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Abstract Latin hypercube designs (LHDs) are widely used
in many applications. As the number of design points or fac-
tors becomes large, the total number of LHDs grows ex-
ponentially. The large number of feasible designs makes
the search for optimal LHDs a difficult discrete optimiza-
tion problem. To tackle this problem, we propose a new
population-based algorithm named LaPSO that is adapted
from the standard particle swarm optimization (PSO) and
customized for LHD. Moreover, we accelerate LaPSO via a
graphic processing unit (GPU). According to extensive com-
parisons, the proposed LaPSO is more stable than existing
approaches and is capable of improving known results.

Keywords Latin hypercube design · Particle swarm
optimization · Graphic processing unit (GPU)

1 Introduction

The study of computer experiments has received significant
attention in the past decade (Kennedy and O’Hagan 2000;
Santner et al. 2003). Because many of these experiments
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are time consuming, it is important to design the experi-
ments carefully with a small number of experimental runs.
To explore an experimental region efficiently, the experi-
mental design in a computer experiment is usually required
to satisfy two properties. First, the design should be space-
filling to acquire the maximum amount of information on
the experimental domain. Second, the design should be non-
collapsing. That is, the design does not have two points that
only differ in one factor (or variable). This property is nec-
essary because if this factor is not significant, the responses
of the two points will be nearly identical and will offer lit-
tle information. Hence, a collapsing design will result in a
waste of computation, especially for a deterministic model.
Based on these two properties, a space-filling Latin hyper-
cube design (LHD) is an appropriate and popular choice.

An n-run and k-factor LHD is constructed as follows.
Each factor is divided into n levels, and the design points are
arranged such that each level has exactly one point. Thus, a
LHD has the one-dimensional projection property (Santner
et al. 2003), which means that projecting an n-point design
onto any factor leads to exactly n different levels for that
factor. Formally, an n-run and k-factor LHD can be repre-
sented as an n by k matrix. Each row of the matrix corre-
sponds to a design point, and each column is a permuta-
tion of {1,2, . . . , n}. The total number of n-run and k-factor
LHDs is (n!)k−1, which grows rapidly as n or k increases.
Although a LHD is guaranteed to be non-collapsing, a ran-
domly generated LHD may not always be space-filling. Fig-
ure 1(a) shows an example of a non-space-filling LHD that
concentrates its design points in the diagonal part of the ex-
perimental region while leaving a large area unexplored.

To achieve the space-filling property, different criteria are
used, such as the max-min criterion (Grosso et al. 2009;
Liefvendahl and Stocki 2006; van Dam et al. 2007, 2009),
the φp criterion (Grosso et al. 2009; Morris and Mitchell
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Fig. 1 Two LHD examples
where n = 12 and k = 2

1995; Ye et al. 2000; Jin et al. 2005; Viana et al. 2010),
the Audze-Eglais criterion (Liefvendahl and Stocki 2006;
Bates et al. 2004), the entropy criterion (Ye et al. 2000), and
the centered L2-discrepancy (Fang et al. 2002). Although
different criteria are adopted, the common challenge for
these discrete optimization problems is that the huge number
of feasible designs renders the search for the optimal LHDs
as non-trivial, especially for large n or k. To tackle this issue
and find the optimal LHDs efficiently, many optimization
methods have been proposed. Morris and Mitchell (1995)
presented a simulated annealing search algorithm and noted
that some optimal LHDs have a symmetric structure. Fol-
lowing the observation of Morris and Mitchell (1995), Ye
et al. (2000) considered restricting the search space to a sub-
set called symmetric Latin hypercube designs in order to re-
duce the search time. They used the columnwise-pairwise
(CP) exchange algorithm. Jin et al. (2005) proposed the en-
hanced stochastic evolutionary algorithm (ESE), which con-
tains inner and outer loops. The inner loop is similar to the
CP algorithm, while the outer loop is used to determine the
acceptance threshold based on the performance of the in-
ner loop. Grosso et al. (2009) used the Iterated Local Search
heuristics which is composed of a local search and perturba-
tion procedures. As for the population based methods, Bates
et al. (2004) and Liefvendahl and Stocki (2006) proposed
different versions of genetic algorithms. Particularly for the
2-factor LHDs, van Dam et al. (2007) constructed the op-
timal max-min LHD with respect to the max-min l∞- and
l1-distance criteria. In the case of l2-distance, they designed
a branch-and-bound algorithm and found the optimal LHD
for n up to 70.

In addition to the aforementioned methods, particle
swarm optimization (PSO) (Kennedy and Eberhart 1995)
is another alternative for optimization problems inspired
by the social behavior of bird flocking or fish school-
ing. PSO is an efficient, heuristically stochastic, iterative
procedure and PSO usually converges to a global opti-
mum quickly. For additional convergence analysis of PSO,
see van den Bergh (2006), van den Bergh and Engel-
brecht (2002). Many variants of PSO have been developed

and used to solve different types of optimization prob-
lems in various applications (Bratton and Kennedy 2007;
Engelbrecht 2006). In statistics, some fundamental infer-
ence problems can also be formulated as global optimization
problems and then solved by PSO. One example is the max-
imum likelihood estimation (MLE) of unknown parameters.
Toala et al. (2011) studied the kriging parameter estimation
in computer experiments, which requires the optimization
of a multi-modal likelihood function, and they showed that
a modified PSO approach is superior to other approaches in
the search for MLE in kriging. Furthermore, PSO is capa-
ble of solving high-dimensional optimization problems with
multiple optima, another attractive feature in the search for
optimal LHDs with large n or k. Observing these properties
of PSO, we are motivated to study the application of PSO to
the search for optimal LHDs.

