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a b s t r a c t

Combined designs for experiments involving a physical system and a simulator of the
physical system are evaluated in terms of their accuracy of predicting the mean of
the physical system. Comparisons are made among designs that are (1) locally optimal
under the minimum integrated mean squared prediction error criterion for the combined
physical systemand simulator experiments, (2) locally optimal for the physical or simulator
experiments, with a fixed design for the component not being optimized, (3) maximin
augmented nested Latin hypercube, and (4) I-optimal for the physical system experiment
and maximin Latin hypercube for the simulator experiment. Computational methods are
proposed for constructing the designs of interest. For a large test bed of examples, the
empirical mean squared prediction errors are compared at a grid of inputs for each test
surface using a statistically calibrated Bayesian predictor based on the data from each
design. The prediction errors are also studied for a test bed that varies only the calibration
parameter of the test surface. Design recommendations are given.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Combinations of observations from a physical system and a deterministic computer simulator of that system have been
used, for example, to calibrate the simulator statistically, to optimize the physical system, and to achieve other objectives
(see, for example, Higdon et al., 2004, 2008; Leatherman et al., 2014b). This paper considers settings where such data come
from a physical experiment that varies the values of the inputs to the physical system and a computer experiment that varies
the input values to the simulator code. The goal is to determine the initial design of a combined simulator and physical
experiment with the objective of most accurately predicting the mean of the physical system using a statistically calibrated
simulator.

For both physical and computer experiments there has been much research on the optimal design of experiments using
intuitively defined criteria. For example the I-optimality criterion, which minimizes the integrated mean squared prediction
error (MSPE) for a specified regression model, is a design metric for physical experiments that emphasizes prediction
accuracy (Studden, 1977; Hardin and Sloane, 1993).

Designs that minimize the integrated MSPE (IMSPE) have also been proposed for computer experiments. However,
because the analysis of simulator output ordinarily is based on non-parametric Kriging predictors, most simulator designs
constructed in the literature are locally optimal, corresponding to a specification of correlation and other model parameters
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(although the designs of Leatherman et al., 2016, are constructed for a weighting of the parameter values). More often, the
initial design of a computer experiment uses a ‘‘space-filling’’ criterion resulting in, for example, minimax designs (Johnson
et al., 1990), minimum average reciprocal distance designs (Audze and Eglais, 1977; Welch, 1985; Liefvendahl and Stocki,
2006), and lattices, nets, and uniform designs (Niederreiter, 1978, 1992; Fang and Wang, 1994; Owen, 1995).

Previous work on the design of combined physical and simulator experiments includes studies of how to take follow-up
runs. For example, Ranjan et al. (2011) and Williams et al. (2011) focus on batch sequential design optimization but use
standard space-filling designs as the initial physical and simulator designs. The initial observations are used to estimate
model parameters, and additional design points are added to improve the design’s measure of goodness, in particular to
provide the maximum IMSPE reduction in Ranjan et al. (2011) and the maximum generalized expected improvement for
global fit in Williams et al. (2011).

Using a calibrated Bayesian predictor for the mean of a physical system, this paper compares the accuracy of local IMSPE-
optimal designs for combined physical and simulator experiments with maximin augmented nested Latin hypercube designs
(MmANLHD) andother designs. The comparisons are basedon the empiricalmean squaredprediction error (EMSPE) in a large
test bed of examples. Section 2 describes the model used to relate the simulator experiment output and the physical system
output. Section 3.1 gives the formulas for the MSPE and IMSPE and defines local IMSPE-optimal designs while Section 3.2
defines MmANLHDs. Sections 4.1 and 4.2 give algorithms for constructing local minimum IMSPE designs and MmANLHDs,
respectively. Section 5 presents a study of the prediction accuracy of the initial combined designs. Fourteen designs are
selected in Section 5.1 to compare across 18 corresponding physical and simulator test-bed families, where the test beds
are described in Section 5.2. Section 5.4 compares the designs’ prediction accuracy across the surfaces using the EMSPE
criterion defined in Section 5.3. An additional comparison of prediction accuracy is made in Section 6 where test beds are
formed from stationary GP draws with θ ≠ 0.5 × 1dt when the design used to collect training data for prediction is locally
optimal for θ = 0.5 × 1dt . A brief summary of the conclusions is given in Section 7.

2. Modeling combined simulator and physical outputs

In the simulator code let xs and t denote a dx × 1 vector of control inputs and a dt × 1 vector of calibration inputs,
respectively. Control inputs can be ‘set’ by the researcher in both the physical experiment as well as in simulator runs.
Calibration inputs can be varied in the simulator runs but are fixed and unknown in the associated physical experiment;
for example, while the material properties of meniscal tissue are fixed values in a biomechanical cadaver study of stresses
in the knee, a finite element simulator may regard these values as inputs. Let xp be a dx × 1 vector of control inputs in the
physical experiment and θ be the true, but unknown, dt × 1 vector of calibration parameters. Assume the input space of the
control variables is rectangular but transformed so that xs, xp ∈ [0, 1]dx , while the input space of the calibration variables is
also rectangular but transformed so that t , θ ∈ [0, 1]dt . Finally let ys(xs, t) and yp(xp) denote the outputs from the simulator
and physical experiments when run at (xs, t) and xp, respectively.

Adopting the model of Kennedy and O’Hagan (2001), denoted KO hereafter, this paper regards the simulator output
ys(xs, t) as a draw from the Gaussian Process (GP)

Y s xs, t =

k
ℓ=1

fℓ(xs, t)βℓ + Z(xs, t) = f T (xs, t)β + Z(xs, t), (1)

where f (xs, t) = (f1(xs, t), f2(xs, t), . . . , fk(xs, t))T are known regression functions, β = (β1, β2, . . . , βk)
T is a vector of

unknown regression coefficients, wT denotes the transpose of w, and Z(·, ·) is a zero-mean, stationary GP over [0, 1]dx+dt

with process variance σ 2
Z and separable Gaussian correlation function:

Cor

Y (xs1, t1), Y (xs2, t2)


= RZ


(xs1, t1) − (xs2, t2) | ρZ


=

dx
j=1

ρ
4 (xs1,j−xs2,j)

2

Z,j

dt
j=1

ρ
4 (t1,j−t2,j)2

Z,dx+j , (2)

where xsi,j and ti,j are the jth elements of inputs xsi and ti, respectively, i = 1, 2. The parameter ρZ,j ∈ [0, 1] is the correlation
between outputs at inputs (xs1, t1) and (xs2, t2) that differ only in the jth input by half the range of this input.

Let ζ (xp) ≡ ζ (xp, θ) denote the mean of the physical system run at input xp. The output yp(xp) is modeled as the sum of
ζ (xp) and a zero meanmeasurement error ϵ(xp), so that yp (xp) is a realization of Y p (xp) = ζ (xp)+ ϵ (xp) where additional
assumptions regarding ϵ (xp) are stated below. The KO model assumes that the simulator, even when run at the true value
of θ, need not perfectly represent the underlying physical process because the mathematical model uses simplified physics
or biology. Following KO, denote the simulator model bias (discrepancy) as

δ(xp) ≡ ζ (xp) − ys(xp, θ),
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and assume that δ(xp) can be regarded as a realization of ∆ (xp) which is a stationary, zero-mean GP over [0, 1]dx with
process variance σ 2

δ and separable Gaussian correlation function

Rδ


xp1 − xp2 | ρδ


=

dx
j=1

ρδ,j
4

xp1,j−xp2,j

2
, (3)

where xpi,j is the jth element of input xpi , i = 1, 2, and ρδ,j ∈ [0, 1] is interpreted analogously to ρZ,j. The zero-mean
assumption for ∆ (xp) is interpreted as saying that there is no global trend in δ (xp) requiring regression modeling.

