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Computer experiments are increasingly used in scientific investigations as substitutes for physical experiments in cases where the latter
are difficult or impossible to perform. A computer experiment consists of several runs of a computer model or “code” for the purpose of
better understanding the input → output relationship. One practical difficulty in the use of these models is that a single run may require
a prohibitive amount of computational resources in some situations. A recent approach uses statistical approximations as less expensive
surrogates for such computer codes; these provide both point predictors and uncertainty characterization of the outputs. A widely used class
of computer codes is the finite-difference solvers of differential equations, which produce multivariate output (e.g., time series). The finite-
difference relationship underpins the statistical model proposed here, and we show that this strategy has clear computational and accuracy
advantages over a direct multivariate extension of the popular scalar modeling methodology.
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stationary model.

1. INTRODUCTION

Many complex physical phenomena are investigated through
the development and use of deterministic computer simula-
tion models, or “codes.” Computer codes are often complex,
reflecting detailed understanding of the physical processes of
interest. However, the complexity of the computer codes some-
times limits their usefulness, due to the accompanying demand
on computational resources. In some cases it is necessary to
develop faster running surrogates for slow-running computer
codes. These faster (or “cheaper”) surrogates are approxima-
tions of the original codes, however, so the error introduced
from using a surrogate should also be characterized.

Statistical models are natural choices as surrogates because
they support both output prediction and uncertainty (error)
characterization. A statistical approach to this problem has
been outlined by Sacks, Welch, Mitchell, and Wynn (1989) and
Currin, Mitchell, Morris, and Ylvisaker (1991). These authors
discussed modeling of computer codes for which inputs can be
of high dimension, but focused on a single scalar-valued output.
Input vector values are sometimes called “sites” or “locations”
in the input space, following an analogy with geostatistics in
which related “kriging” methods are used. A computer exper-
iment consists of a number of code runs at various input con-
figurations. It is desirable to choose these inputs carefully (i.e.,
design the experiment well), to make the resulting statistical
surrogates as efficient as possible. Once the design inputs have
been chosen, the computer code is executed and the output is
modeled statistically. Sacks et al. (1989) and Currin et al. (1991)
estimated the process parameters by maximum likelihood, with
the former group taking a kriging approach to prediction. In
many cases, the statistical model is described in a Bayesian
context, where a stationary Gaussian process is prescribed as
a prior for the computer code output as a function of inputs.
Currin et al. used the posterior distribution of the output at a
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new input site (i.e., one not included in the design), as a sur-
rogate for the slow-running computer code. The hope is that
these predictions are of good statistical quality and are also sub-
stantially less computationally demanding than new runs of the
computer code.

Because the data-generating mechanism is known (albeit
complicated), a natural place to look for additional information
to strengthen the methodology is the computer code itself. For
example, Morris, Mitchell, and Ylvisaker (1993) discussed “en-
hanced” codes that produce derivatives of outputs with respect
to the components of the input vector and showed that using this
additional code information increases the precision of the statis-
tical predictions. More recently, Kennedy and O’Hagan (2001)
noted that their Bayesian calibration method treats the computer
code as a black box, but acknowledged that exploiting addi-
tional information about the code could improve the approach.
In his discussion of that work, Wynn (2001) argued that “it is
useful to know what is going on inside the black box,” allud-
ing to the need to incorporate information about the computer
code, especially for differential equation solvers. The solutions
of the differential equations, especially in the nonlinear case,
exhibit complicated dynamics for which some of the assump-
tions commonly used in the foregoing statistical methodology
may be inappropriate.

The computer codes considered here are finite-difference nu-
merical solvers of differential equations. In such applications
interest lies in analyzing the resulting multivariate computer
output. We use information about the computer code that is
implicit in the approximate local truncation errors computed
for each run to automatically construct a second-order nonsta-
tionary statistical model of the output that realistically mim-
ics the dynamics of the computer code. This is particularly
appealing for codes based on nonlinear differential equations,
because the simulator proposed here inherits appropriate non-
linear behavior through the derived nonstationary structure. To
illustrate the methodology, we present examples based on a
competing species differential system from mathematical biol-
ogy. We show that a nonstationary output model derived from a
stationary model of truncation errors is a good representation of
the computer code, whereas specifying a statistical model based
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on a stationary prior process fitted directly to the output requires
a very computationally expensive likelihood optimization and
when the estimation is feasible, results in inferior predictions.
The findings of the analysis are strengthened by a proof demon-
strating that the method proposed herein has good asymptotic
properties.

Section 2 introduces the general computer model, the output
data, and a straightforward extension of the approach described
by Currin et al. (1991) that accommodates multivariate out-
put indexed by time and space. Section 3 describes the main
contribution of this article, a modification of the stochastic
process modeling approach that takes advantage of the infor-
mation in approximate truncation errors. Section 4 briefly de-
scribes how auxiliary information in the form of less accurate
approximate numerical solutions can be incorporated into ei-
ther type of model. Section 5 presents an example using a form
of the species competition model based on partial differential
equations.

2. COMPUTER MODELS AND DIRECT SIMULATORS

Systems of differential equations are mathematical models
of physical reality that involve derivatives of functions of inter-
est with respect to time and/or other variables, usually space.
The general formulation of the models that we consider in this
article is

∂Y
∂t

= f
(

Y,
∂Y
∂s

, . . .

)
, (1)

where t ∈ [0,LT ], s ∈ [0,LS], and the dots mean that higher-
order derivatives with respect to space could also appear. More-
over, (1) could include higher-order derivatives with respect
to time and/or space without necessarily including the cor-
responding lower-order derivatives. Let E denote the length
of Y ; in general, it coincides with the number of scalar equa-
tions of (1). For (1) to have unique solution Y , initial condi-
tions, Y(0, s), and boundary conditions, (Y(t,0),Y(t,LS)),
also must be specified. If (1) includes only the time component,
then it is known as an ordinary differential equation (ODE) sys-
tem; otherwise, it is called a partial differential equation (PDE)
system. For the sake of generality, the notation that we develop
reflects the PDE model, but the ODE development results sim-
ply by removing the spatial component. When more than one
spatial dimension exists, the space interval [0,LS] becomes a
(hyper)rectangle and (1) can include partial derivatives with re-
spect to each spatial dimension.