In this paper, we propose LaPSO, a variant of PSO, to
solve the corresponding LHD optimization problem using
the φp criterion. In addition, we use a graphic processing
unit (GPU) to accelerate the proposed LaPSO, which allows
us to tackle larger problems. For the cases we examine, the
results of LaPSO are more stable than the results from ex-
isting methods. Moreover, LaPSO is able to verify the max-
min and extended max-min LHDs in the literature and even
improve some of them.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the optimal criterion we consider and dis-
cusses the corresponding computational challenges. Sec-
tion 3 reviews the standard PSO and then proposes LaPSO.
Numerical results are reported and discussed in Sect. 4. We
conclude the paper in Sect. 5.

2 The target LHD problem and its computational
challenges

In this paper, we focus on the φp criterion introduced by
Morris and Mitchell (1995). The φp criterion is deduced
from the max-min criterion, which maximizes the minimum
inter-site distance of a LHD. In other words, the max-min
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criterion can be represented as

max
D

{
min∀j>i

d(xi ,xj )
}
, (1)

where D is any n-run and k-factor LHD and d(xi ,xj ) is the
distance between design points xi and xj . To further break
ties among optimal max-min LHDs, Morris and Mitchell
(1995) proposed the extended max-min criterion. Denote
the sorted distinct inter-site distances from minimum to
maximum by d1, d2, . . . , dm, and let Ji be the number of
inter-site distances equal to di . The max-min criterion only
maximizes d1. The extended max-min criterion extends the
max-min criterion as follows:

(1a) maximizes d1, and among designs for which this is
true,

(1b) minimizes J1, and among designs for which this is
true,

(2a) maximizes d2, and among designs for which this is
true,

(2b) minimizes J2, and among designs for which this is
true,
...

(ma) maximizes dm, and among designs for which this is
true,

(mb) minimizes Jm.

Furthermore, to rank the competing designs using this
criterion with a scalar value, Morris and Mitchell (1995)
proposed the function

φp =
[

m∑
k=1

Jkd
−p
k

] 1
p

, (2)

where p is a positive integer. They showed that the φp cri-
terion ranks LHDs the same way as the extended max-min
criterion does when p is large. Compared with the extended
max-min criterion, the φp criterion is computationally sim-
pler. The φp score can be easily calculated without ordering
the inter-site distances. In addition, the φp criterion is widely
used in the literature on the optimal LHD search (Grosso
et al. 2009; Jin et al. 2005; Morris and Mitchell 1995;
Viana et al. 2010; Ye et al. 2000). Therefore, it can provide
a reasonable comparison with existing approaches, such as
the genetic algorithm and the enhanced stochastic evolution-
ary algorithm. Properties of φp , such as the upper bound and
lower bound of this criterion, are well studied (Joseph and
Hung 2008). Optimizing LHDs under the φp criterion, we
aim to solve the following optimization problem

min
D

φp(D). (3)

The optimization problem (3) is discrete because LHDs are
formed by discrete design points.

The computational challenges to solve the optimization
problem (3) are threefold. First, the total number of LHDs,
(n!)k−1, grows rapidly as n or k becomes large. Second, op-
timal LHDs are very few compared to the total number of
LHDs. For example, Fig. 2 shows the distribution of φp val-
ues for two particular cases where we can evaluate all LHDs
individually. The figure indicates that the number of optimal
LHDs is very small and even the portion of near-optimal
LHDs is small compared to the total number of LHDs. This
observation additionally suggests that we cannot expect the
random search to find satisfactory LHD. Third, as shown be-
low, two “nearby” LHDs do not necessary have similar φp

values.
To measure the distance between two LHDs, or how close

one LHD is to another LHD, we use the Hamming distance
due to the nature of the problem. The Hamming distance is
defined as the number of positions with different values be-
tween two LHDs. For example, consider the following two
LHDs,
⎡
⎢⎢⎢⎢⎣

5 3 4
2 4 3
3 2 1
1 5 2
4 1 5

⎤
⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎣

4 5 4
2 4 3
3 3 1
1 2 2
5 1 5

⎤
⎥⎥⎥⎥⎦

.

The Hamming distance of these LHDs is five.
In the continuous domain, the values of a continuous

function are near each other if two points are sufficiently
close. This continuity is not the case for φp with respect to
the Hamming distance. Consider the LHDs shown in Fig. 3.
LHDs D2 and D3 in Figs. 3(b) and 3(c) are LHDs after a
swap of the LHD D1 in Fig. 3(a), so the Hamming distances
between D1 and D2 and between D1 and D3 are both two.
However, the corresponding φp value is similar for D1 and
D2 but changes drastically from D1 to D3. We can see the
reason in Fig. 3. A swap in the LHD may have a small im-
pact on the overall structure, but a swap may cause some
points to become clustered (or, from the opposite direction,
may cause the points to spread).

