European Journal of Operational Research 214 (2011) 683-696

Contents lists available at ScienceDirect

European Journal of Operational Research

!
;
|
journal homepage: www.elsevier.com/locate/ejor ‘-—-w

Stochastics and Statistics

Efficient space-filling and non-collapsing sequential design strategies
for simulation-based modeling

K. Crombecq *P*, E. Laermans°, T. Dhaene ”

2 Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
b Department of Information Technology (INTEC), Ghent University — IBBT, Gaston Crommenlaan 8, 9050 Ghent, Belgium

ARTICLE INFO

ABSTRACT

Article history:

Received 15 November 2010
Accepted 19 May 2011
Available online 30 May 2011

Keywords:

Regression

Design of computer experiments
Experimental design

Sequential design

Space-filling

Simulated computer experiments have become a viable cost-effective alternative for controlled real-life
experiments. However, the simulation of complex systems with multiple input and output parameters
can be a very time-consuming process. Many of these high-fidelity simulators need minutes, hours or
even days to perform one simulation. The goal of global surrogate modeling is to create an approximation
model that mimics the original simulator, based on a limited number of expensive simulations, but can be
evaluated much faster. The set of simulations performed to create this model is called the experimental
design. Traditionally, one-shot designs such as the Latin hypercube and factorial design are used, and all
simulations are performed before the first model is built. In order to reduce the number of simulations
needed to achieve the desired accuracy, sequential design methods can be employed. These methods gen-
erate the samples for the experimental design one by one, without knowing the total number of samples
in advance. In this paper, the authors perform an extensive study of new and state-of-the-art space-filling
sequential design methods. It is shown that the new sequential methods proposed in this paper produce

results comparable to the best one-shot experimental designs available right now.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

For many modern engineering problems, accurate high fidelity
simulations are often used instead of controlled real-life experi-
ments, in order to reduce the overall time, cost and/or risk. These
simulations are used by the engineer to understand and interpret
the behavior of the system under study and to identify interesting
regions in the design space. They are also used to understand the
relationships between the different input parameters and how
they affect the outputs.

However, the simulation of one single instance of a complex
system with multiple inputs (also called factors or variables) and
outputs (also called responses) can be a very time-consuming pro-
cess. For example, Ford Motor Company reported on a crash simu-
lation for a full passenger car that takes 36 to 160 h to compute
(Gorissen et al., 2007). Because of this long computational time,
using this simulation directly is still impractical for engineers
who want to explore, optimize or gain insight into the system.

We assume the system under study is a black box, with little or
no additional information available about its inner working except

* Corresponding author at: Department of Mathematics and Computer Science,
University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium. Tel.: +32 3
2653450; fax: +32 3 2653777.

E-mail addresses: Karel.Crombecq@ua.ac.be (K. Crombecq), Eric.Laermans@u-
gent.be (E. Laermans), Tom.Dhaene@ugent.be (T. Dhaene).

0377-2217/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2011.05.032

for the output it generates. This means that, without running sim-
ulations, nothing is known about the behavior of the function, and
no assumptions can be made about continuity or linearity or any
other mathematical properties the system might have. A final
assumption is that the simulator is deterministic, meaning that
the same output is produced if the simulator is run twice with
the same input values. This is not the same as saying that there
is a complete absence of noise; indeed, noise may be introduced
by the way the simulator models and discretizes the real world.
It only implies that, even if there is noise in the simulation outputs,
the noise will be identical for two simulation runs with the same
inputs.

The goal of global surrogate modeling (or metamodelling) is to
find an approximation function (also called a surrogate model) that
mimics the original system’s behavior, but can be evaluated much
faster. This function is constructed by performing multiple simula-
tions (called samples) at key points in the design space, analyzing
the results, and selecting a model that approximates the samples
and the overall system behavior quite well (Gorissen et al., 2010;
Batmaz and Tunali, 2003). This is illustrated in Fig. 1.

Please note that global surrogate modeling differs from local
surrogate modeling in the way the surrogate models are employed.
In local surrogate modeling, local models are used to guide the
optimization algorithm towards a global optimum (Regis, 2011).
The local models are discarded afterwards. In global surrogate
modeling, the goal is to create a model that approximates the

http://dx.doi.org/10.1016/j.ejor.2011.05.032
mailto:Karel.Crombecq@ua.ac.be
mailto:Eric.Laermans@ugent.be
mailto:Eric.Laermans@ugent.be
mailto:Tom.Dhaene@ugent.be
http://dx.doi.org/10.1016/j.ejor.2011.05.032
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

684 K. Crombecq et al./ European Journal of Operational Research 214 (2011) 683-696

Experimental design

» L]
@
0.5 o
b Simulator
[
50
@
0.5
*
L)
. 0.5 0 0.5 *
X

Xy, Xa)

X, 11 X,

Fig. 1. A set of data points is evaluated by a black box simulator, which outputs a response for every data point. An approximation model (surrogate model) is fit to the data

points, with the goal of minimizing the approximation error on the entire domain.

behavior of the simulator on the entire domain, so that the surro-
gate model can then be used as a full replacement for the original
simulator, or can be used to explore the design space. Thus, the
goal of global surrogate modeling is to overcome the long compu-
tational time of the simulator by providing a fast but accurate
approximation, based on a one-time upfront modeling effort. In
this paper, we are only concerned with global surrogate modeling.

Mathematically, the simulator can be defined as an unknown
function f : R — C, mapping a vector of d real inputs to a real or
complex output. This function can be highly nonlinear and possibly
even discontinuous. This unknown function has been sampled at a
set of scattered data points P={p1,pa,...,pn} C [—-1,1]¢, for which
the function values {f(p1).f(p2).....f(pn)} are known. In order to
approximate the function f, a function f : R? — C is chosen from
the (possibly) infinite function set of candidate approximation
functions F.

The quality of this approximation depends on both the choice
and exploration of the function space F and the data points P. Ide-
ally, the function f itself would be in the search space F, in which
case it is possible to achieve an exact approximation. However, this
is rarely the case, due to the complexity of the underlying system.
In practice, the function f is chosen according to a search strategy
through the space F, in order to find the function that most closely
resembles the original function, based on some error metric for the
data points P (Busby et al., 2007; Jamshidi and Kirby, 2007).

It is clear that the choice of the data points P (called the experi-
mental design) is of paramount importance to the success of the
surrogate modeling task. Intuitively, the data points must be spread
over the domain R? in such a way as to convey a maximum amount
of information about the behavior of f. This is a non-trivial task,
since little or nothing is known about this function in advance.

It has been argued by some authors that the number of samples
is much more important than the quality of the design (Liu, 2005).
While it is obvious that the number of samples has an important
effect on the quality of the model, it is clear that some experimen-
tal designs are better than others. Because every sample evaluation
can potentially be very expensive, it is desirable to invest some
time up front to determine the optimal location of a sample before
submitting it for evaluation to the expensive simulator.

In this paper, we present a comparison and analysis of different
space-filling sequential design methods. This study includes three
novel methods developed by the authors and several other state-
of-the-art methods from other authors. All these methods are com-
pared against each other on a set of examples. The advantages and
disadvantages of each method are discussed, and conclusions are
drawn as to which method is preferable.

2. Sequential design

In traditional design of experiments (DoE), the experimental de-
sign P is chosen based only on information that is available before
the first simulation, such as the existence of noise, the relevance of
the input variables, the measurement precision and so on. This
experimental design is then fed to the simulator, which evaluates
all the selected data points. Finally, a surrogate model is built using
this data. This is essentially a one-shot approach, as all the data
points are chosen at once and the modeling algorithm proceeds
from there, without evaluating any additional samples later on.