Nonlinear systems of differential equations rarely can be
solved analytically, even though solutions exist. In these sit-
uations we rely on numerical approximations of the ana-
lytical solution. Finite-difference methods approximate the
required derivatives by scaled differences of the correspond-
ing function evaluated at neighboring points on a grid of
values. We define a fine grid of MF + 1 equally spaced
points on the time interval [0,LT ] and SF + 2 equally spaced
points on the space interval [0,LS], with adjacent points sep-
arated by time increment �tF = LT /MF and space incre-
ment �sF = LS/(SF + 1), denoted as GF = {τ0, . . . , τMF

} ×
{λ0, . . . , λSF +1} where τk = k�tF and λi = i�sF . The general
problem that we address here is the construction of statistical

simulators for fine-grid numerical solutions of a computer code,
iteratively expressed as

Y(τk+1, λi)

= Y(τk, λi)

+ �tF f
(

Y(τk, λi),
Y(τk, λi+1) − Y(τk, λi)

�sF

, . . .

)
. (2)

Here the vector Y(τk, λi) is E-dimensional and is computed
on GF as follows: Y(τ0, λi) is given in the initial condition,
and for a fixed k, Y(τk+1, λi) is computed iteratively with
respect to i using the given boundary conditions Y(τk, λ0)

and Y(τk, λSF +1). Relatively finer grids produce more accurate
solutions but are more computationally intensive.

2.1 Output Data

“Data” for this exercise consist of the output from a num-
ber of runs of the finite-difference solver. A statistical sim-
ulator fitted to these data can be used to predict output that
would result from code runs at other input vectors. The ex-
perimental design for the computer experiment consists of the
specification of D input vectors associated with the differen-
tial equations. For simplicity of explanation, assume that the
input vectors are the initial conditions Y(0, ·), denoted by dm,
m = 1,2,3, . . . ,D. (The examples presented in this article re-
flect this choice, but other problems may require consideration
of different types of input vectors.) For each of these, a finite-
difference scheme is used to obtain numerical solutions on GF .
To ensure numerical convergence of the solver, the grid incre-
ments �tF and �sF must be small. In fact, the scientifically
interesting characteristics of the output ordinarily can be fully
expressed by recording only a small subset of the fine grid
output data. Hence we also define a relatively coarse regular
grid of points consisting of MC + 1 time points and LC + 2
space points, GC = {t0, . . . , tMC

} × {l0, . . . , lSC+1}, with time
step �tC = LT /MC and space step �sC = LS/(SC + 1), such
that GC ⊂ GF . Only the fine grid output values associated with
points on the coarse grid are incorporated into the statistical
simulator. Moreover, because the initial and boundary condi-
tions values are known, these values are not included in the
statistical analyses, and thus only the fine grid output values
at indices {t1, . . . , tMC

} × {l1, . . . , lSC
} need to be considered.

Hence the number of (individual scalar) output values analyzed
is MC (time points) × SC (space points) × E (output values at
each time–space point) × D (sets of initial conditions, or runs
of the code).

2.2 Direct Modeling of Output

Current statistical methodology for computer experiments,
such as that described by Sacks et al. (1989), treats the out-
put as a scalar-valued stochastic process, indexed by inputs.
Kennedy and O’Hagan (2001, p. 435) have suggested that if
each run of the computer code produces a multivariate output,
then one can continue to use a scalar-valued process with an in-
dex set expanded to include both input and output indexes. This
amounts to specifying a MC · SC · E · D element mean vector
and a (MC · SC · E · D) × (MC · SC · E · D) covariance matrix
for a complete vector of output from the computer experiment.
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Using a product correlation structure simplifies some of the
computational issues associated with such large covariance ma-
trices. Let RM(t, t ′), t and t ′ ∈ (0,LT ], be a correlation func-
tion associated with time; RS(s, s′), s and s′ ∈ (0,LS), be a
correlation function associated with space; RE(a, b), a and
b ∈ {1, . . . ,E}, be a correlation function associated with vari-
ables of the output set; and RD(d,d′), d and d′ from the space
of allowed input vectors, be a correlation function associated
with initial conditions. Then define the correlation between
Ya(tu, li) following from dm and Yb(tv, lj ) following from dn

as RM(tu, tv) · RS(li, lj ) · RE(a, b) · RD(dm,dn). Because the
scalar output values collected from an experiment correspond to
a complete regular grid of times, spatial locations, output vari-
ables, and input vectors, the covariance matrix for the full data
vector can be written as a Kroneker product of much smaller
matrices generated from RM , RS , RE , and RD . Specifically:

• Let CM be the MC × MC time correlation matrix with
(u, v) element RM(tu, tv)

• Let CS be the SC ×SC space correlation matrix with (i, j)

element RS(li , lj )

• Let CE be the E × E output element correlation matrix
with (a, b) element RE(a, b)

• Let CD be the D × D input vector correlation matrix with
(m,n) element RD(dm,dn).

The correlation functions RM , RS , RE , and RD , and through
them the matrices CM , CS , CE , and CD , depend on statisti-
cal parameters denoted by φ,ψ,ρ, and θ , where θ is typically
of the same dimension as d. Let Y denote the complete data
vector of output values, ordered as time series within space,
within output variables, and within initial condition values.
Then Y ∼ N(µ1, σ 2�), � = CD ⊗ CE ⊗ CS ⊗ CM, where
“⊗” represents the Kronecker product.