As in KO, assume yp (xp) can be regarded as a realization of

Y p 
xp


= Y s xp, θ + ∆


xp


+ ϵ


xp


, (4)

where Y s (xp, θ), ∆ (xp), and ϵ (xp) are mutually independent with the distribution of Y s (xp, θ) defined through (1) and (2),
∆ (xp) has distribution described in the previous paragraph, and ϵ (xp) is a white noise process with variance σ 2

ϵ .
Suppose that ns simulator observations ys

=

ys(xs1, t1), y

s(xs2, t2), . . . , y
s(xsns , tns)

T result from running a set of inputs
specified by the rows of the ns × (dx + dt) simulator design matrix

X s
=


xs1 xs2 · · · xsns
t1 t2 · · · tns

T

.

Additionally, suppose that np physical observations yp
=


yp(xp1), y

p(xp2), . . . , y
p(xpnp)

T are to be collected at inputs which

are the rows of thenp×dx physical designmatrixXp
=


xp1, x

p
2, . . . , x

p
np

T . The combinedphysical and simulator observations

are denoted by the (np + ns) × 1 vector y =

(yp)T , (ys)T

T .
In the experimental setting of this paper, the goal is to predict themean of the physical system output ζ (x0) at x0 based on

the physical and simulator training data. Focusing on the prediction of ζ (x0) = ys(x0, θ) + δ(x0) eliminates the problem of
unidentifiability of predicting separately δ(·) and θ. When β in (1) is unknown, while � =


θ, σ 2

Z , ρZ , σ
2
δ , ρδ, σ

2
ϵ


in (1)–(3)

are known, Sec 3.3 of Santner et al. (2003) presents the argument that shows that the best linear unbiased predictor (BLUP)
of ζ (x0) is

ζblup(x0) = f T0 β + vT
06−1

y


y − Fβ

, (5)

where f0 = f (x0, θ) is the k × 1 vector of known regressors at control input x0 and calibration parameter θ; β =

(F T6−1
y F)−1F T6−1

y y is the k × 1 general least squares estimator of β; F is a (np + ns) × k matrix of known regressors
with the first np rows defined by fj(x

p
i , θ) for 1 ≤ i ≤ np and 1 ≤ j ≤ k, and the last ns rows defined by fj(xsi , ti) for 1 ≤ i ≤ ns

and 1 ≤ j ≤ k; and v0 = [(vp
0)

T , (vs
0)

T
]
T is the (np + ns) × 1 vector of covariances, with the ith element of vp

0 being

Cov(Y s(x0, θ) + ∆(x0), Y s(xpi , θ) + ∆(xpi ))

= σ 2
Z RZ


(x0, θ) − (xpi , θ) | ρZ


+ σ 2

δ Rδ


x0 − xpi | ρδ


, for i = 1, . . . , np,

while the jth element of vs
0 is

Cov(Y s(x0, θ) + ∆(x0), Y s(xsj , tj)) = σ 2
Z RZ


(x0, θ) − (xsj , tj) | ρZ


, for j = 1, . . . , ns.

Also, 6y is the (np + ns) × (np + ns) covariance matrix

6y =


6Z

pp 6Z
ps

(6Z
ps)T 6Z

ss


+


6δ + 6ϵ 0

0 0


≡ 6Z +


6δ + 6ϵ 0

0 0


, (6)

where 6Z
pp

=

σ 2
Z RZ


(xsi , θ) − (xsj , θ) | ρZ


is np × np, 6Z

ps
=


σ 2
Z RZ


(xpi , θ) − (xsj , tj) | ρZ


is np × ns, 6Z

ss
=

σ 2
Z RZ


(xsi , ti) − (xsj , tj) | ρZ


is ns × ns, 6δ =


σ 2

δ Rδ


xpi − xpj | ρδ


is np × np, and 6ϵ = σ 2

ϵ Inp . In Section 3.1, the BLUP of
ζ (x0) in (5) will be used to define IMSPE and the designs that are locally optimal for the IMSPE measure.

The predictors used in the simulation comparisons of Sections 5 and 6 do not assume that [β, �] is known. Instead, the
(fully) Bayesian predictorζFB(x0) = E


Y s xp, θ + ∆


xp


|y


= E[β,�|y]


E


Y s xp, θ + ∆


xp


|β, �, y


= E[β,�|y]


f T0 β + vT

06−1
y (y − Fβ)


, (7)

is usedwhere a prior for [β, �] is assumed. Unfortunately, the predictor (7) can be analytically demanding and, therefore, to
make predictions in Sections 5 and 6, (7) is computed based on draws from [β, � | y] that are constructed using theMarkov
Chain Monte Carlo algorithm that is implemented in the GPM/SA software of Gattiker (2008).
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3. Designs for combined physical and simulator experiments

In their initial research on calibration, KO speculated on the design of combined physical and simulator experiments.
They noted that the physical design is often ‘‘not a matter of choice’’. Next, they suggested that the simulator design should
cover both the control input space and calibration input space well, and that a sequential design is a good way to ensure the
coverage of the calibration input space. Their final observation is that there should be simulator design points that are ‘close’
to physical design points in order to determine the model bias.

While physical designs and simulator designs have been studied extensively in their own right, the combination of these
designs has received much less attention in the literature. Ranjan et al. (2011) and Williams et al. (2011) studied combined
follow-up designs. However, to the authors’ knowledge, the effect of the initial combined design has not yet been presented
in the literature.

The following subsections define two design criteria for initial combined designs. The first is the local minimum IMSPE
criterion described in Section 3.1. This criterion is prediction-based; i.e., it is defined using the physical and simulator output
models and the BLUP from Section 2. The second is theMmANLHD criterion that is defined in Section 3.2. This geometrically-
based criterion yields space-filling simulator designswith correspondingphysical designswhosepoints replicate someof the
control input values from the simulator design. Thus, this criterion follows the KO suggestion to align simulator and physical
design points. A third design is used in Section 5 for comparison; this commonly-used design consists of an I-optimal design
for the physical experiment paired with an MmLHD for the simulator experiment.

