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An experiment involving a complex computer model or code may have
tens or even hundreds of input variables and, hence, the identification
of the more important variables (screening) is often crucial. Methods
are described for decomposing a complex input-output relationship
into effects. Effects are more easily understood because each is due
to only one or a small number of input variables. They can be as-
sessed for importance either visually or via a functional analysis of
variance. Effects are estimated from flexible approximations to the
input-output relationships model of the computer model. This allows
complex nonlinear and interaction relationships to be identified. The
methodology is demonstrated on a computer model of the relationship
between environmental policy and the world economy.

1 Introduction

Computer models, also known as “math models” or “codes”, are now fre-
quently used in engineering, science and many other disciplines. To run the
computer model software, the experimenter provides quantitative values for
various input (explanatory) variables. The code then computes values for one
or more output (response) variables. For instance, in a model of Arctic sea
ice (Chapman et al., 1994), the input variables included rate of snowfall and
ice albedo and the code produced values of ice mass, and so on. In circuit-
design models (see, for example, Aslett et al., 1998), the input variables are
transistor widths and other engineering parameters, and the output variables
are measures of circuit performance such as time delays.
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Often, the computer model will be expensive to run, for example, if it solves
a large number of differential equations which may require several hours or
more of computer time. Thus, in a computer experiment, that is, an experiment
with several runs of the computer model, there is need for careful design or
choice of the values of the input variables and careful analysis of the data
produced.

One major difference from traditional design and analysis of experiments
with physical measurements is that computer models are often deterministic.
Two runs of the code with the same set of values for the input variables would
give identical results across the two runs for each output variable. Nonethe-
less, there will often be considerable uncertainty in drawing conclusions about
the behavior of the input-output relationships from a limited number of runs,
and statistical methods are required to characterize the uncertainty. The man-
agement of uncertainty is especially critical when the computer model has a
high-dimensional set of input variables.

In applications such as the Arctic sea ice model (Chapman et al., 1994)
mentioned above, a strategic objective of a preliminary computer experiment
is screening: finding the important input variables. Screening is not a trivial
task because the computer model is typically complex, and the relationships
between input variables and output variables are not obvious. A common
approach is to approximate the relationship by a statistical surrogate model,
which is easier to explore. This is particularly useful when there are many
input variables.

An example, which is discussed in this chapter, is the “Wonderland” model
of Lempert et al. (2003), adapted from Herbert and Leeves (1998). In this case
study, 41 input variables are manipulated, relating to population growth, eco-
nomic activity, changes in environmental conditions, and other economic and
demographic variables. The output is a quasi global human development index
(HDI) which is a weighted index of net output per capita, death rates, annual
flow of pollution, and the carrying capacity of the environment, spanning both
“northern” and “southern” countries. The model has many output variables
under various policy assumptions; we consider only one, corresponding to a
“limits to growth” policy. Under this scenario, economic growth is intention-
ally limited by a constraint on global emissions. After 2010, both hemispheres
must set carbon taxes high enough to achieve zero growth in emissions lev-
els. Larger values of HDI correspond to greater human development and are
better; see Lempert et al. (2003) for a full description of this measure.

Figure 1 shows scatter plots of the raw data from a “Latin hypercube”
experimental design (see McKay, Conover, and Beckman, 1979) with 500 runs
of the Wonderland code. The output variable HDI is plotted against two of
the input variables shown in Section 6 to be important: economic innovation
in the north (e.inov.n) and sustainable pollution in the south (v.spoll.s).

The first plot suggests a slight upward trend in HDI with e.inov.n. It will
be shown in Section 6 that the trend is actually very strong; it looks weak here
because there is considerable masking from other variables. The second plot
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Fig. 1. Human development index (HDI) from the Wonderland model plotted
against (a) economic innovation in the north (e.inov.n) and against (b) sustainable
pollution in the south (v.spoll.s).

shows a very rapid drop off in HDI for low values of v.spoll.s. This nonlinearity
in the computer model would have gone unnoticed without the three points
on the left with the lowest HDI values. Thus, a design with fewer runs, or with
fewer levels of each input variable, may well have missed the region containing
these three points. (Note also that very small values of v.spoll.s do not always
give such extreme values of HDI.) In our experience, nonlinear effects are
common in computer experiments because the input variables often cover wide
ranges. We shall explore the Wonderland application further in Section 6,
but hopefully we have already illustrated some of the potential difficulties
in screening the input variables of a computer model: large dimensionality,
complex nonlinearities and masking.

There is a spectrum of methods proposed for screening variables in a com-
puter experiment. They differ mainly in the assumptions they make about the
form of an input-output relationship: with stronger assumptions, fewer runs
are typically required.

Iman and Conover (1980) built a rank-regression approximation of a com-
puter model of the discharge of a nuclear isotope from radioactive waste. With
seven input variables, they used 200 runs in a Latin hypercube design. A sen-
sitivity analysis followed from the least-squares estimates of the coefficients in
the first-order rank-regression model. (A sensitivity analysis, which explores
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how sensitive the output variable is to changes in the input variables, is similar
to screening.) Morris (1991) described a screening method where the number
of runs is a small multiple of the number of input variables. The method
does not attempt to model the input-output relationship(s) of a computer
code, rather it attempts to divide the variables qualitatively into three cat-
egories: unimportant; those with linear and additive effects; and those with
more complex, nonlinear or interaction, effects. Twenty variables in a heat-
transfer model were investigated using 108 runs.

