂2
ML ¼ 0:901 and �̂ML ¼ 0:517.

Assuming that the fitted model is the correct model, we can determine which of the 11 candidate

sites for augmentation is optimal with respect to each of the three design criteria we have featured in

this article. The K-optimality and EK-optimality criteria require the definition of a set S of prediction

sites on which to evaluate the kriging variance. We took this set to be a regular grid of 1980 prediction

sites with 25-mile spacing, overlaid upon the eastern US.

We found that augmenting the existing network by Charlottesville, VA, USAyielded the K-optimal

and EK-optimal designs, while augmentation by Charleston, WV, USA resulted in the CP-optimal

Figure 11. Map of the Utility Acid Precipitation Study Program network in 1983 and candidate sites for augmenting the

network. Network sites are represented by black circles; candidate sites are represented by open circles, an open triangle (the K-

optimal and EK-optimal site), or an open square (the CP-optimal site)
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design (see Figure 11 for the locations of these particular sites). In light of our findings in Section 3, the

CP-optimality of the design with Charleston is not surprising, as augmentation by Charleston adds the

largest number of small lags to the network. That Charlottesville would yield the K-optimal design is

less obvious, but part of the explanation may be that it lies near the periphery (as do many other

candidate sites, however) and at a latitude where the fitted quadratic mean surface has a large

curvature. The coincidence of the K-optimal and EK-optimal designs here is probably attributable to

the relatively weak spatial correlation among the residuals from the quadratic mean surface, which

renders the ranking of E-BLUP prediction error variances relatively insensitive to spatial correlation

estimates of varying quality and thus more greatly influenced by the kriging variances.

We repeated the entire analysis but this time adopting a constant, rather than quadratic, mean

function. In this case, the optimal design with respect to all three criteria was Minneapolis, MN, USA,

which is the northwesternmost candidate site. Thus, as we observed with our previous examples, the

choice of mean function can have a large effect on the optimal design.

6. CONCLUSIONS

We have considered optimal spatial network design for three design objectives: efficient prediction

assuming that covariance parameters are known, efficient estimation of those covariance parameters,

and efficient prediction when the covariance parameters are unknown. The first two objectives were

found to be largely antithetical; for example, when the mean is constant and there is no nugget, designs

optimal with respect to the first objective tend to consist of a regular pattern dispersed across the design

space, whereas designs optimal with respect to the latter tend to include a few large clusters. Our

hybrid criterion for the third design objective attempts to balance the opposing tensions of the first two.

Situations in which the hybrid optimal design closely resembles designs that are optimal with respect

to either of the first two criteria were identified. These situations were rather intricate to describe, as

they depend quite substantially on the strength of the spatial correlation, the mean function used, and

the existence and size of the nugget. Nevertheless, it is hoped that the toy examples and larger

examples presented herein have laid out some general principles of good spatial design for various

objectives that can be put to use by practitioners in designing or augmenting sampling networks. At a

minimum, they indicate that the choice of the most appropriate network design criterion for any

specific situation needs to be considered very carefully.
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