In the deterministic setting of computer experiments, well-
known DoE techniques such as replication, randomization and
blocking lose their relevance (Sacks et al., 1989). This leaves
space-filling designs, which try to cover the domain as equally as
possible, as the only interesting option. The advantages of the clas-
sic space-filling methods are that they can be easily implemented
and provide a good (and guaranteed) coverage of the domain.
Examples of popular space-filling designs are fractional designs
(Simpson et al., 2001), Latin hypercubes (Grosso et al., 2009) and
orthogonal arrays (Fang, 1980).

Sequential design (which is also known as adaptive sampling
(Lehmensiek et al.,, 2002) or active learning (Sugiyama, 2006))
further improves on this approach by transforming the one-shot
algorithm into an iterative process. Sequential design methods
analyze data (models and samples) from previous iterations in
order to select new samples in areas that are more difficult to
approximate, resulting in a more efficient distribution of samples
compared to traditional design of experiments.

Because the simulator is assumed to be a black box, it is infeasi-
ble in practice to predict how large the experimental design must
be in order to achieve a given accuracy. Sequential design strategies
solve this problem by selecting samples in an iterative manner,
while at the same time updating (retraining) the model and
assessing the quality of the model. If the model reaches the desired
accuracy level, the sampling algorithm is halted, and no more
samples are selected.

An essential consideration in sequential design is the trade-off
between exploration and exploitation. Exploration is the act of
exploring the domain in order to find key regions of the design
space, such as discontinuities, steep slopes, optima, stable regions
and so on, that have not been identified before. The goal is similar
to that of a one-shot experimental design, in that exploration
means filling up the domain as evenly as possible. Exploration does
not involve the responses of the system, because the design space
is defined by the inputs only.

K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696 685

The main advantage of exploration-based sequential designs
over one-shot experimental designs is that the amount of samples
evaluated depends on previous iterations of the algorithm. When
one large experimental design is used, too many samples may have
been evaluated to achieve the desired accuracy (oversampling) or
too few samples may have been evaluated (undersampling), in
which case one must completely restart the experiment or resolve
to sequential methods to improve the initial design. Exploration-
based sequential design methods will keep selecting new samples
until the desired accuracy is found.

Exploitation is the other option. Instead of exploring the do-
main, data points are selected in regions which have already been
identified as (potentially) interesting. For example, one might want
to zoom in on optima, in order to make sure the surrogate model
does not overshoot the optimum. Or one might also want to sam-
ple near possible discontinuities to verify that they are, in fact, dis-
continuous, and not just very steep slopes. Exploitation involves
using the outputs of the previous function evaluations to guide
the sampling process (Crombecq et al., 2009b).

The trade-off between exploration and exploitation is illustrated
in Fig. 2. It is clear that without proper design space exploration,
any sequential design strategy is bound to miss important regions
in the response surface. Thus, every sequential design strategy must
be space-filling to a certain degree. On top of this necessary founda-
tion, exploitation-based methods can then zoom in on interesting
regions to improve the generalization error in that region.

In this paper, we are only concerned with purely exploration-
based (or space-filling) sequential design strategies. The goal is to
see how exploration-based sequential design strategies stemming
from different fields of research compare against each other, and
how they hold up against a popular, proven space-filling experi-
mental design called the Latin hypercube, which has some inter-
esting mathematical properties.

f(x)

X

(a) Initial set of samples

f(x)

3. Important criteria for experimental designs

From now on, we will consider the d-dimensional experimental
design P={p1,p2,...,Pn} containing n samples p; = (p},p?,...,p%)
in the (hyper) cube [—1,1]% With each experimental design, a con-
struction method can be associated, which is used to construct this
experimental design, given a particular dimensionality d and de-
sired number of samples n. In order for this method to be a good
space-filling sequential design strategy for computer experiments,
it has to maximize three criteria.

3.1. Granularity

The first criterion is the granularity of the strategy. A fine-
grained sequential design strategy can select a small number of
points (preferably one) during each iteration of the algorithm. It
should also generate reasonably space-filling designs, no matter
after which iteration the algorithm is stopped. A coarse-grained
sequential design strategy, on the other hand, selects new samples
in large batches. The reason why a fine-grained method is prefered,
is because it completely avoids over- or undersampling. When
samples are only selected in large batches, too many samples
may be evaluated at once, because only a few samples of the last
batch were necessary to arrive at the desired prediction error. It
is also possible that the modeler decides to stop the sampling be-
fore the desired prediction error is reached, because the next batch
is too large and there is not enough computation time left to eval-
uate the entire batch.

Finally, the granularity of an algorithm also refers to the fact
that the algorithm does not need to know the total number of sam-
ples that will be evaluated. Some methods, such as factorial de-
signs and Latin hypercubes, require that the total number of
samples be known in advance. In most real-life situations, this

1(x) ‘

(b) Exploration

(e) Exploitation

Fig. 2. This figure shows the trade-off between exploration and exploitation. In Fig. 2(a), a function and an initial set of samples are visualized. The function is unknown, and
from looking at the samples, the function seems to behave linearly, except for one sample to the right. As illustrated in Fig. 2(b), exploration will explore the entire design
space evenly, discovering new nonlinearities on the way. Exploitation, on the other hand, will focus on the area to the right because it seems to be the only nonlinear area,

missing the additional nonlinearity to the left. This is depicted in Fig. 2(c).

686 K. Crombecq et al./ European Journal of Operational Research 214 (2011) 683-696

information is unavailable, because the simulator is assumed a
black box, and the complexity of the simulator, and the difficulty
to model the problem, is not known up front. Therefore a good
space-filling sequential design method should not make any
assumptions about the maximum number of samples, and should
work reasonably well no matter how many samples will be se-
lected in the end.

3.2. Space-filling

Secondly, the generated design should be space-filling. Intui-
tively, a space-filling design is an experimental design X in which
the points are spread out evenly over the design space. However,
there are several ways to define this property mathematically.
Over the course of the years, many different space-filling criteria
have been proposed. The goal is to select the design P to maximize
the criterion of choice. Depending on the criterion, the optimal de-
sign P will look differently. Table 1 gives an overview of the most
popular ones, along with some references of people using the cri-
terion. Some criteria might be used under different names in differ-
ent publications; we use the most common name in this table and
in further references in this article.

Note that most authors are concerned with finding an optimal
design when the number of design points n is given and known
in advance, and the entire design is generated at once instead of
sequentially (i.e. worst possible granularity). In some cases (see
Husslage, 2006 and Qian, 2009), the authors introduce some gran-
ularity in their methods, but they remain too coarse-grained for
expensive computer experiments, in which each single sample
evaluation may take hours and should be considered carefully.

Of these different criteria, the ¢,-criterion and the maximin cri-
terion are the most widely used. The ¢,-criterion is an extension of
the maximin criterion, introduced by Morris and Mitchell (1995) to
differentiate between two designs which have the same maximin
value. For large p, the ¢, criterion tends to rank designs in the same
order as the basic maximin criterion, while for small p, the crite-
rion behaves like the Audze-Eglais criterion. Additionally, if p is
large enough, ¢, will differentiate between designs which have
the same maximin value, but for which the second smallest dis-
tance between points is different. In this way, the ¢,-criterion is
a family of criteria that encompasses both the maximin and
Audze-Eglais criterion and everything in between.

However, the ¢, criterion has several disadvantages. The first
problem is that it is numerically unstable in certain circumstances.
When two points are very close to each other, and the power p is
chosen large enough, ¢, will return infinity because of a floating

Table 1
Overview of different space-filling criteria.

point overflow. It is enough for one intersite distance to be rounded
to zero, to result in a value of ¢, that is equal to infinity, no matter
the quality of the rest of the design. The point at which this hap-
pens depends on both the design that is being rated and the num-
ber p, and the outcome is therefore difficult to predict in advance.
This problem becomes an issue in sequential sampling, where the
total number of samples (and therefore the intersite distance that
is to be expected) is unknown up front.