The maximum likelihood estimates (MLEs) of µ and σ 2,
given values of the other parameters, are µ̂ = (1′�−1Y)/

(1′�−11) and σ̂ 2 = (Y − 1µ)′�−1(Y − 1µ)/(MC · SC ·E ·D).
Estimates of φ,ψ,ρ, and θ are obtained numerically by itera-
tive maximization of the likelihood function or, equivalently, by
minimizing the objective function

l(φ,ψ,ρ, θ |Y) = log(σ̂ 2) + log(det(CD))

D
+ log(det(CE))

E

+ log(det(CS))

SC

+ log(det(CM))

MC

.

Note, however, that this likelihood optimization is potentially
very computationally expensive. The estimates µ̂ and σ̂ 2, and
thus l(φ,ψ,ρ, θ |Y), require more than O(D2M2

CS2
CE2) alge-

braic operations because �−1 = C−1
D ⊗C−1

E ⊗C−1
S ⊗C−1

M , and
the additional computational time for determinants and inverses
also must be considered. In addition to numerical complexity,
the likelihood function is often rather flat for this model; pe-
nalized likelihood methods such as the one described by Li and
Sudjianto (2005) can sometimes improve estimation accuracy
in these cases.

These estimates are then treated as known parameter values,
leading to simple empirical Bayesian predictions and predictive
standard errors for outputs at new input vectors. Let d0 be a new
vector not included in the D-point experimental design. The

posterior mean vector at the new site d0, the usual point predic-
tor suggested by minimization of expected squared error loss, is
Ŷd0 = µ1 + [(Cd0,DC−1

D ) ⊗ IMC ·SC ·E](Y − µ1), where Cd0,D

is the vector of correlations corresponding to the new input d0
and outputs at the D design inputs. This expression shows that
the posterior mean involves only the correlation between the
design vectors, not the correlation matrices CE , CS , and CM .
The posterior variance at d0 is σ 2(1 − Cd0,DC−1

D C′
d0,D

)(CE ⊗
CS ⊗ CM). The diagonal of the posterior covariance at d0 gives
the marginal posterior variances for each variable, space, and
time; that is, the marginal posterior variances are all equal to
σ 2(1 − Cd0,DC−1

D C′
d0,D

), which again involves only the corre-
lation between d0 and the design set. The prediction standard
errors are defined as the square root of the marginal posterior
variances.

As noted earlier, a major operational difficulty with this ap-
proach is the computational burden involved in maximizing the
likelihood function with respect to the covariance parameters.
The size of the dense covariance matrix, even in Kroneker-
factored form, can lead to very slow (or even practically im-
possible) iterations for applications of even modest size. In the
next section we examine a related modeling approach based on
numerical truncation errors, which can substantially reduce this
computational burden while simultaneously improving the sta-
tistical quality of the predictions.

3. MODELING BASED ON LOCAL
TRUNCATION ERRORS

An accuracy measure of a grid finite-difference solver is the
local truncation error, defined as the error that would be gener-
ated in one time step of an iterative numerical solver, given the
analytical solution value at the beginning of the step. Hence for
a solver based on the coarse grid that we have defined, the local
truncation error is

TY (tk+1, li)

= Y(tk+1, li)

−
[
Y(tk, li)

+ �tC f
(

Y(tk, li ),
Y(tk, li+1) − Y(tk, li )

�sC

, . . .

)]
(3)

for k = 0, . . . ,MC −1, i = 0, . . . , SC , where Y is the analytical
solution on the coarse grid. The local truncation error can be
viewed as a residual quantity and provides a measure of com-
putational accuracy of the finite-difference scheme.

The precise values of truncation errors are not available in
general, because they require knowledge of Y . However, we
can obtain approximate local truncation errors by replacing the
analytical solutions with their fine-grid approximations in (3),

TY (tk+1, li )

= Y(tk+1, li )

−
[

Y(tk, li)

+ �tC f
(

Y(tk, li),
Y(tk, li+1) − Y(tk, li )

�sC

, . . .

)]
(4)
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for k = 0, . . . ,MC − 1, i = 1, . . . , SC . Note that this is not sim-
ply a difference between fine and coarse numerical solutions.
Let TY denote the complete vector of the MC ·SC ·E ·D approx-
imate local truncation errors. We specify TY ∼ N(µ1, σ 2�)

and � = CD ⊗ (CE ⊗ CS ⊗ CM), where “⊗” represents the
Kronecker product. In the examples given in Section 5, CD is
the D × D input vector correlation matrix with (m,n) element

CD(m,n) = exp

(
−

E∑
i=1

θi

(
dm(i) − dn(i)

)2

)
,

a product of individual Gaussian correlation functions. The
space–time stationarity assumption is more suitable for the ap-
proximate local truncation errors than for the numerical solu-
tions because theoretical arguments show that local truncation
errors have roughly constant magnitude across space time [e.g.,
O(�

p
tC

)+O(�
q
sC ) for some specific positive integers p and q],

and space–time averages of approximately 0. Moreover, the
correlations between truncation errors are much weaker than
the correlations between outputs. Indeed, Taylor series argu-
ments (e.g., Ames 1965, pp. 323–324) show that the trunca-
tion errors are a combination of higher-order derivatives of the
output functions, and it is known (e.g., Ramsay and Silverman
1997, sec. 13.4.1) that derivatives of functions are generally
rougher than the functions themselves. To help improve the
computational efficiency of the likelihood optimization, inde-
pendence is assumed herein for the approximate local trunca-
tion errors, that is CM = IMC

, CS = ISC
, and CE = IE .

Two important points should be made immediately. First,
although we have chosen to model truncation errors indepen-
dently in time, in space, and across outputs, this does not imply
the same kind of independence structure for Y; in fact, the out-
put is correlated through all dimensions. This correlation pat-
tern is not easy to characterize analytically, but is induced by
the nonlinear relationship between outputs and truncation er-
rors. Second, as noted in the previous section, this option is
unavailable in the direct modeling approach, because output
functions are generally smooth in time and space—a dense co-
variance matrix is the only realistic choice in this case. Hence
modeling through truncation errors can lead to both faster like-
lihood optimization (process fitting) and nonstationary behavior
in the output predictions that is “naturally” inherited from the
dynamic structure of the model. We also prove in the Appendix
that if space–time independence is assumed for the approximate
local truncation errors, then the statistical predictor of output
converges in mean square to the analytical solution of the dif-
ferential system as the coarse space and time steps approach 0.