We take a closer look at the relation between the φp value
and the Hamming distance. Let us consider all LHDs with
a Hamming distance two to the LHD D1 in Fig. 3(a). We
plot the probability distribution of the absolute difference of
φp values between those LHDs and D1. Similarly, we plot
the distributions for other Hamming distances to D1. The re-
sults are in Fig. 4. All figures show that absolute differences
of φp above three account for a major portion in each plot.
However, the ratio of LHDs with an absolute difference of
φp below one increases as the Hamming distance decreases.
This trend is especially clear for the distributions in which
the Hamming distance is between two and four. In short,
two LHDs separated by a smaller Hamming distance are not
guaranteed to have closer φp values, but they have a higher
chance of obtaining closer φp values.
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Fig. 2 Distribution of φp

values of LHDs (p = 50). The
x- and y-axis represent the φp

value and frequency,
respectively. In addition,
(n, k) = (12,2) for (a) and (b)
and (n, k) = (6,4) for (c)
and (d). The dashed line
indicates the minimum. The
number of LHDs with the
minimum value is 2 for
(n, k) = (12,2) and 192 for
(n, k) = (6,4)

Fig. 3 The φp values (p = 50) of the LHD pairs with a Hamming distance of two. (a) A 10-run 2-factor LHD with φp = 3.1836. (b) A small
change of φp after a swap of the LHD D1. φp becomes 3.2274. (c) A jump of φp after a swap of the LHD D1. φp becomes 6.4528

3 Particle swarm optimization for Latin hypercube
designs

After a brief review of the standard PSO in Sect. 3.1, we
propose using LaPSO to tackle the computational challenges
of solving the discrete optimization problem (3) in Sect. 3.2.

3.1 PSO

PSO is a population-based, stochastic, heuristic methodol-
ogy and is capable of solving high-dimensional optimiza-
tion problems with multiple optima. Since PSO was pro-
posed (Kennedy and Eberhart 1995), many variants of PSO
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Fig. 4 The distributions of the
absolute difference of φp

(p = 50) between all LHDs and
the LHD in Fig. 3(a) with
respect to different Hamming
distances. The x-axis is the
absolute difference of φp , and
the y-axis is the number of
LHDs divided by the total
number of LHDs in the
corresponding plot, which can
be treated as a probability. With
a smaller Hamming distance,
two LHDs have a higher
probability of attaining similar
φp values

Algorithm 1 PSO framework
1: Initialize positions of particles
2: Evaluate objective function value of each particle
3: Initialize personal best positions
4: Initialize the global best position
5: while not converge do
6: Update velocity of each particle
7: Update position of each particle
8: Evaluate objective function value of each particle
9: Update personal best positions

10: Update the global best position
11: end while

have been developed and used to solve different types of
optimization problems in various applications (Bratton and
Kennedy 2007; Engelbrecht 2006).

We present the PSO framework to solve the following
continuous minimization problem:

min
x∈S

f (x), S = {
x ∈ R

N | lj ≤ xj ≤ uj , j = 1, . . . ,N
}

(4)

where f : R
N → R is the objective function. The main

structure of PSO is outlined in Algorithm 1. PSO main-
tains a swarm of particles that move in the search space.
The position of each particle represents the search point at
which the objective function f is evaluated. The initial posi-
tions of particles are chosen randomly over the search space.
Then, the velocity of each particle is determined based on

its searching history (cognitive component) and information
from other particles (social component). Next, each particle
moves according to its velocity. After moving to the new po-
sition, each particle evaluates its function value at this new
position. Each particle iteratively updates its velocity and
position. Throughout the process, all particles cooperate to
find the minimum value by social interaction.

Specifically, the velocity and position of a certain particle
are updated by the following formulas:

v(t+1)
i = ωv(t)

i + c1β
(t)
1

(
b(t)

i − x(t)
i

) + c2β
(t)
2

(
b(t)

g − x(t)
i

)
,

(5)

x(t+1)
i = x(t)

i + v(t+1)
i , (6)

where i is the index for the particle and the vector product
is a component-wise multiplication. The variables vi and xi

are the velocity and position of the ith particle. The parame-
ter ω is the inertia weight that is used to adjust the extent to
which the previous velocity affects the current velocity. We
use bi to denote the personal best position. That is, f (bi )

has the minimum value of all the positions that the ith par-
ticle has ever visited till the current iteration. We use bg to
denote the global best position, which means that f (bg) has
the minimum value among all the positions that all of the
particles have visited as yet. Two random vectors β1 and
β2 are used to increase diversity while exploring the search
space. The elements of both β1 and β2 are independently
chosen from a uniform distribution between zero and one.
The constants c1 and c2 represent the cognitive and social
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Table 1 The sparsity of LHD points in terms of the number of LHDs
(n!)k−1 and the number of grid points nn(k−1)

n k No. of LHD points No. of grid points Ratio

8 3 1.63E+09 2.81E+14 5.78E−06

8 4 6.55E+13 4.72E+21 1.39E−08

8 5 2.64E+18 7.92E+28 3.34E−11

10 3 1.32E+13 1.00E+20 1.32E−07

10 4 4.78E+19 1.00E+30 4.78E−11

10 5 1.73E+26 1.00E+40 1.73E−14

learning factor respectively. The magnitude of c1 and c2 de-
termines how each particle weights its own personal best
and global best experience while moving in search of the
minimum.