With even fewer runs relative to the number of input variables, Bettonvil
and Kleijnen (1996) used a sequential bifurcation algorithm (see Chapter ??)
to analyze a large deterministic global-climate model. The output is the world-
wide CO2 circulation in the year 2100. The model has 281 input variables, 15
of which were identified as important after 154 runs. The sequential bifurca-
tion algorithm makes several strong assumptions to enable an experiment with
fewer runs than input variables (a supersaturated design—see Chapter ??).
Each variable is considered at only two levels, and effects are assumed to
be linear and additive. Moreover, the direction (sign) of each effect must be
known a priori. The sequential bifurcation method was followed up with a
traditional resolution IV design (Chapter ??) for the most important factors
in order to estimate a response surface model.

Gu and Wahba (1993) used a smoothing-spline approach with some sim-
ilarities to the method described in this chapter, albeit in a context where
random error is present. They approximated main effects and some speci-
fied two-variable interaction effects by spline functions. Their example had
only three explanatory variables, so screening was not an issue. Nonetheless,
their approach parallels the methodology we describe in this chapter, with a
decomposition of a function into effects due to small numbers of variables, vi-
sualization of the effects, and an analysis of variance (ANOVA) decomposition
of the total function variability.

The approach to screening the input variables in a computer model de-
scribed in this chapter is based on a Gaussian random-function approximator
to an input-output relationship. This is a flexible, data-adaptive paradigm
with a long history in the analysis of computer experiments. Similarly, de-
composing the random-function approximator into low-order effects for the
purposes of identifying and examining the important effects has been in use
for some time. The estimated effects are visualized or quantified via a func-
tional ANOVA decomposition. In an experiment with six input factors and
32 runs, Sacks et al. (1989) identified the important (nonlinear) main effects
and two-variable interaction effects. Welch et al. (1992) described a stepwise
method for adding important input variables to the statistical approxima-
tor and visualized the important effects. They were able to find the important
nonlinear and interaction effects among 20 input variables with 50 runs. Chap-
man et al. (1994) and Gough and Welch (1994) performed sensitivity analyses
of climate models with 13 and 7 input variables, respectively, and Mrawira et
al. (1999) were able to deal with 35 input variables in a civil-engineering appli-
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cation. With up to 36 variables, Aslett et al. (1998) and Bernardo et al. (1992)
used visualization of important effects to guide the sequential optimization of
electronic circuit designs. Santner, Williams and Notz (2003, Chapter 7) also
summarized this approach.

Thus, decomposition of a random-function approximator of a computer
model into low-dimensional effects, in order to identify the important effects
and examine them visually and quantitatively, has been widely applied and
reported by many authors. However, the implementation of these methods has
not been described, with the partial exception of Schonlau (1997), a short-
coming which we address in this chapter.

The chapter is organized as follows. Section 2 reviews the key underlying
random-function approximator. Effects are defined in Section 3, leading to a
functional ANOVA, and Section 4 describes their estimation. Section 5 sum-
marizes the steps in the work flow for identifying and visualizing the important
estimated effects. This approach has proved to be a powerful screening tool, as
evidenced by the above examples. In Section 6, we return to the Wonderland
model and demonstrate how the methodology is used. Some concluding re-
marks are given in Section 7. Some details of the derivation of the best linear
unbiased predictor of an effect are provided in Appendix A, and Appendix B
shows how the high-dimensional integrals required for the estimated effects,
for their pointwise standard errors, and for the ANOVA decomposition boil
down to a series of low-dimensional integrals under certain, fairly common,
conditions.

2 The random-function approximator

Here, we give a brief review of methods for the analysis of computer exper-
iments, concentrating on statistical approximation of the computer model.
Strategies for the design and analysis of computer experiments have been de-
scribed by many authors, including Currin et al. (1991), Koehler and Owen
(1996), Sacks et al. (1989), Santner, Williams, and Notz (2003), and Welch et
al. (1992). All these authors take into account the deterministic nature of a
code, such as the Wonderland model, and also provide uncertainty measures
via a statistical approximation model.

In general, suppose that a code is run n times in a computer experiment.
Each run has a different set of values for the d-dimensional vector of input
variables, x = (x1, . . . , xd)

T . A particular output variable is denoted by y(x).
With several output variables, each is treated separately. The data consist of
n input vectors, x(1), . . . , x(n), chosen from an input region of interest, X , and
the vector of n corresponding output values, denoted by y.

Following the approach of the above authors, the output variable y(x) is
treated as a realization of a random function:

Y (x) = f ′(x)β + Z(x), (1)
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where f(x) = [f1(x), . . . , fh(x)]′ is a vector of h known regression functions,
′ denotes transpose, β is a h × 1 vector of parameters to be estimated, and
Z is a Gaussian stochastic process indexed by x. It is assumed that Z(x) has
mean zero and constant variance, σ2, for all x. The covariance between Z(x)
and Z(x̃) at two input vectors, x = (x1, . . . , xd)

′ and x̃ = (x̃1, . . . , x̃d)
′ is

Cov[Z(x), Z(x̃)] = σ2R(x, x̃), (2)

where R(·, ·) is a “correlation function” and x̃ denotes a different set of input
values from x.

The correlation function R(·, ·) in (2) is central to this statistical model.
The power-exponential class of correlation functions is a popular choice, for
its computational simplicity and because it has been successful in many ap-
plications. The power-exponential correlation function is

R(x, x̃) =

d∏
j=1

exp(−θj |xj − x̃j |
pj ), (3)

where θj ≥ 0 and 0 < pj ≤ 2 (j = 1, . . . , d) are parameters which can be
estimated from the data, often via maximum likelihood. The pj can be in-
terpreted as smoothness parameters—the output surface is smoother with
respect to xj as pj increases. For pj = 2, the surface is infinitely differen-
tiable. For 0 < pj < 2, the surface is continuous, but not differentiable. As pj

increases between 0 and 2, however, the surface appears to fluctuate less and
less, and in this sense could be said to be smoother. The θj indicate the extent
to which the variation in the output function is local with respect to xj . If θj

is large, the correlation (3) between observations or outputs at x and x̃ falls
rapidly with the distance between xj and x̃j , and the function is difficult to
predict in the xj direction.