As described in Section 2 for the direct modeling approach,
we again use the maximum likelihood method to obtain esti-
mates for the parameters (µ; θ;σ 2), where the overall correla-
tion matrix is now � = CD ⊗ IMC ·SC ·E . The MLEs of µ and
σ 2, conditional on the value of θ , are µ̂ = (1′�−1Y)/(1′�−11)

and σ̂ 2 = (Y − 1µ)′�−1(Y − 1µ)/(MC ·SC ·E ·D). Estimates
of θ are obtained numerically by iterative maximization of the
likelihood function or, equivalently, by minimizing the objec-
tive function,

l(θ |Y) = log(σ̂ 2) + log(det(CD))

D
.

It is important to note that both µ̂ and σ̂ 2, and therefore l(θ |Y),
require O(D2 · MC · SC · E) algebraic operations because
�−1 = C−1

D ⊗ IMC ·SC ·E (counting only the elementwise ma-
trix multiplications; the number of operations associated with
the inverse and determinant of CD is common to all likelihoods
presented in this article, so we do not count them in compar-
isons). Therefore, evaluating this likelihood is less expensive
than evaluating the corresponding likelihood based on a dense
correlation matrix (required by the direct approach) by a factor
of at least MC · SC · E.

Because the relationship between local truncation errors and
outputs can be nonlinear, we use a simulation approach to
predict outputs at a new vector d0 of initial conditions. The
posterior distribution of TY

0 is multivariate normal of mean vec-
tor µ1 + [(Cd0,DC−1

D ) ⊗ IMC ·SC ·E](TY − µ1) and covariance
matrix σ 2(1 − Cd0,DC−1

D C′
d0,D

)IMC ·SC ·E , and R simulated val-

ues T̃Y
0 are obtained. Each of these simulated realizations is

used to iteratively obtain a simulated output vector through a
rearrangement of (4),

Ỹ(tk+1, li)

= Ỹ(tk, li) + �tC f
(

Ỹ(tk, li ),
Ỹ(tk, li+1) − Ỹ(tk, li)

�sC

, . . .

)

+ T̃Y
0 (tk+1, li), (5)

for k = 0, . . . ,MC − 1, i = 1, . . . , SC . The iteration starts
with Ỹ(t0, li) which is specified by the initial condition. These
iterative calculations are relatively fast, because the coarse grid
contains far fewer space–time points than would be required for
an accurate finite-difference solver. The median and percentile-
based prediction intervals are used to summarize the prediction.
In the rest of the article we call the approach presented in this
section the TER method.

Finally, recall from Section 2 that in the direct modeling ap-
proach, using a product correlation form, the prediction and
posterior variance for an unobserved output depend only on
the correlations associated with the input vector. Because the
other correlation parameters are not involved in output pre-
diction, one might consider assuming CE = IE , CM = IMC

,
and CS = ISC

, for direct modeling, as in the TER approach.
This simplification facilitates the likelihood computation, but
such severe covariance misspecification leads to less accurate
estimates of the remaining parameters. In turn, the misspeci-
fied model and (resulting) biased parameter estimates lead to
larger prediction errors. (These effects are easy to demonstrate
through simulation, but we do not develop the argument fur-
ther here.) Hence, although truncation errors can be reasonably
modeled using a simplified correlation structure, this is not a
realistic approach for direct modeling of output.

4. USE OF AUXILIARY INFORMATION

In some situations, numerical solutions corresponding to a
grid of intermediate size are available at substantially less com-
putational cost than would be required for fine-grid solutions,
although the former are also less accurate than the latter. These
can be incorporated as auxiliary information in the statistical
model to improve predictions. We consider the use of aux-
iliary information in the form of a numerical solution on an
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intermediate grid GI of MI + 1 time intervals and SI + 2
space intervals. Here MI is a positive integer such that MF >

MI > MC and SI is a positive integer such that SF > SI > SC ,
GC ⊂ GI ⊂ GF , and �tI = LT /MI ,�sI = LS/(SI + 1). De-
note by X the vector of output computed using the interme-
diate grid GI , but recorded only for points in GC , so that
X is of the same dimension and format as Y. Denote by TX

the approximate local truncation errors (again computed on the
coarse grid, using the intermediate numerical solution X). The
modeling strategy mirrors the approach presented in the pre-
vious sections, except that the prior assumption for the model
based on truncation errors is TY ∼ N(µ01 +µ1TX,σ 2�), with
� defined as in Section 3, and Y ∼ N(µ01 + µ1X, σ 2�) for
the direct model, with � defined as in Section 2. Note that
for the direct model, we still need to assume a dense space–
time correlation for residuals, because these are the differences
between two highly smooth datasets (Y and a linear function
of X), whereas the residuals in the TER model can still be con-
sidered space–time independent (a characteristic inherited from
the truncation error data). Arguments similar to those given in
the previous sections show that the likelihood computation of
the direct model is more expensive than the likelihood compu-
tation of the TER model by at least a factor of MC · SC · E.

A Bayesian variant of the direct modeling approach pre-
sented in Section 2 that takes advantage of intermediate-grid
solutions as covariates has been suggested by Kennedy and
O’Hagan (2000). In their method, the hyperparameters of the
Bayesian model are estimated by maximum likelihood, and
thus similar computational difficulties are encountered. The ex-
ample presented in the next section shows that it is practically
impossible to estimate the parameters of a direct model for
large output datasets, but an indirect modeling approach of the
output based on truncation errors can offer a working alterna-
tive.

