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Bayesian Calibration of Mathematical-Physical Models

A scientist/engineer/etc. postulates a theoretical model,

x∗, ∂x∗

∂z ,
∂2x∗

∂z∂s , to explain a real-world process, y .

For instance, the model may explain the time evolution of a spatial
field x∗(s, z) using constraints ∂x∗

∂z |θ=θ∗ = g(x∗, f (x∗, θ), θ)
parameterized by θ. This is often the case in ODE/PDE models.

In calibration experiments, one wishes to combine x∗ with
observations y f to estimate θ, predict the field at out-of-sample
locations and/or times, etc...



Bayesian Calibration of Mathematical-Physical Models

There are, of course, a few issues:

• The theoretical model need be approximated on computer

−→ the simulation model x(s;θ) ≈ x∗

• The theoretical model is wrong

−→ E [y f ] 6= x∗, the case of model discrepancy

• x can only be sparsely sampled in θ-space

−→ the case of emulation

• The observational process is observed with error ε

• The datasets and simulator outputs can be huge

−→ Big Data

• The model output may consist of multiple states



Bayesian Calibration of Mathematical-Physical Models

In addition...

• Exploring the tradeoff between discrepancy and parameter
estimates is hard

• Existing statistical calibration techniques do not incorporate
all of the above uncertainties



Calibration in Pictures
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1. The Kennedy& O’Hagan Framework

• Model for the field observations is

y f (si ) = η(si ,θ) + δ(si ) + ε(si ), i = 1, . . . , n

where ε(si ) ∼ N(0, λ−1f ), δ(si ) accounts for the discrepancy
between the simulator and reality and θ denotes the “true”(or
best in some sense) setting of the calibration parameter t.

† M.A. Kennedy and T. O’Hagan: Bayesian Calibration of Computer Models (with
discussion), Journal of the Royal Statistical Society, Series B, vol.68, pp.425–464
(2001).



CMCE Model, no discrepancy (δ(s) = 0).

• Besides our model for the observations, we also need a model
for the simulator outputs.

• Since the simulator is slow, we will have to emulate it.

• We have field data,

yf = (y f (s1), . . . , y f (sn))T

• And simulator output,

yc = (y c (s1, t1), . . . , y c(sm, tm))T

• With no discrepancy, our model for the field is

y f (si ) = η(si ,θ) + εi

and our model for the simulator is

y c(si , ti ) = η(si , ti )



CMCE Model, no discrepancy (δ(s) = 0).

• Use our usual emulator model for the simulator, a GP:

η(s, t) ∼ GP(µ(s, t), λ−1R(s, t;ρ))

where R(s, t;ρ) is formed as

cor(η(s, t), η(s′, t′)) =
d∏

i=1

c(s− s′)
k∏

j=1

c(t− t′)

for s ∈ Rd and t ∈ Rk .

• A typical choice for the correlation function c() will be the
Gaussian:

c(hi ) = ρ
||hi ||2
i

where hi = si − s ′i for correlation parameter ρi ∈ (0, 1).



CMCE Model, no discrepancy (δ(s) = 0).

• This gives us our model (and correspondingly the likelihood)
for the field and simulator data,

(
yf

yc

)
∼ N

((
µ(s,θ)
µ(s, t)

)
, λ−1

[
Rff Rfc

Rcf Rcc

]
+

[
λ−1f I 0

0 0

])
Here, Rff denotes the correlation elements between field
observations, Rcc the correlation between simulator outputs
and Rfc the cross-correlation between field observations and
simulator outputs.



CMCE Model, no discrepancy (δ(s) = 0).

• For simplicity let’s take µ(s, t) = 0.

• Specifying priors on the parameters ρ, λ, λf and the
calibration parameters θ we have

π(θ, λ, λf ,ρ|yf , yc ) ∝ L(·|yf , yc)π(λ)π(λf )
k∏

i=1

π(θi )
d+k∏
j=1

π(ρj )

• Common prior specification is

π(λ) = Gamma(a, b)

π(λf ) = Gamma(af , bf )

π(ρj ) = Beta(αj , βj )

• And we also need a prior on the calibration parameters,

π(θi ) = Unif(0, 1)

(assuming the inputs are scaled to the unit hypercube).