Another problem with the ¢, criterion is that the value returned
does not bear any geometrical meaning, and only provides a rela-
tive ranking between different designs. It is not intuitive to inter-
pret the number and relate it to the density of the design. This
also makes it difficult to combine the ¢, criterion with another
one (for example: the projected distance criterion discussed in
the next section). Additionally, the asymptotic nature of the ¢, cri-
terion makes it very difficult to visualize the optimization surface,
as the range of values is extremely small in most parts of the de-
sign space, and extremely large in small subparts.

Because of these issues, the ¢, criterion was not used in this
study. The novel methods proposed in this paper combine multiple
criteria to find an optimal solution for a multi-objective problem,
and because of the lack of geometric meaning and the asymptotic
nature of the surface, it is very difficult to combine the ¢, criterion
with anything else. Instead, the maximin criterion, which does not
suffer from any of the aforementioned issues, will be used to both
generate and rank the designs. From now on, the maximin space-
filling criterion will be refered to as the intersite distance, because
it tries to maximize the smallest (Euclidean) distance any two sets
of points (sites) in the design.

The problems with ¢, are not a major concern when this crite-
rion is used to rank Latin hypercube designs, which already guar-
antee by construction a minimal distance between points. This
explains why authors such as Viana et al. (2009) use the ¢, crite-
rion without encountering any stability issues. They also do not
combine the criterion with other criteria, because Latin hypercubes
also guarantee good projective properties.

3.3. Good projective properties

Finally, a good space-filling design should also have good pro-
jective properties. This is also called the non-collapsing property
by some authors (van Dam et al., 2007). An experimental design
X has good projective properties if, for every point p;, each value
pi: is strictly unique. This property also means that, when the exper-
imental design is projected from d-dimensional space to (d — 1)-

Criterion

Formula

Manhattan (I; norm)
van Dam et al. (2007), Ye et al. (2000)
Maximin (I, norm)

van Dam et al. (2007), Joseph and Hung (2008)
Morris and Mitchell (1995), Husslage (2006)
Johnson et al. (1990), Ye et al. (2000)

Audze-Eglais
Audze and Eglais (1977)

Centered L, discrepancy

. d
Mify, piepd i1 | PY = Pf |

.] 2
Ming, pepy/> k1 | pk - P}(|

d
2 pipyepy/ k=1 | pk— P}‘\Z

see Fang et al. (2002)

Hickernell (1998), Morris and Mitchell (1995), Jin et al. (2002)

Fang et al. (2002), Fang and Lin (2003), Jin et al. (2005)
bp

—p\ /P
(Soery = 19E- 2)

Morris and Mitchell (1995), Jin et al. (2002), Viana et al. (2009)

Jin et al. (2005), Grosso et al. (2009)

K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696 687

dimensional space along one of the axes, no two points are ever
projected onto each other.

The quality of a design in terms of its projective properties can
be defined as the minimum projected distance of points from each
other:

HPH—x = minpi~PjEP 12}21

Pl — P | = ming, pycollpy — By (1)

where ||x||_, is the minus infinity norm. This is a useful property if
it is unknown up front if there are design parameters included in
the experiment which have little or no effect on the response. If this
is the case, two samples which differ only in this design parameter
can be considered the same point, and evaluating this same point
twice is a waste of computational time. Therefore, each sample
should preferably have unique values for each design parameter.
Ideally, when all the points are projected onto one of the axes the
remaining design should be space-filling as well. Preferably, all
the projected points should be equidistant. It is expected that an
experimental design with optimal (equidistant after projection)
non-collapsing points will not suffer a performance hit when one
of the design parameters turns out to be irrelevant.

3.4. Orthogonality

Orthogonality is another desired property for an experimental
design. A design P is called orthogonal with strength r if, for each
subset of r inputs, each combination of different input values oc-
curs the same number of times (Tang, 1993; Owen, 1992). This en-
sures that there is no correlation between the inputs in the design.
Note that, according to this definition, only a small subset of pos-
sible designs can be orthogonal, namely those for which the input
values are fixed at particular levels. The only designs included in
this experiment that satisfy this condition are fractional factorial
designs and Latin hypercube designs.

Additionally, for a given input dimension d and number of
points n, an orthogonal design does not always exist. For the rela-
tively small number of inputs and the (comparatively) large num-
ber of design points considered in this article, orthogonality cannot
be satisfied. Even though Latin hypercubes can, by construction,
never be completely orthogonal, they can be optimized such that
submatrices of the hypercube are (Tang, 1993; Owen, 1992). Be-
cause orthogonality is irrelevant to most designs discussed in this
article, this criterion will not be considered in this study.

4. Existing methods

In this section, we will discuss existing methods that will be
used as benchmarks in this study. Both non-sequential methods,
which have favorable properties in one or more of the criteria de-
scribed in the previous section, as well as sequential methods from
different fields of study will be investigated.

Each method will be given a name which will be used later in
the discussion to refer to that particular strategy. Note that the de-
sign space is a hypercube with range [—1,1]% as opposed to the
unit hypercube [0,1]¢, which is sometimes used in other studies.
This has no effect on any of the algorithms, but may change some
of the formulas.

4.1. Factorial designs

Factorial designs are the simplest form of space-filling designs
(Montgomery, 2001). A full factorial design is a grid of m points.
The full factorial is the best possible design in terms of the
space-filling criterion; it maximizes the intersite distance for every
number of m? points. It is therefore expected that, if all the design

1 —k T L 4 - —
® initial grid
00l #* first refinement
%* X ® X % second refinement
08 r B
3 x * b4 * x® #* 4 #*
07 J
06 x * ® * x * *
< 059 ® * ® &+ x * x ®
04 B
x x x x x x x
03} 4
¥ X ¥ X ¥ x * x *
02}]
0 1 X X x x ® x x
0 1 * 1 e 1 * 1
0 0.2 04 06 0.8 1
X

1

Fig. 3. A factorial refinement scheme.

parameters are equally important, a full factorial will produce the
best results when used to train a model.

However, it has several important disadvantages, which limit
its practical use. Firstly, it is a very coarse-grained method: the full
factorial can only be defined for the dth power of an integer m,
which must be determined in advance. The only way to sequential-
ize a full factorial design is by evaluating the entire factorial design,
and refine the grid in subsequent steps, as depicted in Fig. 3. This
increases the size of the design by almost a factor 2¢ at each itera-
tion. Secondly, a factorial design has the worst possible projective
properties: if one of the design parameters is unimportant, each
unique point is evaluated m times. This is an unacceptable risk in
a black-box setting.

To this end, several methods have been developed based on the
factorial design, which tackle some of these issues. Fractional fac-
torial designs remove some of the points from the grid, in order
to limit the number of samples, making them feasible in high
dimensional problems where a full factorial will take too much
time to evaluate (Box et al., 2005). Latin hypercubes, which are dis-
cussed in the next section, can be considered a subclass of frac-
tional factorial designs with additional requirements. In this
study, the full factorial design with 12 levels will be considered
for the 2-dimensional case (denoted as factorial), for a total of
144 points. The full factorial will be left out in higher dimensions
because there is no full factorial with 144 points in these
dimensions.