3.2 LaPSO

Unlike the problem (4) whose search domain is continu-
ous, we search for the optimal LHD among the finite and
discrete LHD points, so we cannot apply PSO directly to
the LHD optimization problem. To determine how to move
particles between the iterations, there are at least two ap-
proaches to consider: (i) Move the particles using the ordi-
nary continuous PSO and then round particles to the nearest
LHD. (ii) Follow only the structure of the PSO and rede-
fine the operations such that the move is from one LHD to
another LHD. We next discuss these two approaches.

The first approach is intuitive, but how to find the nearest
LHD to a given point is problematic. Even if we can find the
nearest LHD, the sparsity of the LHDs will cause this idea
to fail. Comparing the number of LHDs, i.e. (n!)k−1, and the
number of grid points, i.e. nn(k−1), in the search space of the
same dimension, we find that limn→∞(n!)k−1/nn(k−1) = 0
for a given k, which means LHDs become sparser as the di-
mension grows. Table 1 shows that the ratios of the numbers
of LHDs to the numbers of grid points are small, even for
small n and k. In other words, the nearest LHD to a given
point would be farther than expected. For this reason, we
take the second approach.

We now describe LaPSO which is outlined in Algo-
rithm 2. The framework of LaPSO is similar to Algorithm 1
except that the steps for velocity and position update are
modified. We show the details on how we move from one
LHD to another LHD in LaPSO according to the “Move”
and “RandSwap” functions.

The move function The term (bi − xi ) in the PSO veloc-
ity update formula (5) attracts a particle toward the personal
best position. Following this idea, we want a method that
can move the current LHD to another LHD that is closer to
the personal best LHD in the sense of the Hamming dis-
tance. Because each column of a LHD is a permutation,

Algorithm 2 LaPSO: PSO for LHD
1: Generate random LHDs
2: Compute function value of each LHD
3: Initialize personal best LHDs
4: Initialize the global best LHD
5: for each iteration do
6: Update position of each LHD via the nested for-loop
7: for each particle LHD do
8: for each column j of LHD do
9: Move(LHD(j),pBest(j),SameNumP)

10: Move(LHD(j), gBest(j),SameNumG)

11: if rand(0, 1)< ProbR then
12: RandSwap(LHD(j))

13: end if
14: end for
15: end for
16: Compute function value of each LHD
17: Update personal best LHDs
18: Update the global best LHD
19: end for

we must maintain this structure during movement. Focus-
ing on one column, we proceed as follows. For a column
of the current LHD, we randomly choose a position in the
column. To decrease the Hamming distance, we make the
value of this position the same as the value of the personal
best in the corresponding position by swapping the value
in the random position with the target value in the column
of the current LHD. Figure 5 illustrates this process. After
this step, the Hamming distance decreases by one or zero
between the updated LHD and the personal best. We can
apply this process several times to distinct positions in a
column of the current LHD and then increase the similarity
between the updated LHD and the personal best. This pro-
cess is denoted by Move(LHD(j), pBest(j), SameNumP ),
which means that we apply the above procedure to distinct
randomly chosen SameNumP positions in the j th column
of LHD, so the updated j th column of LHD will have at
least SameNumP positions possessing the same values as
the j th column of pBest. Similarly, we have the process
Move(LHD(j), gBest(j), SameNumG) for the global best.

The RandSwap function The function RandSwap(LHD(j))

randomly chooses two different positions in the j th column
of LHD and then swaps the values. The RandSwap function
is executed with probability ProbR in Algorithm 2.

We make two remarks to conclude this section. First, the
proposed LaPSO algorithm is not restricted to the φp crite-
rion. It can be applied to other criteria, such as the max-min
criterion and the extended max-min criterion. Second, be-
cause the move from one design to another is completely
random and all the input factors are treated equally, LaPSO
is completely independent of the order in which the inputs
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Fig. 5 Move function.
(a) Randomly choose a position
in a column of the current LHD.
(b) Determine the target value in
the corresponding personal best
position. (c) Search in the
current LHD column and locate
the position possessing the
target value. (d) Swap the values
in the two positions

are specified. In addition, given a specified permutation of
the elements, the LaPSO algorithm leads to LHDs that have
same or very close φp values in different LaPSO runs. The
corresponding designs may or may not be the same.

4 Numerical results

In Sects. 4.1 and 4.2, we examine the effects of SameNumP

and SameNumG. As shown in Sect. 4.2, the results lead
to three particular types of LaPSO: LaPSO-P (SameNumG

= 0), LaPSO-G (SameNumP = 0), and LaPSO-L (with
multiple particle groups). Representative numerical results
of these three types of LaPSO are analyzed to characterize
their properties. Then we compare LaPSO with two popular
search algorithms: the genetic algorithm (GA; Liefvendahl
and Stocki 2006) and the enhanced stochastic evolutionary
algorithm (ESE; Jin et al. 2005) in Sects. 4.3 and 4.4, respec-
tively. Finally, we present the best extended max-min LHDs
found by using LaPSO with the φp criterion in Sect. 4.5.
Some details of the experiments are as follows. The experi-
ments in Sects. 4.1, 4.2, 4.3, and 4.4 are all repeated 1,000
times. The φp value is computed after scaling the LHD into
[0,1]k , and we use the Euclidean norm for inter-site dis-
tances. Except in Sect. 4.5, the value of p in φp criterion
is set at 50, as suggested in Jin et al. (2005), Viana et al.
(2010), Ye et al. (2000).