CMCE Model, no discrepancy (δ(s) = 0).

• What does this model do? Consider predicting the field
process at a new location s∗ (for a given θ).

• Let cT =
(cov(y f (s∗), y f (s1)), . . . , cov(y f (s∗), y f (sn)), cov(y f (s∗), y c (s1)), . . . , cov(y f (s∗), y c (sm)))

• Or in short-hand, cT = (cf , cc)T .

• Then the mean of the conditional predictive distribution is

E [y f (s∗)|yf , yc , ·] = cT Σ−1(yf , yc )T

=
...

=
n∑

i=1

w f
i (θ)y f (si ) +

m∑
j=1

w c
j (θ)y c(sj , tj )



CMCE Model, no discrepancy (δ(s) = 0).

• This shows that the field process is predicted as a weighted
combination of the field observations and simulator output.

• The role of the estimated calibration parameter, θ, comes
through the cross-covariance terms, cc and Σcf which both
depend on θ.

• If the estimated θ indicates the field data is “far” from the
simulator output, i.e. |θj − tj | is large ∀j , then these
correlation components will be small and the field prediction is
mainly based on the field observations.

• In extreme case of cc = 0 and Σcf = 0 we get

E [y f (s∗)] = cf T
Σf −1yf , the usual GP predictor.

• If the estimate of θ is poor, the prediction of the field process
may be inappropriately influenced by the simulator outputs if
they receive too much weight – i.e. model things the outputs
and field are “closer” than the actually are.



CMCE Model, with discrepancy

• Popular form of discrepancy is to assume an additive
discrepancy,

y f (si ) = η(si ,θ) + δ(si ) + εi

• Naturally, we will model the discrepancy,
δ = (δ(si ), . . . , δ(sn)) also as a GP,

δ ∼ N
(
µδ(s), λ−1δ Rδ(s;φ)

)
• Assuming η, δ and ε are independent, the likelihood becomes(

yf

yc

)
∼ N

((
µ(s,θ) + µδ(s)

µ(s, t)

)
,Σ

)
where

Σ = λ−1
[

Rff Rfc

Rcf Rcc

]
+

[
λ−1δ Rδ 0

0 0

]
+

[
λ−1f I 0

0 0

]



Prediction and Inference

• We are typically interested in:

• the emulated calibrated simulator, E [η(s,θ)|yf , yc ]

• the predicted discrepancy, E [δ(s)|yf , yc ]

• the predicted field process, E [η(s,θ) + δ(x)|yf , yc ]

• the estimated calibration parameter, E [θ|yf , yc ]

• And of course uncertainties in the above.

• There are other forms of discrepancy that have been
considered, such as multiplicative and more complex forms,
but these are generally less common.



2. The Higdon et al. Model

• Often our computer models are, say, spatial-temporal
processes observed and computed over a dense grid in s.

• At the same time, we are limited in how many runs of the
computer model we can make at different θ’s.

• For instance, for a given set of calibration parameters (θ’s), a
climate simulator may generate a dense grid of preciptation
and temperature fields over the lattitude, longitude of the
Earth and at many timepoints.

• Modeling such objects directly using the KOH approach is
going to be infeasible.



The Higdon et al. Model
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The Higdon et al. Model

• Higdon et al. (2008) propose to use a dimension-reduction
technique to alleviate this challenge for densely observed
model outputs.

• The idea is to remove directly modeling the dense outputs
within the GP model, whch creates huge correlation matrices
which are difficult and computationally expensive to store,
manipulate and invert.



The Higdon et al. Model

• For a given output computing at setting θj over the dense
spatial-temporal grid s, take the output and put it in a vector,
say xj .

• Do this for all j = 1, . . . ,m runs of the simulator in your
budget for θ1, . . . ,θm.

• Stack these vectors in the matrix X = [x1, . . . , xm].

• Decompose the matrix as X =
∑nc

l=1 VljUl

• Insight: think of Vlj as Vl (θj ).



The Higdon et al. Model

• The model becomes:

y f (si ) =
nc∑

l=1

Vl (θ)Ul + δ(si ) + εi

and the discrepancy is modeled as before,

δ ∼ GP(µδ(s), λ−1δ Rδ(s;φ)

• The Vlj ’s are modeled using a GP. Writing
Vl = (Vl (θ1), . . . ,Vl (θm),Vl (θ)), the model for these weights
is

Vl ∼ GP(µVl
, λ−1Vl

RVl
)

where RVl
will again make use of a correlation function.