4.2. Latin hypercube

Latin hypercube designs (commonly denoted as LHDs (Viana
et al., 2009)) are a very popular experimental design technique be-
cause of their well-understood mathematical properties, their ease
of implementation and use and their speed. A Latin hypercube is
constructed by dividing each dimension in the design space in m
equally sized intervals, and placing exactly one point in each inter-
val for each dimension. This construction method automatically re-
sults in an optimally non-collapsing experimental design. In
addition, due to the stringent way in which the design space is di-
vided, a Latin hypercube guarantees that each sample is at least
2./2 away from the closest other sampleina[-1,1 14 design space.

688 K. Crombecq et al./ European Journal of Operational Research 214 (2011) 683-696

0.8}

0.8 v s s

"1 -08 06 -04 -02 0 02 04 05 08 1
X

(a) Optimal Latin hypercube

1 T 1
0.8}

0.6F i

0.4} I ——

108 06 04 02 0 02 04 06 08 A

1

(b) Bad Latin hypercube

Fig. 4. Two different Latin hypercubes. While Fig. 4(a) has nice space-filling properties, Fig. 4(b) has only points in the diagonal and neglects two corners of the design space

completely.

However, not every Latin hypercube has nice space-filling prop-
erties; this is illustrated in Fig. 4. Therefore, Latin hypercubes
should not be used blindly and should be optimized according to
a space-filling criterion. The optimization of Latin hypercubes is a
very active research field, and many methods have been developed
to reduce the search space. For a good overview of Latin hypercube
optimization techniques, please refer to Viana et al. (2009).

It has been demonstrated by the authors that it is very difficult
to generate a good space-filling Latin hypercube in reasonable time
(Crombecq et al., 2009a). Even with state-of-the-art optimization
algorithms, constructing a good space-filling Latin hypercube can
take hours or even days. Husslage (2006) report that constructing
a 100-point Latin hypercube in 3 dimensions took between 145
and 500 h on a P3-800MHz processor, depending on the algorithm
used. For a larger number of points or higher dimensions, the com-
putational time increases considerably.

To further verify the difficulty to generate a good Latin hyper-
cube in a short timespan (e.g. 15 min), we included two different
Latin hypercube generation methods in this study. The first meth-
od is an implementation of the optimization algorithm described in
Joseph and Hung (2008) (denoted as 1hd-joseph), which uses
simulated annealing to optimize the intersite distance of the Latin
hypercube. The second one uses the Matlab function 1hsdesign
from the Mathworks Statistics Toolbox to generate and optimize
a Latin hypercybe (1hd-matlab).

Additionally, we also included the pre-optimized Latin hyper-
cubes from Husslage (2006), van Dam et al. (2007), which can be
downloaded from http://www.spacefillingdesigns.nl. All these La-
tin hypercubes were optimized for many hours to arrive at a
semi-optimal or optimal solution. However, they are not available
for every combination of dimensions and points. For our experi-
ment, where we consider 144 points in 2 to 4 dimensions, a pre-
optimized Latin hypercube is available on the website. We will re-
fer to this Latin hypercube as 1hd-optimal.

It is not straightforward to generate Latin hypercubes with a
sequential design strategy. Firstly, the total number of samples
must be determined in advance, in order to subdivide the design
space into equally sized intervals. As mentioned before, this is an
undesirable property, since there is little information available
up front with which to make an educated guess on the required
number of samples.

One way to sequentially generate Latin hypercubes is the idea
of nested Latin hypercubes, in which one design is a subset of

the other (Qian, 2009; Husslage, 2006). By using this method, the
smallest subset can be evaluated first, after which the decision
can be made whether the samples in the superset have to be eval-
uated as well. This can be extended to a number of so-called layers,
in which each layer is a Latin hypercube in itself and is also a sub-
set of the next layer.

This approach is not very suitable for our purpose, because it is
not fine-grained enough. The technique proposed by Qian (2009)
only allows for the size of each superset to be a multiple of the size
of its subset, while Husslage (2006) only consider two layers of
nested designs. Because one simulation is assumed to be expen-
sive, a sequential design algorithm should preferably select sam-
ples one by one. Therefore, methods based on nested Latin
hypercubes will not be included in this study. However, a similar,
but new and more fine-grained method will be included in this
study and is described in Section 5.1.

A second way to adapt Latin hypercubes to a sequential sam-
pling process is to give up the requirement that each sample is
placed in exact intervals, resulting in so-called quasi-Latin hyper-
cubes. van Dam et al. (2007) define a class of quasi Latin hypercube
designs in the design space [0,n —1]¢, based on a parameter
o € [0,1], which defines the minimum distance of samples from
each other when projected onto one of the axes. For an o value
of 0, this reduces to an unconstrained maximin design, while
o =1 results in traditional Latin hypercubes. It was shown that
the o value can be relatively close to 1 without reducing the
space-filling qualities of the design much. Xiong et al. (2009) pro-
posed a sequential design strategy in which the minimum pro-
jected distance of points from each other is reduced dynamically
as more points are added to the design. A variation on this method
will be included in this study, and will be described in Section 5.2.

4.3. Low-discrepancy sequences

Low-discrepancy sequences are sequences of points with the
property that, for each n, the points {X1,X,...,X,} have a low dis-
crepancy. A set of points P has a low discrepancy if the number
of points from the dataset falling into an arbitrary subset of the de-
sign space is close to proportional to a particular measure of size
for this subset. Several definitions exist for the discrepancy, based
on the shape of the subset, and the measure which is used. For
more information on low-discrepancy sequences and different
definitions for discrepancy, please refer to Niederreiter (1992), Jin

http://www.spacefillingdesigns.nl

K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696 689

et al. (2005), Hickernell (1998). Low-discrepancy sequences are
also called quasi-random sequences or quasi-Monte Carlo
methods, because they can be used as a replacement for random
uniform sampling.

Popular low discrepancy sequences have relatively good non-
collapsing properties by construction. However, for small numbers
of n, their space-filling properties are often subpar. Additionally,
for some popular low-discrepancy sequences, such as the Ham-
mersley sequence, the total number of points must be known in
advance, because the points that are generated depend on the total
number of points. So, for different values of n, completely different
point sets are generated. Because these sequences are not suitable
as a sequential design method, they will be ommited from this
study.

Two of the most popular sequences that do not depend on the
total number of samples are the Halton sequence and the Sobol
sequence. The implementation of these sequences, that is available
in the Matlab Statistics Toolbox, will be included in this study.

4.4. Remaining methods

The methods discussed and compared by Crombecq et al.
(2009a) are also included in this study. These methods are very
fine-grained, but only optimize towards intersite distance; they
do not take into account the projected distance. The idea behind
these methods will be discussed briefly in this section; for more
information, please refer to Crombecq et al. (2009a).

The first method, delaunay, computes the delaunay triangula-
tion of the samples, and selects a new sample in the center of grav-
ity of the simplex with the largest volume. The second method,
voronoi, estimates a Voronoi tessellation of the samples and se-
lects a new sample in the largest Voronoi cell. Finally, random sam-
pling is also included in the study, as a base case.

5. New space-filling sequential design methods

In this section, we propose a number of new space-filling sequen-
tial design methods that attempt to generate a design that scores
well on both the space-filling criterion and the non-collapsing crite-
rion, while being as fine-grained as possible (each method selects
samples one by one). The goal of this study is to develop an algorithm
that generates a design sequentially (one by one), with intersite and

1 T T T 9

08r b

06} E

0.2} E

@ initial points

-08F 2 first iteration

> second iteration

i 05 0 05 1
X

(a) First algorithm

projected distance as close to the best non-sequential methods as
possible. Additionally, this algorithm must run relatively quickly
(at most 15 min for 144 points in 2D). This study was executed on
an Intel Quadcore running at 1.86 GHz.