We accelerate LaPSO by using an NVIDIA Tesla C2070
GPU to learn the behaviors of LaPSO from more experimen-
tal results and search for the optimal LHDs in a shorter time.
The main structure of the implementation and acceleration
schemes are similar to Hung and Wang (2012). We let one
GPU thread take charge of one particle (or one LHD) and
launch a separate CUDA kernel for each step to achieve nec-
essary synchronization. The unchanging parameters, such as
n and k, reside in the constant memory. To have coalesced
global memory accesses, the LHDs are stored as shown in

Fig. 6 (a) Conceptual structure of LHDs. (b) Vectorization of each
LHD along columns. (c) The arrangement in the device global memory

Table 2 Timing results in seconds for the CPU and GPU versions of
LaPSO for (n, k) = (7,20). The number of iterations is 100, 500, and
1,000

Iterations Particle number CPU ver. GPU ver. Speedup

100 10,240 3.3629 0.1932 17×
51,200 16.8155 0.7334 23×

102,400 33.6364 1.4143 24×
512,000 168.1636 6.5478 26×

500 10,240 16.3057 0.6529 25×
51,200 82.0092 2.0674 40×

102,400 163.9962 3.7952 43×
512,000 819.8735 17.1088 48×

1,000 10,240 33.8559 1.1098 31×
51,200 171.2104 3.5908 48×

102,400 342.4037 6.6562 51×
512,000 1763.0860 29.9081 59×

Fig. 6. Table 2 compares the timing of the GPU version
with the timing of the CPU version (both in seconds) that
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Fig. 7 The effects of both
non-zeros SameNumP and
SameNumG. The y-axis
represents φp with p = 50

Fig. 8 Behaviors of LaPSO-P
and LaPSO-G. The y-axis
represents the φp value with
p = 50. For (b), the x-axis
represents the number of
iterations. The three lines of the
same style in (b) from bottom
up are the 5th, 50th, and 95th
percentiles of the φp values of
the global best LHDs at each
iteration over 1,000 repetitions

is run on a HP BL460cG6 workstation equipped with In-
tel Xeon X5570 2.93 GHz CPU. The table suggests that the
GPU implementation saves significant computational time,
especially for larger numbers of particles and iterations.

4.1 Effects of SameNumP and SameNumG

Following the idea of the continuous PSO, it is tempting to
set SameNumP �= 0 and SameNumG �= 0 in LaPSO. We ex-
amine the relationship between φp and the Hamming dis-
tance (Fig. 4) to see that this is not a good approach. As we
have observed, LHDs are more likely to have similar φp if
the LHDs are close in the sense of Hamming distance. Sup-
pose we are now given a LHD of medium quality. For LHDs
that are far from this LHD, we expect large differences in φp

values, and almost all φp values become larger because of
the great portion of bad LHDs. On the other hand, we an-
ticipate that within LHDs that are close to the given LHD,
there will be a better LHD with greater chance. In view of
the above observation, it is better to concentrate the search
in the neighborhood of one LHD. If both SameNumP and
SameNumG are not zero, the attractions toward personal and
global bests are actually distractions from the search in the
neighborhood of global best or personal best. The results of
9-run 4-factor LHDs, shown in Fig. 7, demonstrate this idea.
We see the effect of SameNumG in Fig. 7(a) and the effect

of SameNumP in Fig. 7(b). SameNumG = 1 yields poor re-
sults in Fig. 7(a). Because we first move toward personal
best and then toward global best, the results suggest that the
moving toward global best distracts particles from better po-
sitions. On the other hand, SameNumP = 1 in Fig. 7(b) has
only a mild effect on the results, but this figure additionally
indicates that SameNumP = 1 dost not lead to an improve-
ment.

4.2 Characteristics of LaPSO in three types

Based on the observation in Sect. 4.1, we set one of
SameNumP and SameNumG to 0 hereafter. We call
“SameNumP �= 0 and SameNumG = 0” LaPSO-P, which
focuses on neighborhoods of personal bests, and
“SameNumP = 0 and SameNumG �= 0” LaPSO-G, which
concentrates the search on the neighborhood of global best.
Below we examine behaviors of LaPSO in the two settings.

Figure 8(a) contains the results of LaPSO-P and LaPSO-G
from Fig. 7(a) (SameNumP = 4 and SameNumG = 0)
and Fig. 7(b) (SameNumP = 0 and SameNumG = 3). In
Fig. 8(a), the results of LaPSO-P are much stable than
LaPSO-G. However, if we examine the plot of φp value
versus the iteration in Fig. 8(b), the stability comes at the
expense of a slower decrease in the φp value. There is one
more lesson from Fig. 8(a). Upon further examination of
the 1,000 LHDs given by LaPSO-G, there are 988 distinct
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Fig. 9 Behaviors of LaPSO-P,
LaPSO-L, and LaPSO-G. The
y-axis represents the φp value
with p = 50. For (b) and (c), the
x-axis represents the number of
iterations. The three lines of the
same style in (b) and (c) from
bottom up are the 5th, 50th, and
95th percentiles of the φp values
of the global best LHDs at each
iteration over 1,000 repetitions

LHDs, and all of them are local minima in the sense of Ham-
ming distance, that is, performing any swap in the LHD will
increase the φp value. This finding indicates that there are
many local minima in this problem and additionally explains
the behaviors of LaPSO-P and LaPSO-G. For LaPSO-G, all
particles search the neighborhood of the global best, so the
function value drops rapidly. However, because all particles
focus on only one area, they are easily trapped in a local min-
imum. On the other hand, each particle of LaPSO-P searches
the neighborhood of its personal best. Because each par-
ticle searches independently, the function value decreases
more slowly than LaPSO-G. All particles of LaPSO-P may
eventually be local minima, but the result is usually better
because particles in LaPSO-P explore more space than par-
ticles in LaPSO-G.