• Key point is that the Vl ’s are of much lower dimension than
the actual model outputs!

• Select nc in some reasonable manner.



Bayesian Calibration of Mathematical-Physical Models

What about simulator uncertainty?

• In some cases, x(s;θ) may be an approximation of the desired
mathematical model, say arising from solutions to
ODE/PDE’s using numerical methods. In our case, these
solutions are solved probabilistically using the “PODES”
method of Chkrebtii et al. (2014), and we have available
posterior solution realizations.



Bayesian Calibration of Mathematical-Physical Models

What about simulator uncertainty?

• Or, the model x(s;θ) may itself be stochastic. For instance,
agent based models are stochastic models popular in finance
and biology. In this case, we have available solution
realizations of the stochastic model.



Stochastic Water Temperature Model

• Models for river water temperature are used for ecological and
conservation studies.

• Particularly relevant in research trying to understand the
effects of climate change on wildlife, etc.

• State of the art models are made up of a deterministic
component and stochastic component:

Tw (s) = Ta(s) + Rw (s)

where

Ta(s) = a1 + a2sin

(
2π

365
(s − s0)

)
Rw (s) = KRa(s) + ε

Of particular interest is the air-water interface thermal
diffusivity parameter, K .



JAK-STAT Intracellular Signaling Pathway Model

• The complex mechanism of gene transcription consists of a
series of biochemical reactions. The process is reversible, so
that after transcription occurs, the chemicals return to their
original state so the process may repeat.

• Currently, this process is modeled using a delay differential
equation model consisting of four states:

d
ds

x1(s;θ) = −θ1 x1(s;θ) EpoRA(s;θ) + 2 θ4 x4(s − θ5), s ∈ [0, 60],
d
ds

x2(s;θ) = θ1 x1(s;θ) EpoRA(s;θ)− θ2 x22(s;θ), s ∈ [0, 60],
d
ds

x3(s;θ) = −θ3 x3(s;θ) +
1
2
θ2 x22(s;θ), s ∈ [0, 60],

d
ds

x4(s;θ) = θ3 x3(s;θ)− θ4 x4(s − θ5;θ), s ∈ [0, 60],
x1(s;θ) = θ6, s ∈ [−θ5, 0],
xi (s;θ) = 0, i = 2, 3, 4, s ∈ [−θ5, 0]



JAK-STAT Intracellular Signaling Pathway Model

Symbol Description Prior
θ1, . . . , θ4 Reaction rates of states 1-4 χ2

1

θ5 Time delay χ2
6

θ6 Initial conc. of the state 1 N
(
y (3)(0), 402

)
θ7 Prior precision of probabilistic solver 100 + Log-N (10, 1)
θ8 Length-scale of probabilistic solver 0.12 + Exp (0.1)

• Note here that we have parameters of the DE system
(θ1, . . . , θ6) as well as parameters of the solver of the DE
system (θ7, θ8).



JAK-STAT Intracellular Signaling Pathway Model

• Measurements are available via a process called
immunoblotting, with measurement models

y1(s1,i ) = κ1 (x2(s1,i ) + 2x3(s1,i )) + ε1(s1,i ), 1 ≤ i ≤ S1,
y2(s2,i ) = κ2 (x1(s2,i ) + x2(s2,i ) + 2x3(s2,i )) + ε2(s2,i ), 1 ≤ i ≤ S2,
y3(s3,i ) = x1(s3,i ) + ε3(s3,i ), 1 ≤ i ≤ S3,

y4(s4,i ) = x3(s4,i ) (x2(s4,i ) + x3(s4,i ))−1 + ε4(s4,i ), 1 ≤ i ≤ S4,

• It is of interest to recover the unknown model parameters θ
and the (multiplicative) discrepancies κ based on the
measured data Y .



Modeling Cheap† Stochastic Simulators

• If realizations of the simulator can be cheaply sampled, say

χ(θ) ∼ π(χ|θ)

and the likelihood for the observations is

Y|χ(θ),θ, λf ∼ N(χ(θ), λ−1f I)

where λf is the precision of the observations.