Because the new methods are sequential, they have to make do
with a lot less information than their non-sequential counterparts
(namely, the total number of samples is unknown in advance). Of
course, this comes at a cost, and it is therefore expected that all
the sequential methods will perform worse than pre-optimized La-
tin hypercube designs or factorial designs. However, if the drop in
intersite distance and projected distance is small, these methods
should be prefered over one-shot methods in a black-box environ-
ment, because they can avoid over- and undersampling, thus
potentially saving lots of computational time. Additionally, some
of the proposed methods will also work for very large n, for which
optimizing a Latin hypercube is infeasible, and will also work for
high dimensional problems.

At each iteration of a sequential design algorithm, the algorithm
must determine the optimal location for the new sample point,
based on the previously evaluated points. This new point must
be located in such a way as to maximize the intersite and projected
distance of the resulting design, which is composed of the original
points and the new point. However, the new point must also en-
sure that future iterations of the algorithm can still produce good
designs. Even if a point is optimally chosen for intersite and pro-
jected distance at one iteration, it might cause the algorithm to
get stuck on a local optimum in subsequent iterations. This is illus-
trated in Fig. 5. This figure shows two 2D designs which were gen-
erated from the same set of two initial points: (—1,—1) and (1,1).
The first algorithm places the third point in the origin, while the
second algorithm places it at (—0.3333,0.3333). After the third
point, the first algorithm has produced the best design, both in
intersite and projected distance. However, it is now stuck in a local
optimum, as the best possible choice for the fourth point results in
a design considerably worse than the one for the second algorithm.

This problem is further compounded by the difficult optimiza-
tion surfaces produced by the intersite and projected distance. This
is illustrated for 20 samples in 2D in Fig. 6. This figure shows the
intersite and projected distance score of a 21-point design when
the last point is moved over the entire 2D design space, while
the previous 20 points are kept fixed. The intersite distance
produces an optimization surface with a considerable number of
local optima. But this does not even come close to the number of

1 T T T L]

08r b

086+ 4

041 b

0.2t E

@ initial points

-08r ¥ first iteration

X second iteration

E- 05 0 05 1
X

(b) Second algorithm

Fig. 5. Two different sequential design algorithms generate a 4-point design starting from the same two initial points. The first algorithm gets stuck in a local optimum after

the third point, while the second algorithm does not.

690 K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696

(b) Projected distance

14

(c) Intersite + projected distance

Fig. 6. The optimization surfaces for the intersite and projected distance criteria of a 20-point 2D design, as well as the sum of both criteria.

local optima that ||P||_.. has. In fact, ||P||_.. always has (n + 1) local
optima, and only one of them is the global optimum. This
optimization surface is so difficult, that it is practically impossible
to optimize in an acceptable timeframe. When these two criteria
are added, the resulting optimization surface is even more erratic.

Due to the extremely complex nature of this optimization sur-
face, all the new methods proposed in this paper avoid working with
this surface directly, by exploiting the structure of the projected dis-
tance surface, or by resorting to Monte Carlo methods instead of
optimization. In the next sections, the new methods will be dis-
cussed in detail.

5.1. Sequential nested Latin hypercubes

A more fine-grained variant of the nested Latin hypercube meth-
od described in Section 4.2 was also included in this study. In order
to sequentially generate Latin hypercube-like designs, one could re-
fine the grid on which the points are chosen, similar to the idea of the
factorial refinement scheme proposed in Fig. 3. Fig. 7 shows a refine-
ment scheme for Latin hypercubes. Starting from an initial grid of m®
candidate points, m new samples are iteratively chosen on this grid.
When a new sample is selected, all the other candidate points on the
grid that have the same value for one of the design parameters are
removed from the grid and will not be selected later. When m points
have been selected, a new grid is created at the midpoints between
the samples, and the process is repeated, thus (asymptotically) dou-
bling the grid size at each iteration.

To determine which candidate point will be chosen next, the
distance of each candidate point on the grid from all the previously
selected points is computed. The candidate point that lies the far-
thest away is selected as the next sample, and all the other candi-
dates that share one of the design parameter values with this
sample are removed from the grid. Because the search space only
contains the points on the grid instead of the entire design space,
it is feasible to compute the distance for all the candidate points,
without having to resort to optimization or Monte Carlo methods.
This method is called 1hd-nested.

This method results in an exact Latin hypercube when exactly
m+(m — 1)(2P — 1) samples have been selected, for p > 0. At these
iterations, which depend solely on the initial grid size m, the ||P||_.,
score is maximal. In the worst case, which is when
1+m+(m—1)(2° — 1) samples have been selected, the |P||_.
score is almost half of the optimal score. When the total number
of samples is known in advance, the number m can be tweaked
such that the total number of samples is close to but not larger
than m + (m — 1)(2P — 1). However, in this study, this information
is considered unknown, so m is fixed at 2.

5.2. Global Monte Carlo methods

A Monte Carlo method is a method that relies on repeated ran-
dom sampling to compute the results. In the context of sequential
design, Monte Carlo methods generate a large number of random

K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696 691

4 &
® lintial grid
09l * First refinement
* * % Second refinement
0.8f 4
* ®
0.7t E
06 | ® X X X]
<& 0.59 ®
04r % % X ® i
0.3+ N
® *
0.2y X 0.375]
¥: 0125
0 1 | X @ X X |
® 0.2 04 06 0.8

X

Fig. 7. A Latin hypercube refinement scheme, starting with m=3. The points
highlighted with a circle are the ones that were chosen by the sampling algorithm.
Not that the design, composed of the encircled points, forms a Latin hypercube, and
therefore has optimal projected distance.

candidate points in the design space, compute a criterion for all of
these points, and select the point with the best (highest) score on
the criterion as the next sample to be evaluated. This is repeated at
each iteration. The number of random points is scaled with the
number of samples that were previously evaluated: if the number
of evaluated samples is n at one particular iteration, 100n random
points are generated. The number 100 was chosen to keep the total
computation time below 15 min.

Different criteria were tested in this study to rank the random
points. The first criterion that was used is the aggregate of the
intersite and projected distance, scaled to [0,1]. This criterion
produces a score for a candidate design P =PuUp, which is

1 —0.12
0.9
i~ - 4041
08
0.7
- -0.08
086

0 02 04 06 08 1

b

(a) Projected distance

composed of the previously evaluated samples P and a new candi-
date point p, according to the following formula:

vyn+1-1

intersite —proj —base(P) = 3 rl’linl,i,pjdyﬂpifij2

n+1_ .
+ Tmlnpi,pjeP le - ijﬂc- (2)

However, using this function as the objective is not yet ideal. Con-
sider a design, for which two points already have an intersite dis-
tance of 0.1. Then all new candidates that lie further away from
the other points than 0.1 result in the same intersite distance score,
since the minimum intersite distance does not change. However, it
is preferable to choose the point farthest away from the existing
points. Therefore, instead of computing the distance of all points
from each other, we just compute the distance of the new point
from previous points, and optimize this function. The final objective
function, which scores a new candidate point p based on the set of
previously evaluated samples P, is defined as:

| | | S
intersite — proj(P,p) = fmmp‘d"‘pi ~Pl:
n+1 .
+ =~ Minper|[Pi — PI| ... 3)

At each iteration, the point which maximizes the formula in Eq. (3)
will be picked as the next point. This method will be refered to as
mc-intersite-proj.

Note that the points are still ranked based on the complex
surface shown in Fig. 6(a). An alternative is to consider the pro-
jected distance as a threshold function. The idea is to discard points
that lie too close to other points in terms of projected distance. All
the remaining points are then ranked solely on intersite distance.
This is similar to the idea of Quasi Latin hypercube designs pro-
posed in van Dam et al. (2007). The difference between the stan-
dard ||P||_., criterion and the threshold projected distance
criterion is shown in Fig. 8. In the case of the threshold criterion,
only random points in the white areas are considered, and the best
candidate in these areas based on the intersite distance is selected
as the next sample.