The results from LaPSO-P are better than LaPSO-G, pro-
vided that the iteration is sufficiently long. LaPSO-P usually
needs five times more iterations than LaPSO-G. Because
the slow decreasing of function value in LaPSO-P is due
to the fact that each particle searches independently, we use
slightly more particles to help the search. To be more pre-
cise, we divide all the particles into several groups based
on particle indexes; then each particle moves toward the
best position ever visited by the group, which is called the
local best. This type of LaPSO will be called LaPSO-L.
LaPSO-P and LaPSO-G are special cases of LaPSO-L with
group size one and all particles. Figure 9 shows the behav-
iors of LaPSO-L with the group size 128. From Fig. 9(a), we

lose some stability compared to LaPSO-P, but the decreas-
ing speed now becomes faster and is similar to LaPSO-G as
shown in Figs. 9(b) and 9(c). Although we present only one
case here, the properties we mention above can be found in
other cases. All parameters used in Figs. 7, 8, and 9 are listed
in Table 3.

Some general suggestions about the parameters are as
follows. Usually, the performance of LaPSO is quite good
when SameNumP is approximately n/2 for LaPSO-P and
SameNumG and SameNumL are approximately n/4 for
LaPSO-G and LaPSO-L. As for the random probability
ProbR, we do not want to over perturb the LHDs, so
ProbR × (k − 1) = 1 to 2 is often sufficient.

4.3 Comparison with GA

The GA algorithm by Liefvendahl and Stocki (2006) uses
an elite strategy that is similar to LaPSO-G, concentrating
on the neighborhood of the global best, so we first compare
GA to LaPSO-G. Table 4 shows the results of LaPSO-G and
GA in 6 cases. In these cases, the results from both methods
have similar trends, which is additionally confirmed by the
results in Figs. 10(a) and 10(b). We also present the results of
LaPSO-L in Table 4. Unlike LaPSO-G and GA, which focus
the search near the global best, LaPSO-L can explore more
space in different particle groups, which makes the results of
LaPSO-L more stable than LaPSO-G and GA. This stability
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Table 3 The parameters used
in Figs. 7(a), 7(b), 8, and 9 n k p Method Particle No. Iteration No. SameNumP SameNumG ProbR

The parameters to Fig. 7(a)

9 4 50 LaPSO 51,200 5,000 4 0 0.5

4 1

The parameters to Fig. 7(b)

9 4 50 LaPSO 51,200 5,000 0 3 0.5

1 3

n k p Method Particle No. Iteration No. SameNum ProbR

The parameters to Fig. 8

9 4 50 LaPSO-P 51,200 5,000 4 0.5

LaPSO-G 3

n k p Method Particle No. Iteration No. Group size SameNum ProbR

The parameters to Fig. 9

9 4 50 LaPSO-P 51,200 5,000 – 4 0.5

LaPSO-L 128 3

LaPSO-G – 3

can be observed from Table 4; many of the designs found by
LaPSO-L have a smaller φp than the other two methods.

4.4 Comparison with ESE

ESE proposed by Jin et al. (2005) adopts a different idea
than LaPSO-L to address local minima. LaPSO-L tries to
cover local minima using many particles, while ESE tries
to move the current LHD from one local minimum to an-
other local minimum. In Table 5, LaPSO-L and LaPSO-G
are compared with ESE. The ESE outperforms LaPSO-G
in the simulations, which is not surprising, given the fact
that ESE searches more local minima than LaPSO-G. The
table shows that the chance of finding a good design using
LaPSO-L is higher than ESE, suggesting that the numbers of
particles we use are sufficient to cover local minima in these
cases. If we use enough particles, LaPSO-L can obtain better
results, even for cases with greater k, as shown in Table 6.
However, for cases with large n, LaPSO-L may not perform
better than ESE. Because LaPSO-L has little chance to es-
cape from local minima, the performance of LaPSO-L is af-
fected by whether the local minima are covered by the parti-
cles. Currently, we increase the coverage of the space by us-
ing more particles, but this approach has its limit, especially
when the problem becomes large. Increasing the number of
particles may not increase the coverage efficiently, and we
cannot increase the number of particles unboundedly due to
memory constraints. In practice, to improve the performance
and efficiency of LaPSO-L, we suggest trying to increase the
coverage of the space or adding a mechanism to LaPSO-L
such that it can move away from local minima.

4.5 A collection of optimal max-min designs

In this section, we show how we search for an optimal ex-
tended max-min LHD using the φp criterion. To decide the
p value, we monitor the minimum pairwise distance of the
global best LHD during the iterations of LaPSO. If the min-
imum distance decreases during the iterations, LaPSO is
restarted with p increased by 10. Repeating this process, we
choose the smallest p such that the minimum pairwise dis-
tance of the global best LHD is non-decreasing during the
iterations for 50 consecutive runs of LaPSO.