3.1. Locally optimal designs for minimizing the integrated mean squared prediction error

Designs constructed using the local minimum IMSPE criterion are meant to provide small expected prediction errors of
the mean of the physical system on average across the control input space. The predictorζblup(x0) in (5) depends on y, the
physical and simulator designs Xp and X s (through F , RZ (· | ρZ ), and Rδ(· | ρδ)), and on � =


θ, σ 2

Z , ρZ , σ
2
δ , ρδ, σ

2
ϵ


. For a

given Xp, X s, and �, the MSPE ofζblup(·) at x0 ∈ [0, 1]dx is

MSPE

x0,Xp,X s

| �


= E
ζblup(x0) −


Y s(x0, θ) + ∆(x0)

2
|�


(8)

= σ 2
Z + σ 2

δ −

f T0 vT

0

 
0 F T

F 6y

−1 
f0
v0


,

where f0, F , v0, and 6y are defined below (5) and the expectation (8) is taken with respect to

Y s(x0, θ) + ∆(x0),


Y p

T
,

Y s
T , where Y p and Y s are the GP model analogs of yp and ys.
To avoid the numerical non-invertibility of 6y when simulator design points {xsi } are ‘‘too close’’ together, simulator

designs that are constructed using (8) are restricted to be an element of the set of all possible ns-run simulator designs in
dx + dt inputs where no two design rows are within an ϵ-ball of diameter b = 10−3 of each other, denoted by D s

ns,dx+dt ,b
hereafter. Note that the replication of physical design points does not pose a similar problem because of the measurement
error term ϵ(·) in the physical model (4). Thus, physical designs will be selected from D

p
np,dx , the set of all possible np-run

physical designs in dx inputs.
Given parameters � =


θ, σ 2

Z , ρZ , σ
2
δ , ρδ, σ

2
ϵ


, the IMSPE of the predictorζblup(·) using design (Xp,X s) is

IMSPE

Xp,X s

| �


=


[0,1]dx

MSPE

x0,Xp,X s

| �

dx0

= σ 2
Z + σ 2

δ − trace


0 F T

F 6y

−1 
[0,1]dx


f0f T0 f0vT

0
v0f T0 v0vT

0


dx0


. (9)

Given �, an (Xp,X s) that minimizes Eq. (9) over

D

p
np,dx , D s

ns,dx+dt ,b


is said to be a local IMSPE-optimal combined design

(w.r.t. �). Equivalently, factoring (9) into σ 2
Z times

IMSPE⋆

Xp,X s

| �⋆


≡
1
σ 2
Z
IMSPE


Xp,X s

| �

, (10)

shows that a local IMSPE-optimal combined design minimizes IMSPE⋆ (Xp,X s
| �⋆) and depends only on �⋆

=

θ, ρZ , σ

2
δ /

σ 2
Z , ρδ, σ

2
ϵ /σ 2

Z


. Notice that a local IMSPE-optimal design is independent of β but depends on the values of the regression

functions at the training data inputs, through F , and at the point to be predicted, through f0.
The parameters �⋆ needed to calculate IMSPE⋆ typically are not known in advance of the experiment. The simulation

study in Section 5.4 examines the prediction accuracy of a range of local IMSPE-optimal designs to determine whether there
is a choice of �⋆ that allows for accurate empirical predictions for a variety of test-bed surfaces. The choices of �⋆ that are
used to construct locally optimal designs for the simulation study of Section 5 are based on the results of Leatherman et al.
(2016) for the simulator-only setting.
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Table 1
A local IMSPE-optimal combined 10 × 2 physical and 15 × 3 simulator design constructed
using �⋆

= (θ = 0.5, ρZ = 0.25 × 13, σ
2
δ /σ 2

Z = 0.1, ρδ = 0.25 × 12, σ
2
ϵ /σ 2

Z = 0.01) and
the constant mean f (x, t) = 1.

Physical design Simulator design
xp1 xp2 xs1 xs2 t1

0.4682 0.7144 1.0000 0.4026 0.4954
0.7852 0.3414 1.0000 1.0000 0.5004
0.3766 0.0795 1.0000 1.0000 0.0000
0.1381 0.2439 0.3070 0.5737 0.4987
0.7092 0.9092 0.0000 1.0000 0.5001
0.9286 0.0883 0.0000 1.0000 1.0000
0.0480 0.5500 0.3881 1.0000 0.4997
0.1570 0.8472 1.0000 1.0000 1.0000
0.4502 0.3779 0.0000 0.0000 0.4954
0.8898 0.6930 0.5411 0.0000 0.0000

0.6703 0.0010 0.4932
0.6330 0.5643 0.4962
0.5411 0.0004 0.0019
0.0000 1.0000 0.0000
0.6702 0.0000 0.4932

3.2. Maximin augmented nested latin hypercube designs

A second design criterion that will be considered in the simulation study of Section 5 is the MmANLHD criterion.
Recall that the projections of an (ns × dx) LHD onto every one of the dx axes has one design value on each grid point
{0, 1/(ns − 1), . . . , 1}. The MmANLHDs described below are constructed from nested LHDs (NLHDs). NLHDs have the
property that the smaller (physical) design points must coincide with a subset of the control inputs for the larger (simulator)
design. Because the NLHDs are marginally non-collapsing and are selected to be space-filling, the MmANLHDs constructed
from these designs inherit these properties.

First, an NLHD that maximizes the minimum inter-point distance over pairs of rows is selected. Assuming np ≤ ns,
the full NLHD is used for the control variables in the simulator experiment and the smaller (nested) design is used for
the physical design. Then, augmentation is performed by adding columns to the simulator design matrix for the calibration
inputs. Formally, letLnp,dx,ns,dx+dt denote the set of all ns×(dx+dt) LHDswhose first dx columns form the specifiedmaximin
NLHD with designs sizes (np, dx) and (ns, dx). Any design X ∈ Lnp,dx,ns,dx+dt that maximizes

min
x1,x2∈X

dx+dt
i=1


x1,i − x2,i

2
, (11)

is said to be a maximin augmented nested Latin hypercube design. The MmANLHDs used for comparison in the simulation
study of Section 5.4 were constructed starting with the maximin NLHDs posted on the website of van Dam et al. (2013).

4. Design construction algorithms

4.1. A global/local algorithm for constructing local IMSPE-optimal designs

To find the combined designs (Xp
∈ D

p
np,dx ,X

s
∈ D s

ns,dx+dt ,b) that minimize IMSPE⋆ in (10) for b = 10−3 at a specific set
of parameter values �⋆, this paper uses particle swarm optimization (PSO) to identify a design that serves as the starting
point for a gradient-based quasi-Newton (QN) search for the best design. A detailed description of this heuristic approach
and an illustrative example is presented in Leatherman et al. (2014a).

Briefly, PSO begins with a set of Ndes starting combined designs (Xp,X s) spread over the design space
D

p
np,dx , D s

ns,dx+dt ,b


. Each design is iterated Nits times. At each iteration, a design is updated to a new design that is

‘‘between’’ the global best design among all combined designs generated thus far and the best design among those having
started at the same (Xp,X s). For the examples in this paper, the PSO parameter settings followed the recommendations of
Kennedy and Eberhart (1995) and Yang (2010), and the PSO algorithm was run with Ndes = 4


npdx + ns(dx + dt)


starting

designs and Nits = 2Ndes iterations. The best design constructed by PSO was used as the starting design for a single run of a
QN algorithm (as implemented in the MATLAB (MATLAB, 2015) code fmincon.m) to produce the final (approximate) local
IMSPE-optimal design.