5. EXAMPLE: A SPACE–TIME COMPETITION MODEL

5.1 Two-Species Model

First, we apply the method based on truncation errors to a
system of two PDEs written as

∂Y1

∂t
= D1

(
∂2

∂s2
1

+ ∂2

∂s2
2

)
Y1 + r1

K1
Y1(K1 −Y1) − r1α12

K1
Y1Y2

and

∂Y2

∂t
= D2

(
∂2

∂s2
1

+ ∂2

∂s2
2

)
Y2 + r2

K2
Y2(K2 −Y2) − r2α21

K2
Y2Y1.

The solutions Y1(t, s1, s2) and Y2(t, s1, s2) represent the popu-
lation size for each species at time t and spatial location (s1, s2).
The diffusion term appearing in each equation allows each
species to spread throughout space. The second term is a
species-specific growth term, and the third term allows for
interaction between species. This system has been used suc-
cessfully to model, for example, the displacement of the red
squirrel in Britain by the North American gray squirrel at the
turn of the last century (Murray 2003, sec. 1.3). In this demon-
stration, we use D1 = D2 = .01, r1 = r2 = 8, K1 = K2 = 2,

and α12 = α21 = 1.75. The spatial domain is [0,LS1 ]× [0,LS2 ]
with LS1 = LS2 = 20. The boundary conditions specify that
the population size on the boundary of the domain is 0 at
any time, for each species. This corresponds to a situation
where, for example, the spatial domain is an island and the
survival conditions on the boundary or beyond are not favor-
able for the species under study. The spatial spread at time 0
(i.e., the characterization of the initial conditions) is given
by Y1(0, s1, s2) = n1I (s1, s2) and Y2(0, s1, s2) = n2I (s1, s2),
where I (s1, s2) = exp[−.1 ∗ (s1 − LS1/2)2 − .1 ∗ (s2 − LS2/

2)2]/maxs1,s2 exp[−.1 ∗ (s1 − LS1/2)2 − .1 ∗ (s2 − LS2/2)2]
(a rescaled, truncated bivariate normal density function) and
(n1, n2) is the input vector. Gaussian initial conditions
(or Gaussian mixtures) are considered a good approximation
for the initial conditions in situations where the competition
starts at an unknown time but is noticed only after a time lag,
and the first observation time is considered the initial time for
modeling purposes (Murray 2003, p. 598). The input space is
[.005, .1] × [.005, .1], and we sampled D = 20 input vectors
(n1, n2) according to a maximin Latin hypercube design (see
Morris et al. 1993 for details). The temporal interval consid-
ered is [0,1] because, by t = 1, the competition is clearly won
in most of the cases. With our selected model parameters the
species that has a larger population size at time 0 will even-
tually win the competition, but the speed of the dynamics de-
pends on the values of the initial population sizes. A typical
situation is illustrated in Figure 1, corresponding to n1 = .085
and n2 = .015.

The foregoing PDE system is solved numerically on a fine
spatiotemporal grid with uniform increments �tF and �sF . Due
to system symmetry, we chose the spatial increments to be equal
for each dimension. Denote the fine-grid numerical solution at
t = k�tF , s1 = i�sF , and s2 = j�sF as Y(k, i, j). The associ-
ated finite-difference scheme is

Y1(k + 1, i, j)

= Y1(k, i, j) + �tF

[
D1

×
(

Y1(k, i + 1, j) − 2Y1(k, i, j) + Y1(k, i − 1, j)

�2
sF

+ Y1(k, i, j + 1) − 2Y1(k, i, j) + Y1(k, i, j − 1)

�2
sF

)

+ r1

K1
Y1(k, i, j)(K1 − Y1(k, i, j))

− r1α12

K1
Y1(k, i, j)Y2(k, i, j)

]

and

Y2(k + 1, i, j)

= Y2(k, i, j) + �tF

[
D2

×
(

Y2(k, i + 1, j) − 2Y2(k, i, j) + Y2(k, i − 1, j)

�2
sF

+ Y2(k, i, j + 1) − 2Y2(k, i, j) + Y2(k, i, j − 1)

�2
sF

)
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Figure 1. Progression of Competition Between the Two Species (n1 = .085 and n2 = .015).

+ r2

K2
Y2(k, i, j)(K2 − Y2(k, i, j))

− r2α21

K2
Y2(k, i, j)Y1(k, i, j)

]
.

Figure 1 shows that steep spatiotemporal gradients are as-
sociated with the solutions, and thus very small increments
are needed to resolve them, making the scheme computation-
ally intensive. We also require a coarse grid with increments
�tC and �sC , which are multiples of their fine-grid counter-
parts. The coarse grid used in this example contains MC = 40
temporal points and 20 spatial points in each dimension. The
fine grid used contains 12 times more points in each spatiotem-
poral dimension, and the corresponding numerical solution re-
quires about 3.5 minutes of computational time per run on
a 1-GB workstation in MATLAB. Denote by YC(k, i, j) the
“reindexed” (for the coarse grid) subset of the fine-grid solu-
tion. The approximate local truncation errors are obtained by
introducing the fine-grid solution into the scheme correspond-
ing to the coarse grid,

T1(k + 1, i, j)

= YC
1 (k + 1, i, j) −

[
YC

1 (k, i, j) + �tC

[
D1

×
(

YC
1 (k, i + 1, j) − 2YC

1 (k, i, j) + YC
1 (k, i − 1, j)

�2
sC

+ YC
1 (k, i, j + 1) − 2YC

1 (k, i, j) + YC
1 (k, i, j − 1)

�2
sC

)

+ r1

K1
YC

1 (k, i, j)(K1 − YC
1 (k, i, j))

− r1α12

K1
YC

1 (k, i, j)YC
2 (k, i, j)

]]

and

T2(k + 1, i, j)

= YC
2 (k + 1, i, j) −

[
YC

2 (k, i, j) + �tC

[
D2

×
(

YC
2 (k, i + 1, j) − 2YC

2 (k, i, j) + YC
2 (k, i − 1, j)

�2
sC

+ YC
2 (k, i, j + 1) − 2YC

2 (k, i, j) + YC
2 (k, i, j − 1)

�2
sC

)

+ r2

K2
YC

2 (k, i, j)(K2 − YC
2 (k, i, j))

− r2α21

K2
YC

2 (k, i, j)YC
1 (k, i, j)

]]
.