To assess the quality of LHDs we found, the squared min-
imum distances (d 2

1 ) of optimal LHDs generated by LaPSO
and other approaches are presented in Table 7. We addition-
ally report the number of pairs of design points (J1) sep-
arated by the minimum distances. The column UB is the
theoretical upper bounds of the max-min designs derived by
van Dam et al. (2009). The column WEB is the results from
http://www.spacefillingdesigns.nl, which contains max-min
LHDs collected from several papers. These WEB results are
not necessarily global optimal solutions. If we compare the
results of LaPSO with the results from the website, LaPSO
is capable of achieving the same minimal inter-site distance
and even making some improvements. For others that are not
available from the website, the results obtained by LaPSO
are equal or reasonably close to the upper bounds.

In Table 8, we present some improved results over those
found in Morris and Mitchell (1995), denoted by M&M. Ta-
ble 8 shows that the LHD obtained by LaPSO has a larger
minimal inter-site distance than that of M&M for the cases
where (n, k) = (9,9) and (12,5). For other cases, M&M and

http://www.spacefillingdesigns.nl
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Table 4 A comparison of
LaPSO-L, LaPSO-G, and GA
(the first part) and the algorithm
parameters (the second part)

n × k Method Min Percentiles Max

5 25 50 75

8 × 3 LaPSO-L 1.6054∗ 1.6054 1.6054 1.6054 1.6054 1.6054

LaPSO-G 1.6054∗ 1.6054 1.6232 1.6335 1.6335 1.6931

GA 1.6054∗ 1.6054 1.6232 1.6335 1.6335 1.6955

8 × 4 LaPSO-L 1.1510 1.1510 1.1510 1.1510 1.1510 1.1510

LaPSO-G 1.1510 1.1510 1.1510 1.1725 1.1725 1.2846

GA 1.1510 1.1510 1.1510 1.1725 1.2178 1.2848

8 × 5 LaPSO-L 1.0329 1.0329 1.0329 1.0329 1.0370 1.0446

LaPSO-G 1.0329 1.0394 1.0488 1.0543 1.0594 1.0865

GA 1.0329 1.0370 1.0483 1.0538 1.0594 1.0797

10 × 3 LaPSO-L 1.7861 1.7861 1.7861 1.7861 1.7861 1.7861

LaPSO-G 1.7861 1.7861 1.8151 1.8278 1.8527 1.9292

GA 1.7861 1.7861 1.8278 1.8521 1.8582 1.9546

10 × 4 LaPSO-L 1.3402 1.3402 1.3513 1.3524 1.3598 1.3651

LaPSO-G 1.3513 1.3652 1.3745 1.3828 1.3912 1.4214

GA 1.3402 1.3643 1.3736 1.3814 1.3893 1.4160

10 × 5 LaPSO-L 1.0670 1.0768 1.0777 1.0788 1.0827 1.0885

LaPSO-G 1.0670 1.0825 1.0968 1.1202 1.1440 1.1872

GA 1.0670 1.0820 1.0915 1.1154 1.1398 1.1753

∗The true minimum by exhaustive search

n k p Method Particle no. Ite. no. Group size SameNum Prob∗

8 3 50 LaPSO-L 10,240 1,000 32 2 0.3

LaPSO-G – 2 0.3

GA – – 0.4

8 4 50 LaPSO-L 30,720 2,000 32 2 0.3

LaPSO-G – 2 0.6

GA – – 0.7

8 5 50 LaPSO-L 51,200 3,000 32 2 0.3

LaPSO-G – 2 0.6

GA – – 0.7

10 3 50 LaPSO-L 51,200 3,000 64 3 0.3

LaPSO-G – 3 0.7

GA – – 0.7

10 4 50 LaPSO-L 204,800 4,000 64 3 0.5

LaPSO-G – 3 0.7

GA – – 0.7

10 5 50 LaPSO-L 409,600 5,000 64 3 0.5

LaPSO-G – 3 0.7

GA – – 0.7

∗ProbR for LaPSO-L and LaPSO-G. Probability of mutation for GA
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Fig. 10 φp versus the number
of iterations of LaPSO-G and
GA. The x- and y-axis represent
the number of iterations and φp

value with p = 50, respectively.
In addition, (n, k) = (8,5) for
(a) and (n, k) = (10,4) for (b).
The three lines of the same style
from bottom up are the 5th,
50th, and 95th percentiles of the
φp values of the global best
LHDs over 1,000 repetitions

Table 5 A comparison of
LaPSO-L, LaPSO-G, and ESE.
The parameters of LaPSO-L and
LaPSO-G are the same as in
Table 4. The parameters of ESE
follow the suggestion of Jin
et al. (2005)