The threshold, or minimum allowed projected distance, is de-
fined as:

—

r 409

r 406

£ 05

0 02 04 06 08 1

(b) Threshold projected distance

Fig. 8. The optimization surfaces for projected distance (Eq. (3)) and threshold projected distance criteria (Eq. (5)).

692 K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696

0.16 T : : r - — 0.01
—intersite distance

———projected distance

0.14 0.008

2 3

o

< 0.12 0.006 g

= T

] =

£ 0.1 0.004 g
0.08 0.002

0'060 0.1 0.2 03 04 05 086 0.9

alpha

Fig. 9. The effect of the o parameter from the mc-intersite-proj-th algorithm
on the intersite and projected distance. Lower values of o favour intersite distance,
while higher values of o favour projected distance. For o = 0.5, a good trade-off is
found between intersite and projected distance.

"|—intersite distance
—==projected distance

-
- -~
-
Id S

— —_———

01p

intersite distance
projected distance

1 1 1 L 4
0'050 0.2 04 0.6 08 1

beta

Fig. 10. The effect of the g parameter from the optimizer-proj algorithm on the
intersite and projected distance. Lower values of g favour intersite distance, while
higher values of § favour projected distance. For 8 =0.3, a good trade-off is found
between intersite and projected distance.

Table 2

The different space-filling design methods in terms of their granularity. It shows, for
each method, if the method must know the total number of samples in advance, if the
method is available for all number of samples and how many samples it selects at
each iteration.

Method # samples known n restricted Step size
factorial yes no o0
lhd-optimal yes yes o)
lhd-nested no yes 2k
voronoi no yes 1
delaunay no yes 1
random no yes 1
halton, sobol no yes 1
mc-intersite-proj no yes 1
mc-intersite-proj-th no yes 1
optimizer-intersite no yes 1
optimizer-proj no yes 1

dmin = ?7 (4)
where « is a tolerance parameter, which defines the importance of
the projected distance. The objective function for the threshold ver-
sion of Eq. (3) is defined as follows:

intersite — proj — th(P,p)
0 if min||p; - pl|_ < dmin,
pieP

(5)

min € P||p; - pll, if min|p; —pll_ >= dpin-
Pi picP

If o = 0, there are no constraints, and the projected distance is not
taken into account at all. If =1, only points that lie exactly on
an optimal configuration are considered. In practice, this means that

0.18
0.16
0.14
0.12

o
-

ite distance

0.08

inters

0.06
0.04
0.02

sobol
random
delaunay
halton
Ihd-matlab
lhd-nested
Ihd-joseph
mc-intersite-proj
optimizer-proj
voronoi
Ihd-optimal
factorial

mec-intersite-proj-th
optimizer-intersite

(a) Intersite distance

0.014

0.012

0.01

0.008

0.006

projected distance

0.004

0.002

factorial

delaunay

voronoi

random

halton

sobol
optimizer-proj
mec-intersite-proj
optimizer-intersite
mec-intersite-proj-th
lhd-joseph
Ihd-matlab
Ihd-nested
Ihd-optimal

(b) Projected distance

Fig. 11. The average intersite and projected distance score for each design method
discussed in this paper, after generating a 144-point design in 2D.

K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696 693

all points are rejected, because the candidates are generated ran-
domly. The trade-off between intersite and projected distance is
illustrated in Fig. 9. For this experiment, o = 0.5 was chosen because
it results in a good trade-off between intersite and projected dis-
tance. The method using this objective function for ranking the can-
didate points will be refered to as mc-intersite-proj-th. This
method can be further fine-tuned by adapting the algorithm to only
generate random points in areas that fall outside of the threshold
region, instead of eliminating the points after generation. This fur-
ther improves the efficiency of this method.

5.3. Optimization-based methods

Even though global optimization methods do not seem to work
well for this problem, local optimization methods can still deliver a
considerable improvement when used after a Monte Carlo method.
With this in mind, we propose two additional algorithms that per-
form a fast, constrained, local optimization after generating a large
number of points, either based on a Monte Carlo method or based
on the structure of the projected distance surface. We opted for the
pattern search function from the Genetic Algorithm and Direct
Search Toolbox of Matlab as the optimizer of choice, since it is a
relatively fast but good optimizer that can get out of local optima
quite easily.

5.3.1. Optimize projected distance locally

The first algorithm uses Monte Carlo to find the best points for
the intersite distance, and then locally optimizes the best candi-
dates for the projected distance, effectively giving up some inter-
site distance in exchange for better projected distance results.
This method will be called optimizer-proj. Pseudo-code for this
method can be found in Algorithm 1.

First, the algorithm selects a large amount of random points,
and computes the intersite distance for all of these points. The
30 highest scoring points are selected as potential candidates,
and the minimum distance from all the previously evaluated
points is computed for these candidates. This distance is multiplied
by a factor g which determines how much the optimizer may
deviate from the selected candidate locations to improve the
projective properties of the candidate. If 3 is set to O, the algorithm
selects points based solely on the intersite distance. If 8 is set to 1,
the algorithm completely abandons the intersite distance and

08 :
——Ihd-nested
07 mc-intersite-proj-th
’ — =~ optimizer-proj
- — - optimizer-intersite
06 —— Ihd-optimal
3
205 1
i
2
T
° 04 1
F4
[
£ 03 1
\‘.\\-_\“‘f‘"‘\ -
02 e e
0.1]
0 L 1
0 50 100 150

number of samples

(a) Intersite distance

optimizes completely towards the projected distance. This trade-
off is illustrated in Fig. 10. The g parameter effectively specifies
how much space-fillingness the user is willing to give up for im-
proved non-collapsingness. For this experiment, 8 = 0.3 was chosen
because it provides a good trade-off between the two criteria.

Algorithm 1. The optimizer-proj algorithm

Peandidates < 100n random points
Ppew < 30 best points using intersite distance
for all pypew € Prew do
M(Prew) — MiNpep|| Pnew — P||2
gy — LB
Optimize Ppew towards ||P U Prnew|| oo ON [Prew — dmaxs
pnew + dmax]
end for
Choose best ppew based on ||P U Ppew|| o

5.3.2. Optimize intersite distance locally

Even though the optimization surface of the ||P||_., criterion is
highly multimodal, it is also very structured, and the optima can
easily be derived from the samples without having to use an opti-
mization algorithm. Consider the intervals created by sorting all
the values of the samples in one dimension, and substracting sub-
sequent values. The point with the best projected distance score is
then the point in the middle of the hypercube defined by the larg-
est interval in each dimension. The second best point is the one
created by replacing the one interval by the next largest, and so
on. Once these points have been generated, a pattern search is per-
formed in the 50 largest hypercubes, optimizing towards the inter-
site distance. The optimization surface is bound by a threshold
parameter o, which works identical to the one defined in Section
5.2. Again, o« =0.5 was picked because preliminary results have
shown that this gives a good trade-off between intersite and
projected distance. This method will be called optimizer-
intersite.

6. Results

Each of the strategies mentioned in the previous sections will be
used to generate 144 points in 2D,3D and 4D. Each method will be

0.25 T
—|hd-nested
- me-intersite-proj-th
=== optimizer-proj
0.2+ — — -optimizer-intersite
——lhd-optimal
L]
£
0.15+ 1
i
T
]
2
8 04} 1
[
s
0.056+ 1
. 7
0 50 100 150

number of samples

(b) Projected distance

Fig. 12. Respectively the intersite and projected distance as a function of the number of points selected so far. This graph shows the evolution over time as the algorithm
selects more points, up to a maximum of 144 in 2D. For comparison, the intersite and projected distance of each pre-optimized Latin hypercube is also shown, even though it

is not a sequential algorithm.