• Then it is feasible to directly sample the posterior using a
Metropolis-within-Gibbs algorithm when the prior on λf is
conjugate.

† ala Higdon et al. (2004)



Modeling Cheap Stochastic Simulators

1. Sample θ∗j |· (MH step) for j = 1, 2, . . .

2. Sample λ∗j |· (Gibbs step)

However, each draw θ∗j requires evaluating χ(θ−j , θ
∗
j ). When an

evaluation of χ is expensive, this is not feasible.



3. Modeling Stochastic Simulators

• Assume N independent realizations of the simulator at m
settings of parameters θ are available as n-vector outputs.

• The kth state of the simulator output at parameter setting θj

and spatial-temporal setting si is denoted χuk (si,θj ) ≡ χukij

where k = 1, . . . , ns ; j = 1, . . . ,m; i = 1, . . . , n; u = 1, . . . ,N.

• These outputs are modelled according to an nc -component
orthogonal basis expansion,

χukij =
nc∑

l=1

Vl (θj )Uukil

• Here, the Vl ’s are assumed realizations of a Gaussian Process,

Vl |· ∼ GP(0, λ−1vl
Rvl

)

additionally specified by correlation scale parameters.



Modeling Stochastic Simulators

• The state observations are modeled as

Yk |Uu,k ,V(θ), δk ∼ N(κkUukV(θ) + δk , λ
−1
f ,k In)

where λf ,k is the observation precision of the kth state, δk is
an additive discrepancy and κk is a multiplicative discrepancy.

• We utilize conjugate priors on λf ,k ’s and Gaussian priors on
κk ’s. GP priors are specified for δk ,

δk ∼ GP(µδk
, λ−1δk

Rδk
).



Modeling Stochastic Simulators

• The posterior distribution,

π
(
{θj}m

j=1, δ,κ, {λvl
}nc

l=1, {ρ}
nc
l=1, λf , {λδk

}ns
k=1{ψk}ns

k=1|Y,Φ
)

∝ π (Y|Uu,V(θ), δ,κ)
nc∏

l=1

(π (Vl (θ)|Vl , λvl
,ρl ,θ)π (Vl |λvl

,ρl ,θ))

×
ns∏

k=1

π (δk |µδk
, λδk

,ψk )
nc∏

l=1

(π (λvl
)π (ρl ))π (λf )

×
ns∏

k=1

(
π (λδk

)π (ψk )π
(
κk |µκk

, λ−1κk

)) q∏
t=1

π (θt)

is sampled using an MCMC algorithm. Specifying appropriate
priors on additive and multiplicative discrepancies is
particularly important.



Water Temperature Example

• Cassie et al (1998) consider the problem of constructing a
stochastic model of small river water temperature given air
temperature data.

• The stochastic model consists of 2 parameters (a1, a2) that
shift and scale a sinusoidal time component, and a
“diffusivity” parameter (K ) which scales the air temperature
data.

• Previous investigations show that the interpolation ability is
very good. Expect weak evidence of a discrepancy.



Stochastic Water Temperature Model



Stochastic Water Temperature Model
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JAK-STAT Intracellular Signaling Pathway Model

• In the JAK-STAT exampmle, we construct a design of
m = 100 settings of θ and at each setting, we have an
ensemble of 10 solution realizations from the “PODES” solver
of Chkrebtii et al (2014).

• It is known that the multiplicative scaling (κ’s) are an
important discrepancy in this model, while it is assumed no
additive discrepancy (δ’s) is present.

• Solving this system is very expensive! The PODES method
took ∼ 1 day to compute 20, 000 posterior realizations.



JAK-STAT Intracellular Signaling Pathway Model



JAK-STAT Intracellular Signaling Pathway Model



4. Future work, etc.

Come back in the future.



Conclusion

• In calibration experiments, want predictions of real world
process by leveraging a calibrated mathematical-physical
model of reality.

• Need to quantify uncertainties in order to perform inference.

• In many cases, the simulator itself is stochastic and has
uncertainties. We have outlined a Bayesian approach that
allows us to calibrate such models while capturing these
additional uncertainties.

• In complex stochastic models, the proposed statistical
approach enables more efficient use of computational
resources.