n × k Method Min Percentiles Max

5 25 50 75

8 × 3 LaPSO-L 1.6054∗ 1.6054 1.6054 1.6054 1.6054 1.6054

LaPSO-G 1.6054∗ 1.6054 1.6232 1.6335 1.6335 1.6931

ESE 1.6054∗ 1.6054 1.6054 1.6054 1.6070 1.6232

8 × 4 LaPSO-L 1.1510 1.1510 1.1510 1.1510 1.1510 1.1510

LaPSO-G 1.1510 1.1510 1.1510 1.1725 1.1725 1.2846

ESE 1.1510 1.1510 1.1510 1.1510 1.1510 1.1725

8 × 5 LaPSO-L 1.0329 1.0329 1.0329 1.0329 1.0370 1.0446

LaPSO-G 1.0329 1.0394 1.0488 1.0543 1.0594 1.0865

ESE 1.0329 1.0329 1.0370 1.0400 1.0420 1.0513

10 × 3 LaPSO-L 1.7861 1.7861 1.7861 1.7861 1.7861 1.7861

LaPSO-G 1.7861 1.7861 1.8151 1.8278 1.8527 1.9292

ESE 1.7861 1.7861 1.7861 1.7861 1.8146 1.8194

10 × 4 LaPSO-L 1.3402 1.3402 1.3513 1.3524 1.3598 1.3651

LaPSO-G 1.3513 1.3652 1.3745 1.3828 1.3912 1.4214

ESE 1.3402 1.3524 1.3622 1.3652 1.3686 1.3768

10 × 5 LaPSO-L 1.0670 1.0768 1.0777 1.0788 1.0827 1.0885

LaPSO-G 1.0670 1.0825 1.0968 1.1202 1.1440 1.1872

ESE 1.0670 1.0768 1.0820 1.0845 1.0881 1.1003

∗The true minimum by exhaustive search

LaPSO share the same minimal inter-site distance. However,
the LHDs found by LaPSO have fewer pairs of design points
that attain the minimal inter-site distance. In other words,
LaPSO performs better in terms of the extended max-min
criterion in these cases.

5 Conclusion

In this paper, we propose LaPSO for optimizing LHD. Due
to the relationship between the φp criterion and the Ham-
ming distance, we focus the search on the neighborhood of
one LHD and examine the derivative LaPSO-G, LaPSO-P,

and LaPSO-L. For LaPSO-G, φp drops very quickly, but the
results have larger variation because the particles may be
trapped in a local minimum. As for LaPSO-P, φp decreased
mildly compared to LaPSO-G, but the results are much more
stable if the iteration is sufficiently long. LaPSO-L is a com-
promise between the speed of function value decreasing and
the stability of the results. We additionally show how we
can find the extended max-min LHD using the φp criterion.
Both C and MATLAB codes of LaPSO for φp criterion are
available from the authors upon request.

Possible future work includes choosing initial LHDs in
LaPSO with good coverage of the space rather than ran-
dom ones and devising a mechanism to make LaPSO escape
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Table 6 A comparison of
LaPSO-L and ESE in the cases
with larger k. The algorithm
parameters are listed.
Parameters of ESE follow the
suggestion of Jin et al. (2005)

n × k Method Min Percentiles Max

5 25 50 75

6 × 20 LaPSO-L 0.4466 0.4466 0.4466 0.4466 0.4466 0.4467

ESE 0.4466 0.4467 0.4467 0.4468 0.4468 0.4469

7 × 20 LaPSO-L 0.4669 0.4670 0.4670 0.4670 0.4671 0.4671

ESE 0.4670 0.4672 0.4673 0.4674 0.4675 0.4676

8 × 20 LaPSO-L 0.4832 0.4833 0.4833 0.4834 0.4834 0.4835

ESE 0.4834 0.4836 0.4837 0.4838 0.4838 0.4840

n k p Method Particle no. Ite. no. Group size SameNum Prob

6 20 50 LaPSO-L 102,400 4,000 32 2 0.1

7 20 50 512,000 4,000 32 2 0.1

8 20 50 1,024,000 4,000 64 2 0.1

Table 7 A comparison of the squared minimum distance. The
columns “UB” and “WEB” contain the theoretical upper bounds (van
Dam et al. 2009) and the results reported on the web http://www.
spacefillingdesigns.nl, respectively. The values in the parentheses are
the numbers of the minimum distance. The best results for each case
are highlighted in bold

n k p UB WEB LaPSO

6 10 130 70 68 (3) 68 (1)

6 11 140 77 74 (2) 75 (5)

6 12 180 84 82 (2) 84 (15)

6 13 180 91 89 (6) 89 (1)

6 14 230 98 N/A 96 (5)

6 15 230 105 N/A 104 (4)

6 16 240 112 N/A 110 (1)

6 17 240 119 N/A 117 (5)

6 18 270 126 N/A 126 (15)

6 19 280 133 N/A 131 (1)

6 20 300 140 N/A 138 (5)

7 10 170 93 90 (1) 91 (2)

7 11 210 102 N/A 100 (2)

7 12 260 112 N/A 110 (5)

7 13 280 121 N/A 119 (2)

7 14 290 130 N/A 128 (1)

7 15 310 140 N/A 138 (3)

7 16 320 149 N/A 148 (12)

7 17 330 158 N/A 157 (4)

7 18 380 168 N/A 166 (3)

7 19 430 177 N/A 176 (12)

7 20 450 186 N/A 185 (4)

from local minima while keep some information on the cur-
rent state. The proposed LaPSO can be further extended to
LHDs with higher-dimensional projection properties, by im-
plementing orthogonal array-based LHDs (Tang 1993).

Table 8 Improved extended max-min results. The values in the paren-
theses are the numbers of the minimum distance

n k WEB M&M LaPSO

9 9 128 (2) 126 (1) 129 (2)

12 4 63 (9) 63 (2) 63 (1)

12 5 94 (4) 91 (1) 94 (2)

13 2 13 (17) 13 (17) 13 (16)

19 2 18 (9) 18 (9) 18 (6)

20 2 18 (6) 18 (5) 18 (2)
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