An example of a local IMSPE-optimal combined 10-run × 2-d physical design and 15-run × 3-d simulator design w.r.t.
�⋆

=

θ = 0.5, ρZ = 0.25 × 13, σ

2
δ /σ 2

Z = 0.1, ρδ = 0.25 × 12, σ
2
ϵ /σ 2

Z = 0.01

and the constant mean, f (x, t) = 1, is

listed in Table 1. The physical design and the 2-d projection of the simulator design onto (x1, x2) space is shown in the left
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Fig. 1. Projections of the local IMSPE-optimal combined design in Table 1. Left panel: projection of the simulator design onto (x1, x2) space. Right panel:
scatterplot of the 3-d simulator design, with 2-d physical design shown on plane t1 = 0. The physical design shown as ‘+’ symbols; the simulator design
shown as open circles.

panel of Fig. 1; this projection is visually space-filling. The right panel of Fig. 1 shows the full 3-d simulator design which
includes the calibration parameter t1 on the vertical axis. The right panel also shows the 2-d physical design in the plane
t1 = 0. Note that the eleventh and fifteenth point of the simulator design in Table 1 have a Euclidean distance of only
0.001005 between them. This distance is very near the simulator design minimum distance restriction that is permitted by
the ϵ-ball with radius 10−3. Other authors who have found this near-replication of simulator points are Crary (2002) and
Crary and Stormann (2015).

4.2. A Smart Swap algorithm for constructing MmANLHDs

EachMmANLHD used in the simulation study of Section 5.4 was constructed by appending columns to the designmatrix
of a fixed maximin NLHD with dx inputs, using a modified version of the Smart Swap algorithm described by Moon et al.
(2011). (This modification also allows the algorithm to be used to add inputs to any fixed LHD having points on a grid.)
Specifically, for this paper, dt additional columns are required for the input settings of the calibration parameters in the
ns-run simulator design (with nested np-run physical design). For the givenNLHD, it is required that the resulting augmented
design is an MmANLHD, i.e., it should have a maximum value of the minimum inter-point Euclidean distance (11).

The Smart Swap algorithm of Moon et al. (2011) iteratively improves a candidate design as follows: at each iteration,
one of the design points involved in the minimum inter-point distance is selected at random and, if it improves the design,
a coordinate of this design point is swapped with the corresponding coordinate of another point randomly selected from
the design. Additionally, this coordinate swap occurs with a probability specified by the user when the swap produces an
equivalent value of (11); this probability was set to 0.05 for the designs constructed for this paper. For the MmANLHDs in
this paper, the swap is only applied to the last dt columns of the candidate designmatrix, since the first dx columns are fixed.

One otherminormodificationmust be applied to the original Smart Swap algorithmwhen the design is to be constructed
on a grid (rather than design points randomly selectedwithin the ‘‘cells’’ that are formed by the grid). Since, in this situation,
multiple pairs of design points are likely to have the same value of minimum inter-point distance, the algorithm is modified
to identify and list all such pairs.

Table 2 lists an MmANLHD of size 10 × 2 for the physical experiment and 15 × 3 for the simulator experiment. The
design was constructed using the modified Smart Swap algorithm to augment a maximin NLHD from the website created
by van Dam et al. (2013). The left panel of Fig. 2 shows the physical design with the 2-d projection of the simulator design
onto (x1, x2) space; this panel visually demonstrates the space-filling property of the dx control inputs for the physical and
simulator designs, separately, and the coinciding property of the two designs in these dimensions. The right panel of Fig. 2
shows the 3-d simulator design with the physical design on the plane at t1 = 0.

5. Comparison of design prediction accuracy

This section examines the prediction accuracy of specific physical and simulator designs when used to predict for a test
bed of surfaces. The EMSPE, defined below in Section 5.3 for the Bayesian predictor ζ̂FB(x0) in (7), will be used to compare
the prediction accuracy of the designs described in Section 5.1 for the surfaces described in Section 5.2.
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Table 2
An MmANLHD with 10 × 2 physical and 15 × 3 simulator component designs that was
constructed using the modified Smart Swap algorithm.

Physical design Simulator design
xp1 xp2 xs1 xs2 t1

0.0000 0.1429 0.0000 0.1429 0.0714
0.0714 0.6429 0.0714 0.6429 0.5000
0.2143 0.3571 0.2143 0.3571 0.7143
0.2857 0.0000 0.2857 0.0000 0.5714
0.3571 0.7857 0.3571 0.7857 0.8571
0.5000 0.2143 0.5000 0.2143 0.9286
0.5714 1.0000 0.5714 1.0000 0.4286
0.7143 0.4286 0.7143 0.4286 0.6429
0.8571 0.8571 0.8571 0.8571 0.7857
1.0000 0.5714 1.0000 0.5714 0.3571

0.1429 0.9286 0.1429
0.4286 0.5000 0.2857
0.6429 0.7143 0.0000
0.7857 0.0714 0.2143
0.9286 0.2857 1.0000

Fig. 2. AnMmANLHDwith 10×2 physical and 15×3 simulator component designs. Left panel: projection of the simulator design onto (x1, x2) space. Right
panel: scatterplot of the 3-d simulator design, with 2-d physical design shown on plane t1 = 0. The physical design shown as ‘+’ symbols; the simulator
design shown as open circles.

5.1. Combined physical and simulator designs studied

The prediction accuracy of eight design sizes (np, dx, ns, dx + dt) for each of fourteen (Xp,X s) designs are compared in
Section 5.4 in terms of EMSPE. The designs are described in the following paragraphs and are summarized in Table 3.

Four of the designs were constructed by minimizing IMSPE⋆ (Xp,X s
| �⋆) in (10) for a specific �⋆

=

θ, ρZ , σ

2
δ /σ 2

Z ,

ρδ, σ
2
ϵ /σ 2

Z


. In the simpler problem of predicting simulator output based on a set of simulator training data, Leatherman

et al. (2016) found that local IMSPE-optimal designs constructed using ‘‘small’’ correlation parameter values yielded
smaller empirical prediction errors than designs based on ‘‘larger’’ correlation parameter values. Guided by these
observations, the correlation vectors ρZ and ρδ were chosen to have a small common correlation value ρ for the
local IMSPE-optimal designs used in the study of Section 5.4. Four


ρZ , ρδ


vector combinations were used in

total:

0.25 × 1dx+dt , 0.25 × 1dx


,


0.25 × 1dx+dt , 0.5 × 1dx


,

0.5 × 1dx+dt , 0.25 × 1dx


, and


0.5 × 1dx+dt , 0.5 × 1dx


.

The calibration parameter vector θ is an element of [0, 1]dt and, as a ‘‘naïve’’ selection, was set to be θ = 0.5 × 1dt .
Additionally, the variance ratios were selected to be σ 2

δ /σ 2
Z = 0.1 and σ 2

ϵ /σ 2
Z = 0.01, and the constant mean, f (x, t) = 1,

was used for the GP in (1).
For each of the four �⋆ specified in the previous paragraph, the local IMSPE-optimal combined design (Xp,X s) was

constructed using the PSO plus QN optimization algorithm described in Section 4.1. In the sections that follow, these four
designs are denoted DPS

0.25,0.25, D
PS
0.25,0.5, D

PS
0.5,0.25, and DPS

0.5,0.5, where the superscript ‘‘PS’’ denotes that the optimality criterion
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Table 3
Labels used to denote the designs compared in the simulation study of Section 5.4. The superscripts denote
the portion of the combined design that was optimized using the local minimum IMSPE criterion. The
subscripts denote the common correlation parameter values ρ that were used in the IMSPE optimization,
where ρZ = ρ × 1dx+dt and ρδ = ρ × 1dx . The subscripts are listed in the order ρZ , ρδ .