It is assumed that the truncation errors are smoothly corre-
lated in the input space but uncorrelated in time, space, and
species dimensions. This allows very fast likelihood maximiza-
tion of the truncation error model; a single likelihood evaluation
takes 1 second. Output prediction, based on R = 19 simula-
tions, is then tested at a set of P = 100 new input vectors sam-
pled in the input space according to a second maximin Latin
hypercube design. The performance of this model has been
compared against a benchmark numerical solution (BNCH 1)
that uses comparable resources; the associated grid contains
twice as many time points and three times as many spatial
points in each dimension as the coarse grid. (The truncation er-
rors based model is approximately R = 19 times more compu-
tationally expensive than a numerical solution computed on the
coarse grid, whereas the benchmark numerical solution is ap-
proximately 18 times more expensive than a numerical solution
computed on the coarse grid.) The TER prediction (including
all R = 19 simulations) takes about 20 seconds of computa-
tional time for a new input vector.
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Direct modeling of the output using a dense correlation
matrix is not feasible in applications of this size, because it
requires a very expensive likelihood maximization. A single
likelihood evaluation of the direct model described in Sec-
tion 2 takes about 1 hour, 40 minutes. This is to be ex-
pected because MC = 40 = O(101), SC1 = 20 = O(101), and
SC2 = 20 = O(101). (Because there are two spatial dimen-
sions, the spatial correlation CS used in the direct modeling
is itself a Kronecker product of two correlation matrices, i.e.,
CS = CS1 ⊗ CS2 .) Therefore, the direct modeling likelihood
is more expensive than the likelihood of the truncation errors
data by at least a factor of O(103). For this direct model we
could consider using simplifications to facilitate the likelihood
computation; however, these simplifications would be made at
the expense of model accuracy loss. For example, we could try
to fit a model using only a data subset, but this would result
in biased parameter estimates. Another simplification that can
be considered is to assume a space-specific mean model that
ignores the spatial correlation. We tried this approach for this
example, but after model fitting, strong spatial correlation still
exists, and simply ignoring it will again result in less accurate
parameter estimates. The TER method provides both computa-
tional efficiency and accurate parameter estimates.

We also used an intermediate-grid numerical solution (with
twice as many points in each dimension as in the coarse grid) as
covariates, as described in Section 4. A single likelihood eval-
uation for the truncation error method takes about 2.5 seconds,
whereas a single likelihood evaluation for the direct modeling
approach takes about 4 hours, 15 minutes. To compensate for
the addition of the intermediate numerical solution (which is
approximately 8 times more expensive than a numerical solu-
tion computed on the coarse grid), the density of grid points
used for the benchmark (BNCH 2) was increased to 3 times
that of the coarse grid, so that one evaluation was approximately
27 times as expensive as a coarse-grid numerical solution. The
covariate-based truncation error prediction including all R = 19
simulations takes about 25 seconds of computational time.

The results over the set of P = 100 new input vectors are
summarized in Table 1. The root mean squared error (RMSE)
measures of the truncation error models, with (AI) or with-
out (NAI) auxiliary information, are smaller than those of the
benchmark numerical solutions. The AI model has better ac-
curacy than the NAI model (perhaps as expected), but the
AI model is also more computationally expensive. The nom-
inal 90% prediction intervals tend to overcover the true fine-
grid solution. Figure 2(a) shows boxplots of log maxima over
space, time, and species of absolute values of prediction errors
at the 100 prediction points. Overall (with the exception of a

Table 1. Prediction Accuracy Measures for the Space–Time
Competition Model

TER NAI BNCH 1 TER AI BNCH 2

Two species
RMSE .0040 .0158 .0007 .0097
COVER .9828 — .9961 —

Five species
RMSE .0026 .0052 .0002 .0031
COVER .9208 — .9927 —

few prediction points), the boxplots show that TER NAI per-
forms better than the benchmark numerical solution BNCH 1.
The performance of TER AI relative to the benchmark numeri-
cal solution BNCH 2 is even better.

5.2 Extension to Several Species

There are real situations in which more than two species
must be considered. For example, in the work of Murray (2003,
p. 605), the species are several mutating cell populations in a tu-
mor growth. In addition to the diffusion terms, the generalized
model includes exponential growth, but Murray pointed out
(p. 543) that a logistic growth can be trivially incorporated. The
population model that we use in this section includes E equa-
tions (species), and each equation contains a diffusion term,
a logistic growth term, and E − 1 interactions with all other
species. More precisely, the PDE system is of the form

∂Ya

∂t
= Da

(
∂2

∂s2
1

+ ∂2

∂s2
2

)
Ya + ra

Ka

Ya(Ka −Ya)

−
∑
b �=a

raαab

Ka

YaYb, a = 1, . . . ,E.

The corresponding computer code becomes increasingly com-
plex and computationally expensive as E increases. For the il-
lustration purposes, we choose E = 5 and again set ra = 8,
Ka = 2, and αab = 1.75, a �= b. The finite-difference scheme
and the truncation errors formulas extend naturally from the
special case of two species. Due to the increase in the dimen-
sion of the input space, we sampled D = 50 input vectors ac-
cording to a maximin Latin hypercube design. Each fine-grid
run takes about 11.5 minutes. A single likelihood function eval-
uation for the TER method takes about 15 seconds without co-
variates and 40 seconds with covariates. A TER prediction (in-
cluding all R = 19 simulations) takes about 1 minute per run
when no covariates are used and 1.5 minutes with covariates.
The likelihood maximization of the direct method is again pro-
hibitively expensive; because a single TER likelihood evalua-
tion takes tens of seconds, we would expect a single evaluation
of direct modeling likelihood to take tens of hours. (In fact, we
stopped the incomplete computation of a single evaluation for
the direct likelihood after about 12 hours.) Table 1 gives re-
sults over a new set of P = 100 prediction inputs, with gen-
eral patterns similar to those observed for E = 2. Figure 2(b)
shows boxplots similar to those in Figure 2(a). Comparing TER
NAI and the benchmark BNCH 1 according to these boxplots
is rather inconclusive, but TER AI shows substantially better
overall performance than BNCH 2.