We next describe the first steps in the derivation of the best linear unbiased

predictor (BLUP) of Y (x) at an untried input vector x (see, for example, Sacks
et al., 1989). Similar steps will be used in Section 4 to estimate the effects of
one, two or more input variables. It will then be apparent how to adapt results
and computational methods for predicting Y (x) to the problem of estimating

such effects.
Following the random-function model (1), consider the prediction of Y (x)

by Ŷ (x) = a′(x)y, that is, a linear combination of the n values of the output
variable observed in the experiment. The best linear unbiased predictor is
obtained by minimizing the mean squared error of the linear predictor or
approximator, Ŷ (x). The mean squared error, MSE[Ŷ (x)], is

E[Y (x) − Ŷ (x)]2 = E[f ′(x)β + Z(x) − a′(x)(F β + z)]2

= {[f ′(x) − a′(x)F ]β}2

+Var[Z(x)] + a′(x)Cov(z)a(x) − 2a′(x)Cov[Z(x), z],
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where F is the n × k matrix with row i containing the regression functions
f ′(x(i)) for run i in the experimental plan, and z = [Z(x(1)), . . . , Z(x(n))]′ is
the n × 1 vector of random Z values, with element i corresponding to run i.
From the covariance function (2) we can write Cov(z) as σ2R, where R is
an n × n matrix with element (i, j) given by R(x(i), x(j)), and Cov[Z(x), z)]
as σ2r(x), where r(x) is an n × 1 vector with element i given by R(x, x(i)).
With this notation, the mean squared error of Ŷ (x) is

MSE[Ŷ (x)] = {[f ′(x) − a′(x)F ]β}2

+ Var[Z(x)] + σ2a′(x)Ra(x) − 2σ2a′(x)r(x). (4)

Some further simplification of this expression is possible, for example, by using
the fact that Var[Z(x)] = σ2, by assumption. We leave the mean squared error
in this form, however, to facilitate comparison with its counterpart in Section 4
for the estimated effect of a group of variables.

We now choose a(x) to minimize (4). To avoid an unbounded contribution
from the first term on the right-hand side of (4) from large elements in β, the
contribution is eliminated by imposing the constraint

Fa(x) = f(x).

This constraint is also sometimes motivated by unbiasedness, that is, from
E[Ŷ (x)] = E[Y (x)] for all β. Thus, the best linear unbiased predictor (BLUP),
or optimal value of a(x), results from the following optimization problem:

min
a(x)

Var[Z(x)] + σ2a′(x)Ra(x) − 2σ2a′(x)r(x) (5)

subject to
F a(x) = f(x) .

The optimal a(x) turns out to give the following form for the BLUP (or
approximator) (see, for example, Sacks et al., 1989):

Ŷ (x) = f(x)β̂ + r′(x)R−1(y − F β̂), (6)

where β̂ = (F ′R−1F )−1FR−1y is the generalized least squares estimator
of β. If we put the optimal a(x) into the expression for the mean squared
error (4), we obtain the following standard error, se[Ŷ (x)], for Ŷ (x):

se2[Ŷ (x)] = Var[Z(x)] − σ2r(x)′R−1r(x)

+σ2[f(x) − F ′R−1r(x)]′(F ′R−1F )−1[f(x) − F ′R−1r(x)].(7)

This formula ignores the uncertainty from estimating the correlation parame-
ters, for example, the θj and pj in (3). Some comments on this issue are made
in Section 7.
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3 Effects

The important input variables are those that have large effects on the output
variable. As with traditional analysis of variance, we can look at the main
effects of single variables, or the joint or interaction effects of several variables
at a time.

Suppose that we are interested in the effect of a subset of input variables,
held in a vector xe, where e denotes the set of subscripts of the variables of
interest. The vector of remaining variables is denoted by x−e. For example,
when interest is in the effects of x1 and x2 among d > 2 variables, we have
e = {1, 2} and xe = (x1, x2), whereupon x−e = (x3, . . . , xd). Without loss of
generality we rearrange the order of the input variables so that we can write
x = (xe, x−e). To obtain a unique and workable definition of the effect of xe

is essentially the problem of how to deal with the variables in x−e. We next
discuss several ways of approaching this problem.

Keeping the variables in x−e fixed requires little new methodology. We
consider y(xe, x−e) as a function of xe, with x−e fixed, for example at the
variable midranges. Estimates and pointwise standard errors of such effects
follow immediately from (6) and (7), with Ŷ (xe, x−e) and se[Ŷ (xe, x−e)] con-
sidered as functions of xe. There are two serious disadvantages of this method,
however. First, in the presence of interaction effects involving one or more vari-
ables in xe and one or more variables in x−e, the magnitude of the effect of
xe may change depending on the levels chosen for x−e, and thus the effect
of xe is not isolated. Consequently, there is no straightforward decomposition
of the total variation in y(x), or its predictor Ŷ (x), into contributions from
various effects.

Alternatively, we may define an effect by “integrating out” the other vari-
ables. Under certain conditions, this leads to a simple decomposition of y(x)
into contributions from various effects, with a corresponding decomposition
of the total variance of y(x) over X . Moreover, as we shall see in Section 4,
these effects and their variance contributions can be easily estimated. Hence,
defining an effect by integrating out the other variables is the method pursued
for the remainder of this chapter.