Design type Design label Common correlation
Physical Simulator For ρZ For ρδ

DPS
0.25,0.25 0.25 0.25

Combined IMSPE-opt DPS
0.25,0.5 0.25 0.5

DPS
0.5,0.25 0.5 0.25

DPS
0.5,0.5 0.5 0.5

DS
0.25,0.25 0.25 0.25

I-opt IMSPE-opt DS
0.25,0.5 0.25 0.5

DS
0.5,0.25 0.5 0.25

DS
0.5,0.5 0.5 0.5

DP
0.25,0.25 0.25 0.25

IMSPE-opt MmLHD DP
0.25,0.5 0.25 0.5

DP
0.5,0.25 0.5 0.25

DP
0.5,0.5 0.5 0.5

I-opt MmLHD I-opt + MmLHD – –

MmANLHD ANLHD – –

is applied to the combined (physical and simulator) design. The subscripts denote the common values of the simulator and
the discrepancy correlation parameters, respectively (see also Table 3).

A second class of designs fixes the physical design Xp and constructs a local IMSPE-optimal simulator design X s to
minimize IMSPE⋆. Four of the designs included in this paper are such local IMSPE-optimal simulator designs used in
conjunctionwith a given I-optimal physical design. The parameter values used to optimize IMSPE⋆ are identical to those used
to construct the combined local IMSPE-optimal designsDPS

−,−. The fixed I-optimal designswere constructedwith JMP R⃝ (JMP,
1989–2007) assuming a cubicmeanmodel that also included quadratic interaction terms, as this was the largest polynomial
model that could be fit for all nx and dx studied. In the sections that follow, the local IMSPE-optimal simulator designs
combined with the fixed I-optimal physical design are denoted DS

0.25,0.25, D
S
0.25,0.5, D

S
0.5,0.25, and DS

0.5,0.5, where ‘‘S’’ in the
superscript indicates that only the simulator design is IMSPE optimal. As for the case of combined designs, the subscripts
state the common value of the ρZ and ρδ parameters, respectively (see also Table 3).

Analogously, a third class of designs fixes the simulator designX s and constructs a local IMSPE-optimal physical designXp

tominimize IMSPE⋆. Again, four designs were included in the EMSPE studies. These (Xp,X s)were determined by combining
a given maximin LHD (MmLHD) for X s with a local IMSPE-optimal Xp. The parameter values used to optimize the physical
design are identical to those for obtaining DPS

−,−. TheMmLHDswere obtained from van Dam et al. (2013). In the sections that
follow, these designs are denoted DP

0.25,0.25, D
P
0.25,0.5, D

P
0.5,0.25, and DP

0.5,0.5, where the superscript ‘‘P’’ indicates that only the
physical design is IMSPE optimal. Again, the subscripts state the common value of the ρZ and ρδ parameters, respectively
(see also Table 3).

In the two single design optimization scenarios above, the PSO plus QN algorithm was used to optimize the simulator
design X s with a fixed physical design Xp, and vice versa. The PSO algorithm was initiated with Ndes starting designs taken
from the appropriate design space, where Ndes = 4ns (dx + dt) when optimizing X s with a fixed Xp, and Ndes = 4npdx when
optimizing Xp with a fixed X s. In both cases, the PSO employed Nits = 2Ndes iterations.

The final designs studied in the following sections are space-filling. The first design is an ‘‘off-the-shelf’’ design that
combines anMmLHD for the simulator runs and an I-optimal design for thephysical experiment observations. TheseMmLHD
and I-optimal designs are the same designs used in the fixed simulator and fixed physical design settings, respectively, from
above. This combineddesign is denoted I-opt+MmLHD in Table 3. The seconddesign is anMmANLHDwhich is an intuitively
more sophisticated version of the off-the-shelf design; theMmANLHD uses common inputs for the physical experiment and
the control portion of the simulator inputs. This design was computed using the Smart Swap algorithm in Section 4.2 by
augmenting the (n2-grid) maximin NLHD from van Dam et al. (2013) having np and ns points in dx dimensions. This design
is denoted ANLHD in Table 3.

The designs described above were constructed using Linux compute machines having Dual Eight Core Xeon 2.7 E5-2680
processors with 384 GB RAM. The exception was the (ns, dx, np, dx + dt) = (10, 2, 15, 3) combined local IMSPE-optimal
design, which was constructed using a Linux compute machine with Dual Quad Core Xeon 2.66 E5430 processors with
32 GB RAM. For local IMSPE-optimal designs, Table 4 lists the average hours of computation time, over the four correlation
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Table 4
The average computation time (in hours), over the four correlation scenarios, needed to
construct each design type and size. The computation time listed for ANLHD is for a single
MmANLHD, where the starting maximin NLHD was given.

(ns, dx, np, dx + dt ) Design type
DPS

−,− DP
−,− DS

−,− ANLHD

(10, 2, 15, 3) 1.62a 0.03 0.12 0.0009
(20, 2, 30, 3) 3.54 0.11 0.53 0.0057
(20, 4, 25, 5) 6.78 0.45 1.53 0.0032
(20, 4, 30, 6) 9.83 0.56 2.98 0.0252
(30, 3, 50, 5) 19.30 1.57 10.34 0.1069
(40, 4, 50, 5) 40.24 4.37 13.00 0.0253
(40, 4, 60, 6) 52.25 4.82 40.10 0.1934
a Constructed using a different type of compute machine than for the other design types

and sizes (see text).

Fig. 3. A surface ζtest(w) when dx = 2, dt = 1, and θ = 0.25: (a) a 2-d simulator surface SKrig0.25 evaluated at θ = 0.25, (b) a Kriging discrepancy surface
BKrig
0.5 , (c) the mean surface ζtest(w) obtained by summing (a) and (b).

scenarios, that were needed to construct each design type and size. The times listed in Table 4 for ANLHD are the hours of
computation time needed to augment each starting maximin NLHD obtained from van Dam et al. (2013).

5.2. The test bed of physical and simulator surfaces

To compare the prediction accuracy of the designs of Section 5.1, a test bed of non-linear physical and simulator surfaces
was created. Each mean surface of the physical observations ζ (xp) is constructed as the summation of a corresponding
simulator response surface and a discrepancy (bias) response surface.When physical ‘‘observations’’ aremade, an additional
observation error is added to the mean physical response.

5.2.1. Simulator surfaces
The test beds of simulator surfaces used in the simulation study of Section 5.4 can be categorized in three groups. The

first group of simulator surfaces uses the Kriging surfaces of Trosset (1999). These surfaces have the form

ystest(w) = β̂Z + rZ (w)TR−1
Z


Y 500

− 1500β̂Z


, w ∈ [0, 1]dx+dt , (12)

where Y 500 is a 500×1 vector drawn from a stationary GP based on inputs that form a 500×(dx+dt) approximateMmLHD,
denoted by Ldx+dt .