5.3 Numerical Comparison of the TER
and Direct Methods

From the previous sections, it is clear that for large-output
datasets, results for the direct method are not feasible, and
thus comparing it with the TER method is not possible. How-
ever, comparison is possible for a simpler case of the example
in Section 5.1. Consider the ODE system obtained from the
two-species PDE system including only the time component
t ∈ [0,3] and D1 = D2 = 0. Set MF = 15,000 (the fine-grid
solution takes about 2 seconds) and MC = 15. Set the model
parameters as in Section 5.1. Calculation of the likelihood for
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(a) (b) (c)

Figure 2. Boxplots of Log Maxima Over Space, Time, and Species of Absolute Value Prediction Errors at the 100 Prediction Points. Each panel
illustrates the performance of the TER (NAI and AI) against its competing methods. (a) PDE two-species model; (b) PDE five-species model;
(c) ODE two-species model (DIR, direct method).

direct modeling is now slower than that for the TER likelihood
by a factor of only O(101) and can be optimized relatively eas-
ily. The estimate of the parameter appearing in CM (generated
using a Gaussian correlation function) for the direct method
without covariates is φ̂ = 8.3251, suggesting a strong tempo-
ral correlation for the output data. Had we chosen to fit a tem-
poral correlation for the truncation errors data (in which case
the TER and direct likelihoods are about equally computation-
ally expensive), the corresponding parameter estimate would be
φ̂ = 82.2117 (i.e., weak temporal correlation), supporting the
assumption of temporal independence for the TER method.

The prediction results for the TER (with temporal indepen-
dence) and direct methods are summarized in Table 2. The
RMSE measures for the TER method are smaller than those
of the direct method, especially in the NAI case. The actual
prediction interval coverage for the TER method is close to the
nominal 90% coverage, whereas the direct method prediction
intervals undercover the fine-grid solution. Figure 2(c) shows
similar boxplots as in the other two panels. With the excep-
tion of a single prediction point (where in fact the TER pre-
diction interval is wider and covers the true value, whereas the
direct method does not), overall TER performs better than the
direct method. The TER method is more accurate than the di-
rect method because the nonlinear mechanism of the ODE is
intrinsically built into the TER predictor.

To better demonstrate the nonlinear/nonstationary feature of
the TER model and the qualitative differences between the di-
rect and TER methods, Figure 3 displays point and interval pre-
dictions along with the true fine-grid time series at prediction
input (n1, n2) = (.0731, .0693). The first two columns of Fig-
ure 3 correspond to the first species; the last two columns, to
the second species. The direct method results are shown in the
upper row; the TER results, in the lower row. It is clear that

Table 2. Prediction Accuracy Measures for the ODE Competition Model

TER NAI Direct NAI TER AI Direct AI

RMSE .1091 .2747 .0383 .0577
COVER .8912 .6110 .9241 .7603

the code nonlinearity inherited by the TER model helps bet-
ter predict the outcome of competition. When no covariates are
used [Figs. 3(a), 3(c), 3(e), and 3(g)], the direct method appears
“unsure” about the binary nature of the outcome of competi-
tion, whereas the TER prediction is correct. When covariates
are used [Figs. 3(b), 3(d), 3(f ), and 3(h)] the direct method im-
proves due to the intermediate numerical solution used as a co-
variate, although output at the middle of the time segment is
still poorly predicted. The TER method with covariates results
in better prediction than any of the other methods discussed.

6. CONCLUSION

Many computer codes of scientific interest are implementa-
tions of finite-difference schemes for computing approximate
solutions to systems of differential equations. As demonstrated
herein, relatively simple stochastic processes can be used to
model the behavior of the local truncation errors associated
with such numerical approximations. These models can serve as
the basis for effective nonstationary models of outputs, preserv-
ing much of the intrinsic nonlinearity of the underlying system.
Further, it is apparent that, at least in some cases, spatiotempo-
ral correlation is not needed in the local truncation error model,
whereas it would be absolutely necessary in the corresponding
direct model, leading to substantial computational advantages
for the truncation error approach.

In general, the accuracy of the truncation error method and
the computational resources that it requires depend on the par-
ticular code being examined. However, in the examples de-
scribed herein, models based on truncation errors lead to better
output predictions than numerical solutions requiring compa-
rable computational resources. Because local truncation errors
often display weak correlation and relatively stationary behav-
ior, even when the output functions do not, this approach can be
expected to lead to improved surrogates in many applications.

APPENDIX: PROOF OF MEAN SQUARED
CONVERGENCE FOR THE TER

STATISTICAL PREDICTORS

The convergence of the numerical solution to the analytical solu-
tion of a differential equation as the grid increments converge to 0 is a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Point and 90% Interval Prediction [PRED, UB 90, LB 90 ( )] Along With Fine-Grid Time Series [TRUE ( )] at Prediction Input
(n1, n2) = (.0731, .0693) for the ODE Example. Plots (a), (b), (e), and (f) correspond to the first species, (c), (d), (g), and (h), to the second species.
Plots (a)–(d) give results for the direct method, and (e)–(h) give the TER results, for models without covariates [(a), (c), (e), and (g)] and with
covariates [(b), (d), (f), and (h)].

fundamental property of the finite-difference schemes that must be sat-
isfied. The main concern comes from the fact that the approximation
errors made at each step of the iteration could accumulate in such a
way that convergence cannot occur. We prove here that a form of con-
vergence for the TER statistical predictor (of numerical solutions) to
the analytical solution occurs under conditions similar to those for the
convergence of the numerical solution in the deterministic case. First,
we introduce the following definitions from Isaacson and Keller (1966,
pp. 516, 519). To be closer to their notation, all the terms of the finite-
difference scheme (2) are moved to the left side, and then (2) becomes
F�F

(Y) = 0.