For a convenient decomposition of y(x), we need two conditions on the
region of interest of the input variables. First, X is assumed to be a direct
product of one-dimensional regions, which we write as

X = ⊗d
j=1Xj , (8)

where Xj denotes the values of interest for variable xj , for instance a continu-
ous interval or a discrete set of points (for which integration is interpreted as
summation). Secondly, we assume that integration is with respect to a weight
function, w(x), which is a product of functions of one input variable at a time:

w(x) =
d∏

j=1

wj(xj) for xj ∈ Xj , j = 1, . . . , d. (9)
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Often, the wj(xj) are chosen to be equal, representing uniform interest across
the range of values for xj . In other applications, xj might be a variable in the
computer code because its value in nature is uncertain. If this uncertainty is
represented by a given statistical distribution, for example, a normal distribu-
tion, then the distribution would be used as the weight function, wj(xj). The
conditions (8) and (9) occur frequently in applications; a minor relaxation of
them is discussed in Section 4.

Under the assumptions (8) and (9), the marginal effect , ȳe(xe), of xe is
defined by integrating out the other variables,

ȳe(xe) =

∫

⊗j /∈eXj

y(xe, x−e)
∏
j /∈e

wj(xj)d xj for xe ∈ ⊗j∈eXj . (10)

Note that a marginal effect is the overall effect of all the variables in xe. With
just one variable in xe, we call this a main effect; with two or more variables,
we call this a joint effect.

We use the marginal effects (10) to decompose y(x) as follows into corrected

or adjusted effects involving no variables, one variable at a time, two variables
at a time, and so on, up to the contribution from all the variables:

y(x) = µ0 +

d∑
j=1

µj(xj)+

d−1∑
j=1

d∑
j′=j+1

µjj′ (xj , xj′ )+ · · ·+µ1···d(x1, . . . , xd) (11)

for x ∈ X , where

µ0 =

∫

X

y(x)w(x)d x

is an overall average,

µj(xj) = ȳj(xj) − µ0 for xj ∈ Xj (12)

is the corrected main effect of xj ,

µjj′ (xj , xj′ ) = ȳjj′ (xj , xj′ ) − µj(xj) − µj′ (xj′ ) − µ0 for xj , xj′ ∈ Xj ⊗Xj′

(13)
is the corrected joint effect or interaction effect of xj and xj′ , and so on.
Thus, each corrected effect is the corresponding marginal effect corrected for
all lower-order terms.

For example, suppose interest centers on the variables x1 and x2. If their
interaction effect, µ12(x1, x2), has an important magnitude, it is not mean-
ingful to consider the effects of x1 or x2 in isolation. We would look at their
overall joint effect,

ȳ12(x1, x2) = µ0 + µ1(x1) + µ2(x2) + µ12(x1, x2) for x1, x2 ∈ X1 ⊗X2.

Similar comments apply to higher-order effects. In practice, we will have to
estimate the marginal effects, and hence the corrected effects, to decide which
are important.
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The effects (11) are orthogonal with respect to the weight function w(x),
leading to a decomposition of the total variance of y(x), called the ANOVA

decomposition or functional analysis of variance as follows:

∫

X

[y(x) − µ0]
2w(x)d x =

d∑
j=1

∫

Xj

µ2
j (xj)wj(xj)d xj

+

d−1∑
j=1

d∑
j′=j+1

∫

Xj⊗Xj′

µ2
jj′ (xj , xj′ )wj(xj)wj′ (xj′ )d xjd xj′

+ · · ·+

∫

X

µ2
1···d(x1, . . . , xd)

d∏
j=1

wj(xj)d xj . (14)

A quantitative measure of the importance of any effect, and hence the associ-
ated variables, follows from the percentage contribution of each term on the
right-hand side to the total variance on the left. The functional analysis of
variance (ANOVA) in (14) goes back at least as far as Hoeffding (1948).

4 Estimating the effects

Estimating the marginal (main or joint) effects ȳe(xe) in (10) is key to our ap-
proach for assessing the importance of variables. From the estimated marginal
effects, we can also estimate the corrected effects in (11) and the ANOVA de-
composition (14). Furthermore, when visualizing the large estimated effects it
is easier to interpret main or joint effects than their corrected counterparts.

If y(x) is treated as if it is a realization of the random function Y (x)
in (1), it follows that ȳe(xe) is a realization of the analogously integrated
random function,

Ȳe(xe) = f̄
′

e(xe)β + Z̄e(xe) for xe ∈ ⊗j∈eXj . (15)

Here, f̄e(xe) and Z̄e(xe) have the input variables not in xe integrated out as
in (10):

f̄e(xe) =

∫

⊗j /∈eXj

f(xe, x−e)
∏
j /∈e

wj(xj)d xj for xe ∈ ⊗j∈eXj (16)

and

Z̄e(xe) =

∫

⊗j /∈eXj

Z(xe, x−e)
∏
j /∈e

wj(xj)d xj for xe ∈ ⊗j∈eXj . (17)

The statistical properties of the stochastic process Z̄e(xe) and the deriva-
tion of the BLUP of Ȳe(xe) are derived in Appendix A. It is shown that the
BLUP of Ȳe(xe) is
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ˆ̄Y e(xe) = f̄e(xe)β̂ + r̄′
e(xe)R

−1(y − F β̂), (18)

and its standard error is given by

se2[ ˆ̄Y e(xe)] = Var[Z̄e(xe)] − σ2r̄e(x)′R−1r̄e(xe)

+ σ2[f̄ e(xe) − F ′R−1r̄e(xe)]
′(F ′R−1F )−1[f̄e(xe) − F ′R−1r̄e(xe)],(19)

where r̄e(xe) is defined following (22) in Appendix A.
In other words, software for computing the BLUP of Y (x) and its standard

error is easily modified for estimating effects and, hence, the ANOVA decom-
position, provided that we can compute Var[Z̄e(xe)] from (21) in Appendix A,
r̄e(xe) following (22), and f̄ e(xe) in (16), quantities which will involve high-
dimensional integrals in high-dimensional problems. These computations are
described in AppendixB.