694 K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696

allowed to run at most 15 min to generate a design of 144 points
on an Intel Quadcore running at 1.86 GHz.! This is acceptable, con-
sidering the fact that simulations are assumed to be expensive, and
can take hours or days for one evaluation. In this context, 15 min to
generate a good space-filling design is a good time investment. For
each method in each dimension, the experiment will be run 30
times in order to get an estimate of the standard deviation on each
method.

All the methods were compared on the three criteria discussed
in this paper: granularity, space-filling and non-collapsing. The
granularity of the methods is summarized in Table 2. Each new
method proposed in this paper, except for 1hd-nested, has the
best possible granularity: the total number of samples does not
have to be known in advance, they produce good designs whenever
they are aborted, and they select samples one by one.

Fig. 11(a) contains the results for the intersite distance in 2D, after
144 points were generated. factorial is, of course, the best space-
filling design. However, it is closely followed by 1hd-optimal,
which demonstrates that, if the total number of points in known in
advance, itis possible to generate a design practically as space-filling
as a factorial, but with optimal projected distance as well.

The next best methods are the four new methods proposed in
this paper, as well as the voronoi algorithm. The best method
turns out to be optimizer-intersite, which only performs
20% worse than the pre-optimized Latin hypercube, yet produced
the design generated in a much smaller timespan, and with no
knowledge at all of the total number of samples that were going
to be needed. All the remaining methods perform much worse.

Note the big difference between the two sequential Monte Carlo
strategies mc-intersite-proj and mc-intersite-proj-th.
By replacing the projected distance by a threshold function, the
quality of the design in terms of intersite distance improves con-
siderably. The variance is also reduced, making the method much
more stable. Also interesting to note is the rather poor performance
of the Matlab Latin hypercube implementation, which was allowed
to optimize for 15 min to allow for a fair comparison. This method
fails at generating a good space-filling design, and should be
avoided. The same can be said for the low-discrepancy sequences,
which, even though they generate good space-filling designs for
large numbers of points, perform bad for small sample sizes. Also
noticeable is the bad performance of 1hd-nested. This can be ex-
plained by the fact that, by selecting the optimal point from the La-
tin hypercube grid at one iteration, future iterations may get stuck
in a local optimum, as described in Section 5. In this case, the last
point selected before the grid is refined will be a very bad choice,
resulting in a dramatic drop in quality of the design.

Fig. 11(b) shows the projected distance for the same designs.
The factorial design has the worst projected distance, while
the Latin hypercubes have the best score, followed by the five
methods proposed in this paper, which have a projected distance
about 50% worse than the Latin hypercube. This is still very good,
considering that the Latin hypercube has the best possible pro-
jected distance by construction. The projected distance of many
of these methods can be further improved by tweaking the algo-
rithm parameters (such as the o threshold parameter), at the ex-
pense of intersite distance. Since the intersite distance is deemed
the more important criterion of the two, more priority was given
to achieving a high intersite distance in these experiments.

Fig. 12 shows the evolution over time of the intersite and pro-
jected distance for the algorithms proposed in this paper, com-
pared to the distance scores for each 1hd-optimal for that
number of points. Note that the curve drops smoothly for all of

! No parallelization was explicitly programmed into the algorithms, but Matlab
may use different cores to execute built-on commands faster.

the algorithms, except the nested Latin hypercube method. This
demonstrates again the tendency of this method to get stuck in lo-
cal optima, where at one point, the algorithm is forced to pick a
very bad sample. The other methods suffer much less from this
problem, because the points are not selected on a fixed candidate
grid.

In 3D and 4D, some of the methods that were available in 2D
will not work anymore. More particularly, there is no 144-point
factorial design available in 3D and 4D. Also, the grid in 1hd-
nested becomes too large to evaluate completely within 15 min,
so this method was also left out. Finally, computing a Delaunay tri-
angulation becomes considerably more expensive in higher dimen-
sions (see Crombecq et al. (2009a) for an analysis), so due to the
strict time limitation, this method was left out as well.

045 T T T ; T

04

0.35

03

0.25
02

intersite distance

sobol

random

halton

lhd-matlab
lhd-joseph
me-intersite-proj
optimizer-proj
voronoi
mc-intersite-proj-th
optimizer-intersite
Ihd-optimal

(a) Intersite distance

0.015 T T T ‘ T T T

0.01

projected dsitance

0.005

halton
sobol

o £
5 3
o c
> B

optimizer-proj
mec-intersite-proj
Ihd-joseph
Ihd-matlab
Ihd-optimal

optimizer-intersite
mc-intersite-proj-th

(b) Projected distance

Fig. 13. The average intersite and projected distance score for each design method
discussed in this paper, after generating a 144-point design in 3D.

K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696 695

=
~

intersite distance
o o o o
w ~) »

S
o

o
iy

sobol

random

halton
Ihd-matlab
Ihd-joseph
me-intersite-proj
optimizer-proj
voronoi
Ihd-optimal

mc-intersite-proj-th
optimizer-intersite

(a) Intersite distance
0.014
0.012
0.01
0.008

0.006

projected distance

0.004

0.002

voronoi

random

halton

sobol
optimizer-proj
me-intersite-proj
optimizer-intersite
mc-intersite-proj-th
Ihd-joseph
Ihd-matlab
Ihd-optimal

(b) Projected distance

Fig. 14. The average intersite and projected distance score for each design method
discussed in this paper, after generating a 144-point design in 4D.

Fig. 13 shows the intersite and projected distance scores for 3D,
while Fig. 14 shows the intersite and projected distance for 4D.
Note that the optimizer-intersite method performs 21%
worse than 1hd-optimal in 2D, but only 16% worse in 3D and
8% worse in 4D. This is an extremely good result, considering that
this method only ran for 15 min, while the 4D 144-point Latin
hypercube was optimized for 6 h. The projected distance is in all
dimensions about 50% worse than 1hd-optimal.

Even though a limit of 15 min was imposed on all the methods,
not all methods are equally demanding in terms of computing
power. Especially the Monte Carlo methods are extremely fast:
the Monte Carlo designs used in this study were generated in un-
der 5 min, as increasing the number of random points did not im-
prove the quality of the design much. These methods also don’t

increase in terms of computing time when the dimension is in-
creased. This is opposed to the optimization-based methods, which
require considerably more time in higher dimensions. This may
cause the optimizer-intersite method to become impractical
in higher dimensions. The Monte Carlo method, on the other hand,
should remain fast and viable in dimensions higher than 4.

7. Conclusions and future work

In this paper, several new methods for sequentially generating
space-filling designs of simulation-based experiments were pro-
posed. These methods were thoroughly compared against proven
and popular techniques (such as Latin hypercubes and low-dis-
crepancy sequences) on two criteria: intersite (or maximin) dis-
tance and projected distance. It was demonstrated that the new
methods manage to generate good designs, close to the quality of
a pre-optimized Latin hypercube. They also manage to generate
these designs orders of magnitude faster than it takes optimizing
a Latin hypercube of the same size. It was shown that in higher
dimensions, the methods come even closer to the pre-optimized
Latin hypercube: at 4D, the best new method produced a space-fill-
ing design only 8% worse than the pre-optimized Latin hypercube.

Of the new methods proposed in this paper, optimizer-
intersite and mc-intersite-proj-th produce the best re-
sults overall. Of these, the second method is considerably faster
than the first one: where the first one requires approximately
3 min to generate a design, the local optimizer utilizes the full
15 min.