The sampled GP has mean βZ = 100, variance σ 2
Z = 10, and Gaussian correlation function (2), where ρZ is either 0.25×

1dx+dt or 0.5 × 1dx+dt . For numerical stability, a nugget 10−6 was added to the diagonal of σ 2
Z RZ . In (12), βZ =

1T
500R

−1
Z 1500

−1 1T
500R

−1
Z Y 500, rZ (w) is the 500×1 vector of correlations having the ith component RZ (xi,w) for xTi ∈ Ldx+dt ,

and RZ is the 500 × 500 matrix of correlations having (i, j)th element RZ (xi, xj) for xTi , x
T
j ∈ Ldx+dt . For each ρZ , 30 surfaces

ystest(w) were constructed. The collections of Kriging simulator surfaces are denoted SKrig0.25 and SKrig0.5 , where the subscript
specifies the common correlation value used to construct the surface. A representative simulator surface from SKrig0.25 is plotted
in Panel (a) of Fig. 3.
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Fig. 4. A surface ζtest(w) when dx = 2, dt = 1, and θ = 0.25: (a) a 2-d simulator surface SSLU evaluated at θ = 0.25, (b) a Kriging discrepancy surface BKrig
0.5 ,

(c) the mean surface ζtest(w) obtained by summing (a) and (b).

The second group of simulator surfaces uses the exponential model of Sobol´ and Levitan (1999)

ystest(w) = exp

bTw


− Idx+dt , w ∈ [0, 1]dx+dt , (13)

where Idx+dt =
dx+dt

i=1
ebi−1
bi

, and bi is the ith element of b. The bi parameters were chosen based on results from Loeppky
et al. (unpublished). Thirty sets of b (and surfaces (13)) were constructed around two central b values. The central value of
the first 30 b draws produced surfaces with inputs having equal effects, whose main effects contributed 50% of the overall
variance, and whose calibration inputs contributed 75% of the main effect variance. The central value of the second set of 30
b draws produced surfaces whose inputs had unequal effects, whose main effects contributed 95% of the overall variance,
and whose calibration inputs contributed 75% of the main effect variance. The simulator exponential surface families are
denoted SSLE and SSLU , where the subscript specifies whether the inputs have ‘‘E’’qual or ‘‘U’’nequal effects. A representative
simulator test-bed surface from SSLU is plotted in Panel (a) of Fig. 4.

The third group of simulator surfaces uses a modification of the non-stationary function described by Xiong et al. (2007)
(see also Ba and Joseph, 2012). Two test beds of non-stationary test surfaces are formed from

ystest(w) = 10(dx+dt )/2
dx+dt
i=1


sin


ai (wi − bi)4


cos (2 (wi − bi)) +

wi − bi
2


, w ∈ [0, 1]dx+dt (14)

where ai and bi are varied to form each surface. Two families of test beds are formed. In the first test bed, the base family
is defined by (14) and has non-stationary activity that occurs near the edges of the input domain [0, 1]dx+dt ; in the second
test bed, a change of variable is made in the base function to ystest(|w1 − 0.5| , . . . ,

wdx+dt − 0.5
) which results in non-

stationary activity near the center of [0, 1]dx+dt . Using these two formulations of (14), two non-stationary test-bed families
of 30 surfaces were formed, each by taking i.i.d. Uniform(20, 35) draws a1, a2, . . . , adx+dt and i.i.d. Uniform(0.5, 0.9) draws
b1, b2, . . . , bdx+dt . The families of such surfaces are denoted SMXB

edge and SMXB
mid , respectively. A representative simulator test-bed

surface from SMXB
mid is shown in panel (a) of Fig. 5.

5.2.2. Discrepancy (bias) surfaces
All discrepancy (bias) surfaces are of the form

δtest(w) = β̂δ + rδ(w)TR−1
δ


V 500

− 1500β̂δ


, w ∈ [0, 1]dx . (15)

Here V 500 is a 500 × 1 vector drawn from a stationary GP based on a 500 × dx approximate MmLHD, denoted by Ldx .
The sampled GP has mean βδ = 0, variance σ 2

δ = 1, and Gaussian correlation function (3), where ρδ is either 0.5 × 1dx
or 0.75 × 1dx . For numerical stability, a nugget 10−6 was added to the diagonal of the covariance matrix, σ 2

δ Rδ . In (15),βδ =

1T
500R

−1
δ 1500

−1 1T
500R

−1
δ V 500, rδ(w) is the 500 × 1 vector of correlations with ith component Rδ(xi,w) for xTi ∈ Ldx ,

and Rδ is the 500 × 500 matrix of correlations having (i, j)th element Rδ(xi, xj) for xTi , x
T
j ∈ Ldx . For each ρδ , 30 surfaces

δtest(w) were constructed. The collections of bias surfaces are denoted BKrig
0.5 and BKrig

0.75, where the subscript specifies the
common correlation value used to construct the surface. Three representative bias surfaces from BKrig

0.5 can be seen in panel
(b) of Figs. 3–5. When no bias is required, δtest(w) is set to zero forw ∈ [0, 1]dx .
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Fig. 5. A surface ζtest(w) when dx = 2, dt = 1, and θ = 0.25: (a) a 2-d simulator surface SMXB
0.25 evaluated at θ = 0.25, (b) a Kriging discrepancy surface

BKrig
0.5 , (c) the mean surface ζtest(w) obtained by summing (a) and (b).

Table 5
Labels for the 18 mean surfaces ζtest(w) defined in (16). These numeric labels are used to
identify test-bed surfaces in Figs. 6–9 and in the related figures in the online Supplementary
material (see Appendix A).

δtest(x0)
0 BKrig

0.5 BKrig
0.75

SKrig0.25 1 2 3

SKrig0.5 4 5 6

ystest(x0, θ) SSLE 7 8 9
SSLU 10 11 12

SMXB
edge 13 14 15
SMXB
mid 16 17 18

5.2.3. Mean of the physical system
For the simulation study of Section 5, the physical surface means are constructed using θ = 0.25× 1dt for the true value

of the calibration parameter. Notice that this true parameter value is different from the ‘‘naïve’’ selection of θ = 0.5 × 1dt
that was used to construct the local IMSPE-optimal designs described in Section 5.1. Alternative values of the calibration
parameter used for test-bed generation are investigated in Section 6.

In more detail, each mean physical response surface for Section 5 is the summation of a simulator surface (12), (13) or
(14) and a discrepancy surface (15); that is,

ζtest(w) ≡ ζtest(w, θ = 0.25 × 1dt ) = ystest(w, 0.25 × 1dt ) + δtest(w), w ∈ [0, 1]dx , (16)

or, for no bias, δtest(w) = 0. Each ‘‘observable’’ physical response is the summation of a mean physical response (16) plus
i.i.d. observation error:

yptest(w, 0.25 × 1dt ) = ζtest(w) + ϵ, w ∈ [0, 1]dx , (17)

where ϵ is Normal(0, σ 2
ϵ = 1). The 18 settings used to construct the physical response surfaces ζtest(w) are listed in

Table 5. For each of these parameter settings, 30 physical surfaces were drawn along with their corresponding simulator
surfaces as described above. A different set of 18 × 30 surfaces was drawn for each of the (physical, simulator) dimensions
(dx, dx + dt) ∈ {(2, 3), (3, 5), (4, 5), (4, 6)}.