It is possible to relax the product-region condition (8) in some experiments.
For example, Mrawira et al. (1999) dealt with several groups of variables
where there were constraints like x1 ≤ x2. The triangular input space for
such a group had a product arrangement with all other variables or groups
of variables. Thus, in all the above formulas for estimated effects or their
standard errors, we merely treat the variables in a group together as if they
were a single variable. This means, however, that the estimated effect for a
group cannot be decomposed further into contributions from its constituent
variables.

5 Steps for Identifying and visualizing the important

estimated effects

To screen the input variables, we carry out the following steps.

1. Estimate by maximum likelihood the unknown parameters, β in (1), σ2

in (2), and the correlation parameters, for example, the θj and pj in (3).
2. Before continuing with a screening analysis, it is prudent to check the

overall accuracy of the approximator in (6) and the validity of its standard
error (7) by cross validation (see, Jones, Schonlau and Welch, 1998).

3. Compute the estimated marginal effects defined in (18) by carrying out
the required integrations as described in Appendix B. This will usually be
done for all main effects and all two-variable joint effects.

4. For each estimated marginal effect, compute the corresponding estimated
corrected effect by subtracting all estimated lower-order corrected effects.
This is best done recursively, correcting the main effects first, then cor-
recting the two-variable effects, and so on.

5. Using the estimated corrected effects, compute the estimated contribu-
tions in the functional analysis of variance (14).



12 Matthias Schonlau William J. Welch

o
o

o

o

o

o

o

oo

o

oo
o

o
o

o

o

o
o

oo
o

o

o

oo
o

o
o

o
o

o
o

o oo
o
o

o

o

o
o

o

o
oo

o

o

o

o
o

o o

oo

o o

o

o o
o

o
o

o
o

ooo
o

o

o

o
o

o
o

o

o

o o

o

o

oo
o

o

o

oo

o

o

o

o

oo
o o
o

o

o

oo

o

o

o

o

o

o o

o o
o

o

o
o

oo

o
o

o
o
o

o

o

o
o o

o

oo

o

o
o o

o
o

o

oo
oo

o

o

o
o

o

oo

o

o

oo

o

o o

o
o

o
o

o

o o
ooo

o
o

o

o o

o
o

o

o o
ooo

o

o

o

o

o
ooo

o o

o
o

o

o

o

o

o
o

o
o
o

o

o

o
oo

o
oo

o
o

o
o

o

o o

o

o

o

oo

o o
o

o
o

o

o

o
o

o
o

o
oo
o

o

oo

o

o

o
o
o

o
o

o

oo
o

o

o

o

oo

o

o
o

o
o oo

o

o

o

o

o

o

o

o

o

o

o
o

o

oooo

o

o

o
o

oo

o

oo
o

o

o
o

o

o

o

oo

o
o

ooooo

o
o

oo

o
o o

o

oo
oo

o
o

o
ooo

o

o
o

o

o
oo

o o
o

o

o

o
o

o

o

oo oo

o
o

o

o

o

o
o

o
o o

o

o

oo

o

o

o
o

oo

o
o

o

o o

o
o

o

o

o

o
o

o

oo
o

oo
o

o

o

o
o

oo
o o
o

o

o

oo

o

o

o o

o

o

o

o

o
o
o

o
o

oo
o

oooo

o

o

o
o

o

o

o
oo

o

o
oo

o
oo

ooo

o
o o

oo
o

o
o

o
o o

oo
o

o

o

o

o
oo

o

o

o

o

o

o

o o

o

oo o
oo

o
o
o

o

o

o

o
oo

oo o
o

o

o

o oo

o

o
o

o

oo

o

o

o o

o
o

oo

oo

o

o

−0.4 −0.3 −0.2 −0.1 0.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

Predicted HDI 

H
D

I 

(a)

o oo

o

o

o
o

o
o

o

o
o

o

o

o
o

o

o
o

oo

oo

o o

oo

o

o o o
o

o

o

ooo

o

o

o

oo

o

o
o

o

o

o

o
o

o
o

o

o

o
o

o
o

o

o
o

o

o

o

o o

o
o

o o

o

o

o o

o

o

oo

o

o
o

o

o
o oo

ooo

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o o

o
o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o oo

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

oo

o
o

o o
o

o

o

o
o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

oo o

o
o

o

o

o
o

o

o

oo

o

o

o
o

o

o

o
o
o

o
oo

o

o

o

o

o

o

o

o

o

oo
o o

oo

o

o o

o

o
o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o
o o

o

o
o

o

o

o

o

o

o
o

o o
o

o

o

o
o

o
o

o
o

o

o

o
o

o

o

o

o
o

o

o

o

o
o

o
o

o

o
o

oo

o
o

o

o

o
o

oo

o

o
o

oo o

o

oo
o

o

o

o

o

o

o

o

o
ooo

o

o

o

o

o

o

o

o

oo
o

o

o

o
oo

o

o

o o

o

oo
o

o
o

o

oo

o

o

o

o
o

o

o

o

o
o

o

oo oo

o

o

o

o

o

o

o
o

o

o

o

o o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
ooo

o

o

o

o

o

o

o

oo

o

o

o

o
o

oo

oooo
o

o
o

o

o
o

o

o

o

o

oo
o

o

o

o

oo
o

o

o

o
o

o

o

o

o
o

oo

o
o

o

o
o
o

o

o
o

o

oo

o
o

oo

o

o

o

o

o

o

o

o
o o

o
oo

o

o

o

o

o

o
o

o

oo

−0.3 −0.2 −0.1 0.0
−

4
−

2
0

2
4

Predicted HDI 

S
ta

nd
ar

di
ze

d 
re

si
du

al

(b)

Fig. 2. Diagnostics for the Wonderland approximating model: (a) actual hu-
man development index (HDI) values versus their cross-validation predictions;
(b)standardized cross-validation residuals versus cross-validation predictions.