As a rule of thumb, the authors suggest to use a pre-optimized
Latin hypercube only if the total number of samples is known in
advance. It is strongly discouraged to use the built-in Latin hyper-
cube method from Matlab, as well as optimizing a Latin hypercube
on the fly, as it may take many hours to generate a design that is as
good or better than the algorithms proposed in this paper. If the to-
tal number of samples is not known in advance, or no pre-opti-
mized Latin hypercube is available for a particular number of
samples with the right number of dimensions, the first choice
should be the threshold Monte Carlo method, which is easy to
implement, extremely fast and performs very well in all dimen-
sions. If a little more time can be spent on generating the design,
the optimizer-intersite is a very good choice as well. In high-
er dimensions, for which optimizing a Latin hypercube can be
unviable, these methods may be the only choice for producing a
good space-filling design with good projective properties.

References

Audze, P., Eglais, V., 1977. New approach for planning out of experiments. Problems
of Dynamics and Strengths 35, 104-107.

Batmaz, 1., Tunali, S., 2003. Small response surface designs for metamodel
estimation. European Journal of Operational Research 145, 455-470.

Box, G.E.P., Hunter, J.S., Hunter, W.G., 2005. Statistics for Experimenters: Design,
Innovation, and Discovery. Wiley-Interscience.

Busby, D., Farmer, C.L., Iske, A., 2007. Hierarchical nonlinear approximation for
experimental design and statistical data fitting. SIAM Journal on Scientific
Computing 29, 49-69.

Crombecq, K., Couckuyt, L., Gorissen, D., Dhaene, T., 2009a. Space-filling sequential
design strategies for adaptive surrogate modelling. In: The First International
Conference on Soft Computing Technology in Civil, Structural and
Environmental Engineering, 20 pages.

Crombecq, K., Gorissen, D., Tommasi, L.D., Dhaene, T., 2009b. A novel sequential
design strategy for global surrogate modeling. In: Proceedings of the 41st
Winter Simulation Conference, pp. 731-742.

van Dam, E.R., Husslage, B., den Hertog, D., Melissen, H., 2007. Maximin latin
hypercube design in two dimensions. Operations Research 55, 158-169.

Fang, K.T., 1980. Experimental design by uniform distribution. Acta Mathematice
Applicatae Sinica 3, 363-372.

Fang, K.T., Lin, D.KJ., 2003. Uniform experimental designs and their applications in
industry. Handbook of Statistics 22, 131-170.

696 K. Crombecq et al./European Journal of Operational Research 214 (2011) 683-696

Fang, K.T., Ma, C.X., Winker, P., 2002. Centered 12-discrepancy of random sampling
and latin hypercube design, and construction of uniform designs. Mathematics
of Computation 71, 275-296.

Gorissen, D., Crombecq, K., Couckuyt, ., Dhaene, T., Demeester, P., 2010. A surrogate
modeling and adaptive sampling toolbox for computer based design. Journal of
Machine Learning Research 11, 2051-2055.

Gorissen, D., Crombecq, K., Hendrickx, W., Dhaene, T., 2007. Adaptive distributed
metamodeling. High Performance Computing for Computational Science -
VECPAR 2006 4395, 579-588.

Grosso, A., Jamali, A., Locatelli, M., 2009. Finding maximin latin hypercube designs
by iterated local search heuristics. European Journal of Operational Research
197, 541-547.

Hickernell, FJ.,, 1998. A generalized discrepancy and quadrature error bound.
Mathematics of Computation 67, 299-322.

Husslage, B., 2006. Maximin Designs for Computer Experiments. Ph.D. Thesis.
Tilburg University, Center of Economic Research.

Jamshidi, A.A., Kirby, M.J., 2007. Towards a black box algorithm for nonlinear
function approximation over high-dimensional domains. SIAM Journal on
Scientific Computing 29, 941-963.

Jin, R, Chen, W., Sudjianto, A., 2002. On sequential sampling for global
metamodeling in engineering design. In: Proceedings of DETC02 ASME 2002
Design Engineering Technical Conferences And Computers and Information in
Engineering Conference, 10 pages.

Jin, R., Chen, W., Sudjianto, A., 2005. An effcient algorithm for constructing optimal
design of computer experiments. Journal of Statistical Planning and Inference
134, 268-287.

Johnson, M., Moore, L., Ylvisaker, D., 1990. Minimax and maximin distance designs.
Journal of Statistical Planning and Inference 26, 131-148.

Joseph, V.R,, Hung, Y., 2008. Orthogonal-maximin latin hypercube designs. Statistica
Sinica 18, 171-186.

Lehmensiek, R., Meyer, P., Miiller, M., 2002. Adaptive sampling applied to
multivariate, multiple output rational interpolation models with application
to microwave circuits. International Journal of RF and Microwave Computer-
Aided Engineering 12, 332-340.

Liu, L., 2005. Could enough samples be more important than better designs for
computer experiments?. In: Proceedings of the 38th annual Symposium on
Simulation, pp. 107-115.

Montgomery, D.C., 2001. Design and Analysis of Experiments.

Morris, M.D., Mitchell, T.J., 1995. Exploratory designs for computer experiments.
Journal of Statistical Planning and Inference 43, 381-402.

Niederreiter, H., 1992. Random Number Generation and Quasi-Monte Carlo
Methods. Society for Industrial and Applied Mathematics.

Owen, A.B., 1992. Orthogonal arrays for computer experiments, integration and
visualization. Statistica Sinica 2, 439-452.

Qian, P.Z.G., 2009. Nested latin hypercube designs. Biometrika 96, 957-970.

Regis, R.G., 2011. Stochastic radial basis function algorithms for large-scale
optimization involving expensive black-box objective and constraint
functions. Computers & Operations Research 38, 837-853.

Sacks,]., Welch, W.., Mitchell, T.J., Wynn, H.P., 1989. Design and analysis of
computer experiments. Statistical Science 4, 409-435.

Simpson, T.W., Peplinski,]., Koch, P.N., Allen, J.K., 2001. Metamodels for computer-
based engineering design: Survey and recommendations. Engineering with
Computers 17, 129-150.

Sugiyama, M., 2006. Active learning in approximately linear regression based on
conditional expectation of generalization error. Journal of Machine Learning
Research 7, 141-166.

Tang, B., 1993. Orthogonal array-based latin hypercubes. Journal of the American
Statistical Association 88, 1392-1397.

Viana, F.A.C,, Venter, G., Balabanov, V., 2009. An algorithm for fast optimal latin
hypercube design of experiments. International Journal for Numerical Methods
in Engineering 82, 135-156.

Xiong, F., Xiong, Y., Chen, W, Yang, S., 2009. Optimizing latin hypercube design for
sequential sampling of computer experiments. Engineering Optimization 41,
793-810.

Ye, K.Q., Li, W.,, Sidjianto, A., 2000. Algorithmic construction of optimal symmetric
latin hypercube designs. Journal of Statistical Planning and Inference 90, 145-
159.

	Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling
	1 Introduction
	2 Sequential design
	3 Important criteria for experimental designs
	3.1 Granularity
	3.2 Space-filling
	3.3 Good projective properties
	3.4 Orthogonality

	4 Existing methods
	4.1 Factorial designs
	4.2 Latin hypercube
	4.3 Low-discrepancy sequences
	4.4 Remaining methods

	5 New space-filling sequential design methods
	5.1 Sequential nested Latin hypercubes
	5.2 Global Monte Carlo methods
	5.3 Optimization-based methods
	5.3.1 Optimize projected distance locally
	5.3.2 Optimize intersite distance locally

	6 Results
	7 Conclusions and future work
	References