Definition A.1. Let TY = F�C
(Y) be the local truncation errors.

The finite-difference scheme is consistent if ‖TY‖ → 0 as ‖�C‖ → 0,
where �C = (�tC ,�sC ).

In this definition TY are the scalar local truncation errors reshaped
in vector format. In general, when the increments do not vary across
space time (the method of choice in many applications), the compo-
nents of TY are of the same order of magnitude, denoted generically
by O(T ) here.

Definition A.2. The finite difference scheme is stable if there ex-
ists a positive constant K independent of the grid increments, such
that ‖U − V ‖ ≤ K‖F�C

(U) − F�C
(V )‖ for any pair of functions

U and V defined on the grid.

The main result of this appendix is as follows.

Theorem A.1. If the finite difference is consistent and stable, then
the TER predictor of the numerical solution at any new input converges
in mean square to the analytical solution of the differential equation as
the coarse-grid increments converge to 0.

This result parallels the fundamental result in finite-difference meth-
ods, which states that if a scheme is consistent and stable, then the
numerical solution converges in norm to the analytical solution of the
differential equation as the grid increments converge to 0 (Isaacson
and Keller 1966, p. 521). The following auxiliary result is helpful in
proving the main result.

Lemma A.1. If the approximate local truncation errors are assumed
independent except for input correlation, then the prediction distrib-
ution of scalar approximate local truncation errors at new inputs is
normal with mean O(T ) and variance O(T 2).

Proof. (a) No auxiliary information (NAI). The MLE of µ

is µ̂ = (1′�−1TY )/(1′�−11) = (
∑D

i,j=1 (CD)−1
i,j

(1′TY·,j ))/

(
∑D

i,j=1 (CD)−1
i,j

(1′1)) = O(T ), because each component of TY is

O(T ) as ‖�C‖ → 0. (Here TY·,· is the vector TY reshaped in a
matrix so as to separate its inputs dimension from the other di-
mensions.) The MLE of σ 2 is σ̂ 2 = ∑D

i,j=1 (CD)−1
i,j

(TY·,i − µ̂1)′ ×
(TY·,j − µ̂1)/(MCSCED) = O(T 2). The posterior mean at d0 is µ̃ :=
µ̂1 + [(Cd0,DC−1

D
) ⊗ IMCSCE](TY − µ̂1) = µ̂1 + ∑D

j=1(Cd0,D ×
C−1

D
)j (TY·,j − µ̂1) = O(T )1, and the posterior variance is σ̃ 2 :=

σ̂ 2(1 − Cd0,DC−1
D

C′
d0,D

) = O(T 2).
(b) Auxiliary information (AI) used. The MLE of µ = [µ0,µ1]

is µ̂ = ([1,TX]′�−1[1,TX])−1([1,TX]′�−1TY ), assuming that the
inverse matrix exists. With the notation v11 = ∑D

i,j=1 (CD)−1
i,j

(1′1),

v12 = ∑D
i,j=1 (CD)−1

i,j
(1′TX·,j ), v22 = ∑D

i,j=1 (CD)−1
i,j

(TX′·,i TX·,j ),

u1 = ∑D
i,j=1 (CD)−1

i,j
(1′TY·,j ), and u2 = ∑D

i,j=1 (CD)−1
i,j

(TX′·,i TY·,j ),

it follows that µ̂0 = (v22u1 − v12u2)/(v11v22 − v2
12) and µ̂1 =

(−v12u1 + v11u2)/(v11v22 − v2
12). When ‖�C‖ → 0, TY ≈ TX ,

and thus u1 ≈ v12, u2 ≈ v22. This implies that µ̂1 = O(1). Note that
v11v22u1 −v11v12u2 = (v11v22 −v2

12)u1 + (v12u1 −v11u2)v12, and,

therefore, µ̂0 = (1/v11)(v11v22u1 − v11v12u2)/(v11v22 − v2
12) =

O(1)(u1/v11 − v12/v11) = O(T ). Finally, the MLE of σ 2 is σ̂ 2 =∑D
i,j=1 (CD)−1

i,j
(TY·,i − µ̂01− µ̂1TX·,i )′(TY·,j − µ̂01− µ̂1TX·,j )/(MC ×

SCED) = O(T 2). Similar arguments as in (a) demonstrate that the
posterior mean is O(T )1 and the posterior variance is O(T 2).

Proof of Theorem A.1. ‖Y − Ỹ‖ ≤ K‖F�C
(Y) − F�C

(Ỹ)‖ =
K‖TY −µ̃− σ̃ ε‖ = O(T )‖m+ε‖, where ε is a vector with iid N(0,1)

components and m is a vector with O(1) components. Therefore,

E ‖Y−Ỹ‖2

MCSCE
= O(T 2) → 0 as ‖�C‖ → 0.



1536 Journal of the American Statistical Association, December 2006

Table A.1. Convergence Study for the TER Method,
Two-Species Model

(∆tC , ∆sC )

(.0250, 1) (.0125, .5) (.0083, .3333)

RMSE (NAI) .0126 .0050 .0024
RMSE (AI) .0025 .0004 .0001

We close this appendix with a discussion of the examples presented
in this article. Ames (1965, p. 323) discussed conditions for the stabil-
ity and consistency of a class of PDEs that includes the species PDE
presented here. It can be shown that the scalar local truncation errors
for the species PDE example are O(�tC ) + O(�2

sC
), which actually

defines O(T ). As a demonstration, Table A.1 provides empirical evi-
dence of convergence in mean square for the two-species PDE model,

where the RMSE,
√

E(‖Y − Ỹ‖2)/(MCSCE), decreases toward 0 as
‖�C‖ decreases toward 0.

[Received March 2004. Revised May 2006.]
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