6. If an estimated interaction effect makes a substantial contribution to
the ANOVA decomposition, the corresponding joint effect (18) is plot-
ted against the relevant input variables as a contour or perspective plot.
The standard error (19) can be also be plotted against the same input
variables in a separate plot.

7. Any input variable that has a large ANOVA contribution from an esti-
mated (corrected) main effect but does not appear in any large ANOVA
contributions from interaction effects has its estimated (uncorrected) main
effect plotted. Approximate pointwise confidence intervals based on the
standard error can also be shown.

6 Application: the Wonderland model

We illustrate these methods using the Wonderland computer model outlined
in Section 1. This model exemplifies the type of screening problem we have
in mind, as we shall find that it has highly nonlinear, interactive effects that
demand a flexible, data-adaptive statistical modeling strategy. The computer
model has 41 input variables and we focus on one particular quasi global
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human development index (HDI) output variable resulting from a policy which
might be called “limits to growth”. The data consist of 500 model runs from
a “space-filling” Latin hypercube design (see McKay, Conover and Beckman,
1979).

The first step in the analysis is to fit the random-function model (1) and
to check the accuracy of the resulting approximator. We use a simple random-
function model:

Y (x) = β0 + Z(x),

where the regression component is just a constant, β0. The unknown param-
eters, β0, σ2 in (2) and the correlation parameters θj and pj for j = 1, . . . , 41
in (3), are estimated by maximum likelihood. Figure 2(a) shows the actual
HDI value y(x(i)) from run i of the Wonderland model versus its leave-one-out
cross-validated prediction, Ŷ−i(x

(i)) for i = 1, . . . , 500.
The subscript −i indicates that the approximator (6) is built from all the

data except run i. (The random-function correlation parameters are not re-
estimated.) Figure 2(a) shows fairly good accuracy of approximation, though
with some over-prediction of the extremely low HDI values. Figure 2(b) plots
the standardized cross-validated residual,

[y(x(i)) − Ŷ−i(x
(i))]/se−i[Ŷ (x)], (20)

versus Ŷ−i(x
(i)) for i = 1, . . . , 500, where the standard error se−i[Ŷ (x)] is

computed from (7), again without the data from run i. The plot shows some
standardized residuals falling outside the bands at ±3, indicating that the
error of approximation is sometimes a little larger in magnitude than is sug-
gested by the standard error.

The next step is to compute the estimated marginal effects (18). Follow-
ing our usual practice, this is done for all main effects and all two-variable
joint effects. The required integrations over the remaining 40 or 39 variables,
respectively, are computed as described in Appendix B.

Table 1. Estimated main effects and two-variable interaction effects accounting for
more than 1% of the total variance of the predictor; the variable names are defined
in Table 2

% of Total % of Total
Effect Variance Effect Variance

e.inov.n 24.3 v.spoll.s × v.drop.s 2.7
v.spoll.s 13.5 e.grth.n × e.inov.n 1.9
e.inov.s 12.1 v.drop.s 1.9
e.cinov.s 5.3 e.finit.s 1.5
v.spoll.s × v.cfsus.s 4.6 e.inov.n × e.inov.s 1.4
v.drop.s × v.cfsus.s 3.7 v.cfsus.s 1.2
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Each estimated marginal effect leads to the corresponding estimated cor-
rected effect in (12) or (13). This is done recursively: the estimated main
effects are corrected first, followed by the two-variable interaction effects.

The functional analysis of variance in (14) is then computed from the
estimated corrected effects. Here, the 41 main effects and 820 two-factor-
interaction effects together account for about 89% of the total variance of
the predictor. Hence, about 11% of the predictor’s total variability is due to
higher-order effects. Table 1 shows the estimated main effects and interaction
effects that contribute at least 1% to the functional ANOVA. These 12 effects
together account for about 74% of the total variation.

Only six variables appear in these 12 effects; they are described in Table 2.

Table 2. Wonderland input variables that appear in the important estimated effects
of Table 1. Prefix “e.” or “v.” indicates an economic or environmental variable,
respectively; suffix “.n” or “.s” indicates the northern region or the southern region,
respectively

Variable Description

e.finit Flatness of initial decline in economic growth
e.grth Base economic growth rate
e.inov Innovation rate
e.cinov Effect of innovation policies (pollution taxes) on growth
v.spoll Sustainable pollution
v.cfsus Change in level of sustainable pollution when natural capital is cut in half
v.drop Rate of drop in natural capital when pollution flows are above the

sustainable level

The ANOVA suggests that e.inov.n (economic innovation in the north) is
an important input variable. Its estimated main effect in Figure 3(a) shows
a strong, approximately linear trend. The estimated increase in HDI is fairly
substantial: about 0.06 over the e.inov.n range. This was not obvious from
the scatter plot in Figure 1(a); certainly any guess as to the magnitude of
the increase would have been much smaller. The relationship was masked by
other variables.

The estimated main effect of v.spoll.s (sustainable pollution in the south)
in Figure 3(b) confirms the same nonlinearity that we could see in the scatter
plot in Figure 1(b). The drop in HDI over the first twentieth of the range of
v.spoll.s is substantial. Given that we sampled 500 points we would suspect
roughly one twentieth or 25 of the HDI values to be low. However, the scatter
plot in Figure 1(b) shows only three low points. This hints at a highly local
interaction.