Three representative ζtest(w, θ) in (16) are shown in panels (c) of Figs. 3–5. In Fig. 3, panels (a) and (b) plot a representative
simulator surface SKrig0.25 and discrepancy surface BKrig

0.5 , respectively, while ζtest(w, θ = 0.25) in panel (c) is the sum of
panels (a) and (b). Similarly panels (a) and (b) of Fig. 4, show representative simulator and discrepancy surfaces SSLU and
BKrig
0.5 , respectively, that were summed to construct panel (c) of the same figure. Lastly, panels (a) and (b) of Fig. 5, show

representative simulator and discrepancy surface SMXB
U and BKrig

0.5 , respectively, that were summed to construct panel (c) of
the same figure.

5.3. Measuring design prediction accuracy

In order to quantify the prediction accuracy of a combined physical and simulator design (Xp,X s) across the physical
system design space [0, 1]dx , the EMSPE was calculated using an equally-spaced and computationally-feasible grid of g
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Fig. 6. (np, dx, ns, dx + dt ) = (10, 2, 15, 3): A grayscale heatmap of the 90th percentile of the standardized EMSPE values for the 14 designs listed in
Table 3 and the 18 test-bed surface types listed in Table 5. Test bed surfaces 1–3, 4–6, 7–9, 10–12, 13–15 and 16–18 use SKrig0.25 , S

Krig
0.5 , SSLE , SSLU , SMXB

edge , and SMXB
mid ,

respectively, as ys(x, t). Within each grouping of three simulator surfaces, the ζtest(x) to be estimated is the sum of ystest(x, 0.25) and δtest(x) which is: ≡ 0,
BKrig
0.5 , BKrig

0.75 , in order.

points taken from [0, 1]dx . Given the mean of a physical test-bed surface ζtest(x) ≡ ζtest(x, θ) the EMSPE is defined by

EMSPE(Xp) =
1
g

g
i=1

ζFB(xi) − ζtest(xi)
2

, (18)

where x1, x2, . . . , xg are the g grid points. In the examples below, g = 502 for dx = 2, g = 203 for dx = 3, and g = 104 for
dx = 4. For the comparisons made in Sections 5.4 and 6, the predictorζFB(·) in (7) was calculated using the Markov Chain
Monte Carlo posterior distribution [β, � | y] that is constructed using the methodology and GPM/SA software described in
Higdon et al. (2008) and Gattiker (2008). Alternatively, one could make predictions with the BLUPζblup(·) in (5) with REML
estimates of the model parameters �. No matter the predictor used, designs with small EMSPE values are desirable as they
allow for more accurate predictions on average across the control inputs.

5.4. Design comparisons and recommendations

Thirty representative surfaces were drawn from each of the 18 test beds listed in Table 5. Training data were collected
from each of the 30×18 surfaces using each of the 14 designs in Table 3 and for each of eight (np, dx, ns, dx+dt) design sizes.
For each of the 30×18×14×8 sets of training data, predictions were made usingζFB(·) in Eq. (7) at a grid of inputs and the
EMSPE in Eq. (18) was calculated. The EMSPE values were standardized within each test bed and design size combination
because the surfaces vary in complexity across test beds and the prediction accuracy differs depending on the amount of
training data available as specified by the (np, dx, ns, dx + dt) design size. For each test bed and design size combination,
the 420 = 30 × 14 EMSPE values were standardized by subtracting the mean (taken over the 30 surface realizations and
14 designs) and dividing by the standard deviation. Figs. 6–9 are four comparative plots of the 90th percentiles of the 30
standardized EMSPE values for the 18 × 14 test bed by design combinations, for the four design sizes

(np, dx, ns, dx + dt) ∈ {(10, 2, 15, 3), (20, 4, 25, 5), (30, 3, 50, 5), (40, 4, 50, 5)}. (19)

Corresponding plots of the 90th percentiles of standardized EMSPE values for the additional 4 design sizes (15, 3, 25, 5),
(20, 2, 30, 3), (20, 4, 30, 6), and (40, 4, 60, 6) are included in the Supplementary material (see Appendix A), as are tables
of the 90th percentiles of the 30 non-standardized EMSPE values for all 8 × 18 × 14 cases.

Starting with the tables in the Supplementary material (see Appendix A), the effect of increasing the sample size from 5
runs per dimension to 10 runs per dimension can be quantified by comparing the entries in the pairs of tables with common
(dx, dt); there are four such pairs of tables. The 90th percentile of the non-standardized EMSPE values is reduced in 91% of
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Fig. 7. (np, dx, ns, dx + dt ) = (20, 4, 25, 5): A grayscale heatmap of the 90th percentile of the standardized EMSPE values for the 14 designs listed in
Table 3 and the 18 test-bed surface types listed in Table 5. Test bed surfaces 1–3, 4–6, 7–9, 10–12, 13–15 and 16–18 use SKrig0.25 , S

Krig
0.5 , SSLE , SSLU , SMXB

edge , and SMXB
mid ,

respectively, as ys(x, t). Within each grouping of three simulator surfaces, the ζtest(x) to be estimated is the sum of ystest(x, 0.25) and δtest(x) which is: ≡ 0,
BKrig
0.5 , BKrig

0.75 , in order.

Fig. 8. (np, dx, ns, dx + dt ) = (30, 3, 50, 5): A grayscale heatmap of the 90th percentile of the standardized EMSPE values for the 14 designs listed in
Table 3 and the 18 test-bed surface types listed in Table 5. Test bed surfaces 1–3, 4–6, 7–9, 10–12, 13–15 and 16–18 use SKrig0.25 , S

Krig
0.5 , SSLE , SSLU , SMXB

edge , and SMXB
mid ,

respectively, as ys(x, t). Within each grouping of three simulator surfaces, the ζtest(x) to be estimated is the sum of ystest(x, 0.25 × 12) and δtest(x) which
is: ≡ 0, BKrig

0.5 , BKrig
0.75 , in order.

the 1008 (design× test-bed× design size pair) combinationswhen using 10 runs per input comparedwith 5 runs per input.
The 6 test-beds formed using the Sobol´–Levitan simulator in Eq. (13) were most likely to have the largest reduction, with
one design × test bed combination having a 94% reduction in the 90th percentile of the non-standardized EMSPE values.
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Fig. 9. (np, dx, ns, dx + dt ) = (40, 4, 50, 5): A grayscale heatmap of the 90th percentile of the standardized EMSPE values for the 14 designs listed in
Table 3 and the 18 test-bed surface types listed in Table 5. Test bed surfaces 1–3, 4–6, 7–9, 10–12, 13–15 and 16–18 use SKrig0.25 , S

Krig
0.5 , SSLE , SSLU , SMXB

edge , and SMXB
mid ,

respectively, as ys(x, t). Within each grouping of three simulator surfaces, the ζtest(x) to be estimated is the sum of ystest(x, 0.25) and δtest(x) which is: ≡ 0,
BKrig
0.5 , BKrig

0.75 , in order.

The 6 test-beds using the non-stationarymodified Xiong/Ba simulator surface in Eq. (14) occasionally predictedworsewhen
using 10 runs per input compared with 5 runs per input; with the largest observed increase in the 90th percentile of the
non-standardized EMSPE values being 250%. Similar increases were observed for the simulator-only prediction of modified
Xiong/Ba surfaces in Leatherman et al. (2016).