The analysis of variance in Table 1 does indeed identify several estimated
interaction effects involving v.spoll.s; the largest is that with v.cfsus.s (change
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Fig. 3. Estimated main effects on HDI in the Wonderland model: (a) estimated
main effect of e.inov.n (economic innovation in the north); (b) estimated main effect
of v.spoll.s (sustainable pollution in the south). The estimated effects are denoted
by “+” and approximate 95% pointwise confidence limits are denoted by “−”.

in sustainable pollution in the south). Figure 4(a) shows the estimated joint
effect of these two input variables on HDI. The surface is fairly flat for most
of the area. As previously seen in the main effect plot, HDI increases rapidly
with v.spoll.s when v.spoll.s is close to its lower limit. Now we see that this
increase is larger for high values of v.cfsus.s (an increase from -0.12 to 0) than
for low values of v.cfsus.s (an increase from -0.06 to 0). This difference appears
to be substantial relative to the standard errors shown in Figure 4(b), which
are roughly of order 0.01.

For comparison, we also use stepwise regression to select variables, specif-
ically the R function step (R Development Core Team, 2005), which uses
Akaike’s information criterion (see Akaike, 1973). The selection from all 41
input variables results in a first-order model (main effects model) with 15
variables, but e.finit.s and v.cfsus.s in Table 1 are not included. Extending
the model search space to allow all second-order terms also, that is, the 41
squares and 820 bilinear interaction effects of the input variables, yields a
final model with 62 terms. Again e.finit.s and v.cfsus.s do not appear. Thus,
the bilinear v.spoll.s × v.cfsus.s interaction effect is not included, contrary
to Table 1. (Note that a two-factor interaction effect is defined to be a more
general, non-additive effect in the random-function model.)
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Fig. 4. Joint effect of sustainable pollution in the south (v.spoll.s) and change in
sustainable pollution in the south (v.cfsus.s) on HDI in the Wonderland model: (a)
estimated effect; (b) pointwise standard error of the estimated effect.

The two regression models have lower prediction accuracy than the random-
function model when assessed using “cross-validated root mean squared error
of prediction”. This quantity is simply the root mean of the squared cross-
validated residuals y(x(i))−Ŷ−i(x

(i)), for i = 1, . . . , n in the numerator of (20).
The cross-validated root mean squared error values are 0.040 and 0.035 for the
first-order and second-order regression models, respectively, compared with
0.026 for the random-function model. Figure 5 shows that both regression
models are particularly poor at predicting extremely low values of HDI. The
true relative importances of the effects of the input variables are not known
for the Wonderland model, but it is arguable that the screening results from
the random-function model are more credible because of the better prediction
performance of this model.

7 Discussion

The Wonderland model illustrates that, at least in some applications, very
complex effects involving highly nonlinear, interactive relationships, can ex-
ist. Naturally, these are difficult to model and identify. The approach that
we have described starts with a random-function model that is data-adaptive
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Fig. 5. Actual human development index (HDI) values versus their cross-validation
predictions from regressions models: (a) selected from all first-order terms; (b) se-
lected from all second-order terms.

to such complexities, given enough computer-model runs. Similarly, the esti-
mated effects derived from the random-function approximator can be fairly
complex if demanded by the data. To detect such subtle effects, the experi-
mental design has to allow exploration of the input region densely, at least for
a few variables at a time. “Space-filling” designs such as Latin hypercubes,
used in this chapter, and orthogonal arrays (see Chapter ??) have good pro-
jective properties and are desirable in this respect (see Koehler and Owen,
1996, for a review of designs for computer experiments). The design does
not have to be balanced in any sense. The ANOVA decomposition is of the
approximator (that is, the predictor from the surrogate model); it is not a
traditional analysis of variance computed directly from the data.

In the Wonderland model, a pathological scenario was identified of very low
values of the human development index, dependent on extreme values of two
of the 41 variables. In the experiment with 500 runs, only three runs exhibited
this behavior; fewer runs in the design or a less flexible approximation strategy
may well have missed this feature.

In practice, one is often faced with choosing a model that is easily in-
terpretable but may not approximate a response very well, such as a low-
order polynomial regression, or with choosing a black box model, such as the
random-function model in equations (1)–(3). Our approach makes this black
box model interpretable in two ways: (a) the ANOVA decomposition provides
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a quantitative screening of the low-order effects, and (b) the important effects
can be visualized. By comparison, in a low-order polynomial regression model,
the relationship between input variables and an output variable is more direct.
Unfortunately, as we have seen, the complexities of a computer code may be
too subtle for such simple approximating models.

Throughout, we have used “plug-in” estimates of the correlation parame-
ters in (3). These parameters are estimated by maximum likelihood but the
estimates are treated as the true values thereafter. The uncertainty from esti-
mating the correlation parameters is not propagated through to the standard
errors of estimated effects. In principle, though, this is easily overcome with
a Bayesian prior distribution on the correlation parameters. We could: (1)
sample say 10–100 sets of values of the correlation parameters from their
Bayesian posterior distribution (see, for example, Robert and Casella, 2004);
(2) estimate effects using the methods in this chapter, conditional on each set
of values of the correlation parameters; and (3) combine the analyses using
standard probability results to compute a standard error taking account of
parameter uncertainty. As the analysis in this chapter is relatively straight-
forward computationally, repeating it 10-100 times would not be onerous;
rather, the difficulty would be with sampling from the Bayesian posterior for
applications with many input variables.

Appendix A.

Derivation of the best linear unbiased predictor of an

effect

The the best linear unbiased predictor (BLUP) of Ȳe(xe) in (18) follows from
the properties of Z̄e(xe) in (17). Clearly, Z̄e(xe), like Z(x), has expectation
zero. Its variance, however, is not constant:

Var[Z̄e(xe)] =

∫

⊗j /∈eXj

∫

⊗j /∈eXj

Cov[Z(xe, x−e), Z(xe, x̃−e)]
∏
j /∈e

wj(xj)wj(x̃j)d xjd x̃j

= σ2

∫

⊗j /∈eXj

∫

⊗j /∈eXj

R[(xe, x−e), (xe, x̃−e)]
∏
j /∈e

wj(xj)wj(x̃j)d xjd x̃j .

(21)

The steps for deriving the BLUP of Ȳe(xe) with a standard error closely
follow those in Section 2 for the BLUP of Y (x). Again, consider predictors

that are linear in the n observed output values, ˆ̄Y e = a′
e(xe)y. From the

random-function model (15), the mean squared error of ˆ̄Y e(xe) is

E[Ȳe(xe) −
ˆ̄Y e(xe)]

2 = E[f̄
′

e(xe)β + Z̄e(xe) − a′
e(xe)(F β + z)]2
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= {[f̄
′

e(xe) − a′
e(xe)F ]β}2 + Var[Z̄e(xe)]

+a′
e(xe)Cov(z)ae(xe) − 2a′

e(xe)Cov[Z̄e(xe), z].

Element i of the n × 1 vector Cov[Z̄e(xe), z] is computed from

Cov[Z̄e(xe), Z(x(i))] =

∫

⊗j /∈eXj

Cov[Z(xe, x−e), Z(x(i)
e , x

(i)
−e)]

∏
j /∈e

wj(xj)d xj

= σ2

∫

⊗j /∈eXj

R[(xe, x−e), (x
(i)
e , x

(i)
−e)]

∏
j /∈e

wj(xj)d xj .(22)

Thus, we have to integrate out the variables not in xe from the correlation
function. We will write σ2r̄e(xe) for Cov[Z̄e(xe), z].

Again imposing a constraint to eliminate the contribution to the mean
squared error from the term involving β, the optimal choice of a′

e(xe) is
formulated as:

min
ae(xe)

Var[Z̄e(xe)] + σ2a′
e(xe)Rae(xe) − 2σ2a′

e(xe)r̄e(xe) (23)

subject to
Fae(xe) = f̄e(xe).

The constrained optimization problems leading to the BLUPs of Y (x) and
Ȳe(xe) are very similar: Var[Z(x)], r(x) and f (x) in (5) have simply been
replaced by Var[Z̄e(xe)], r̄e(xe) and f̄e(xe), respectively, in (23).

Appendix B.

Computation of the integrals required for the estimated

effects and the ANOVA decomposition

To compute the BLUP (18) of a marginal effect we need the vectors f̄e(xe)
in (16) and r̄e(x) following (22), both of which involve integration over all the
variables not in e. For computational convenience in performing these inte-
grations, we will need two further “product-structure” conditions, in addition
to (8) and (9). They relate to the properties of the random-function model,
specifically the regression functions, f(x), in (1) and the correlation function,
R(x, x̃), in (2).

First, we assume each regression function is a product of functions in just
one input variable, that is, element k of f (x) can be written

fk(x) =

d∏
j=1

fkj(xj) (k = 1, . . . , h). (24)
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Fortunately, the polynomial regression models commonly used are made up of
functions fk(x) which are products of powers of single variables. With (24),
element k of f̄e(xe) in (16) is

∫

⊗j /∈eXj

fk(xe, x−e)
∏
j /∈e

wj(xj)d xj =
∏
j∈e

fkj(xj)

∫

⊗j /∈eXj

∏
j /∈e

fkj(xj)wj(xj)d xj .

The integral on the right-hand side of this equation is clearly a product of
one-dimensional integrals,

∫

Xj

fkj(xj)wj(xj)d xj ,

which can be evaluated using simple techniques such as Simpson’s rule.
Secondly, we assume similarly that the correlation function is a product

of one-dimensional correlation functions, that is,

R(x, x̃) =

d∏
j=1

Rj(xj , x̃j). (25)

The power-exponential correlation function (3), for example, is of this product
form. To compute r̄e(x), the integral on the right-hand side of (22) is evaluated
as ∏

j∈e

Rj(xj , x
(i)
j )

∫

⊗j /∈eXj

∏
j /∈e

Rj(xj , x
(i)
j )wj(xj)d xj ,

and the integral involved is a product of one-dimensional integrals,

∫

Xj

Rj(xj , x
(i)
j )wj(xj)d xj .

For the standard error (19), we also need Var[Z̄e(xe)] in (21). With con-
dition (25), the double integral on the right-hand side of (21) is computed
as: ∏

j∈e

Rj(xj , xj)
∏
j /∈e

∫

Xj

∫

Xj

Rj(xj , x̃j)wj(xj)wj(x̃j)d xjd x̃j .

Thus, two-dimensional numerical quadrature is sufficient. Further simplifica-
tion follows by noting that the correlation function should satisfy Rj(xj , xj) =
1 when modeling a continuous function.

To visualize the estimated effect ˆ̄Y e(xe) and its standard error, se[ ˆ̄Y e(xe)],
these quantities are computed for a grid of values of xe. The required one- and
two-dimensional integrals depend only on the variables not in xe and need be
computed only once for all grid points.
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From the estimated marginal effects, it is straightforward to compute es-
timates of the corrected main effects (12), the two-variable interaction ef-
fects (13), and so on. The ANOVA contributions on the right-hand side of (14)
for these low-order effects involve correspondingly low-dimension integrals.
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