Figs. 6–9 and the corresponding figures in the Supplementary material tell a complicated story about the designs’
prediction accuracy (see Appendix A). First, there is no single design that predicts better than all competing designs for
all test-beds and all design sizes, i.e., no (design) row is uniformly ‘‘lighter’’ than all other rows for all of Figs. 6–9. However,
some designs are clearly inferior to others for sufficiently many design sizes, such that one should use one of the better
alternatives. First, the I-opt + MmLHD should be avoided because it is often inferior to ANLHD. Second, the four designs
that add simulator runs to the I-opt physical experiment design, the DS

−,− designs, are each inferior to the corresponding
DP

−,− designs. Third, the DP
0.5,− designs are inferior to the DP

0.25,− designs. Fourth, the DPS
0.5,− designs are inferior to the DPS

0.25,−
designs.

This leaves five designs that are candidates to provide themost accurate predictions:DPS
0.25,0.25,D

PS
0.25,0.5,D

P
0.25,0.25,D

P
0.25,0.5,

and ANLHD. ANLHD is particularly effective for predicting non-stationary surfaces, such as the Xiong/Ba surfaces (#13–#18)
with the center displaying different behavior than the edge or vice-versa. The same is true for the Sobol´–Levitan surfaces
(#7–#12) which have a large spike in one corner of the input space. In both the Xiong/Ba and the Sobol´–Levitan surfaces,
not having a design point near the non-stationary activity leads to large prediction errors.

Among the local IMSPE-optimal designs DPS
−,− and DP

−,−, those with ρZ = 0.25 produce more accurate predictions than
designs with ρZ = 0.5. Thus the designs producing the most accurate predictions appear robust to the choice of ρδ but
depend heavily on the choice of ρZ . Designs D

PS
0.25,− and DP

0.25,− predict well for the Kriging surfaces (#1–#6), which is not
surprising as these are the surfaces for which the designs were constructed. Additionally, the locally optimal design DPS

0.25,0.5
has many points near the edges of the design space and therefore predicts well for the test-beds with surfaces that have
non-stationary activity near the edges of the input space (#7–#15). Similarly, designs with inputs near the middle of the
design space predict well for the modified Xiong/Ba surfaces that have non-stationary activity near the middle of the input
space (#16–#18); designs ANLHD, DP

0.25,0.25, and DP
0.25,0.5 all predict well for these surfaces.

Recalling thatDP
−,− designs require roughly 10% of the computing time to construct compared to the correspondingDPS

−,−

designs, combining aMmLHD for the simulator experiment with a design that optimizes the IMSPE criterion for the physical
experiment is an attractive design choice. While the prediction criterion for this paper is different than that of Ranjan et al.
(2011), our conclusions agree qualitatively with their assessment that designs that are locally IMSPE-optimal in the physical
element (DP

−,−) predict best, followed by the designs that are combined locally IMSPE-optimal (DPS
−,−), and lastly followed

by designs that are locally IMSPE-optimal in the simulator element (DS
−,−).



360 E.R. Leatherman et al. / Computational Statistics and Data Analysis 113 (2017) 346–362

Fig. 10. (np, dx, ns, dx + dt ) = (10, 2, 15, 3): Boxplots of (non-standardized) EMSPE values when predicting 30 realizations of the surface ζtest(x) =

ystest(x, θ) + δtest(x) for θ ∈ {0.125, 0.25, . . . , 0.875} when ystest(x, t) is S
Krig
0.25 and δtest(x) is B

Krig
0.5 . Panels (from left to right) correspond to designs DPS

0.25,0.5 ,
DP
0.25,0.5 , and DS

0.25,0.5 , which were constructed under the assumption θ = 0.5.

Fig. 11. (np, dx, ns, dx + dt ) = (40, 4, 50, 5): Boxplots of (non-standardized) EMSPE values when predicting 30 realizations of the surface ζtest(x) =

ystest(x, θ) + δtest(x) for θ ∈ {0.125, 0.25, . . . , 0.875} when ystest(x, t) is S
Krig
0.25 and δtest(x) is B

Krig
0.5 . Panels (from left to right) correspond to designs DPS

0.25,0.5 ,
DP
0.25,0.5 , and DS

0.25,0.5 , which were constructed under the assumption θ = 0.5.

6. The dependence of prediction accuracy on the assumed θ

All local IMSPE-optimal designs used for the simulation study in Section 5were constructedwith θ = 0.5×1dt , σ
2
δ /σ 2

Z =

0.1, and σ 2
ϵ /σ 2

Z = 0.01. The Kriging test-bed surfaces in the simulation study of Section 5 were used to assess prediction
accuracywhen the test-bed correlation parametersρZ andρδ are different than their assumedvalues for design construction.
The current section focuses on prediction accuracy in test beds formed from stationary GP draws with θ ≠ 0.5 × 1dt . Each
of the DPS

0.25,0.5, D
S
0.25,0.5, and DP

0.25,0.5 designs was used to predict 30 test surfaces ζtest(x) = ystest(x, θ) + δtest(x) for a given
θ ∈


0.125 × 1dt , 0.25 × 1dt , . . . , 0.875 × 1dt


, where ystest(x, t) is a draw from SKrig0.25 and δtest(x) is a draw from BKrig

0.5 .
For the eight design sizes listed in and directly below Eq. (19), the EMSPE in (18) was calculated; because all test surfaces

are based on the same stationary GP model, the EMSPE was not standardized. Boxplots of the EMSPE values for the 30
surface realizations are shown in Figs. 10 and 11 for design sizes (10, 2, 15, 3) and (40, 4, 50, 5), respectively, and in the
Supplementary material for the remaining six design sizes (see Appendix A). Each individual boxplot corresponds to a test
bed of surfaces constructed for a specific value of θ.

Most panels in Figs. 10 and 11 (and in the related figures in the Supplementary material, Appendix A) provide intuitive
results. The EMSPE values are smallest for test-bed surfaces constructed using θ = 0.5×1dt , the calibration parameter used
to construct the design. For many panels (across design types and sizes), the EMSPE increases as the absolute value of the
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distance between θ = 0.5 × 1dt used in the design construction and the θ used to construct the test bed increases. Also the
range of the EMSPEs appears to increase as the absolute distance between the design θ and surface θ increases. Focusing
on Fig. 11, where (np, dx, ns, dx + dt) = (40, 4, 50, 5), the middle panel shows that DP

0.25,0.5, is robust to the calibration
parameter used to construct the stationary GP. However, the EMSPE values for DP

0.25,0.5 never reach the best EMSPE values
achieved by DS

0.25,0.5 when the surface is constructed using θ = 0.5. On the other hand, the EMSPE values for DP
0.25,0.5 also

do not reach the worst EMSPE values achieved by DS
0.25,0.5 when the surface is constructed using small or large θ .

7. Summary

This paper compares a variety of criteria to select the initial design of a physical system experiment combined with that
of a deterministic simulator of the physical systemwhen the goal is accurate prediction of the mean of the physical system.
Design criteria and construction algorithms are described for local IMSPE-optimal designs and maximin augmented nested
LHDs (MmANLHDs). A local minimum IMSPE design for one of the experiments, simulator or physical system, is constructed
when the other experiment uses an ‘‘off-the-shelf’’ design, either an MmLHD for the simulator experiment or an I-optimal
design for the physical experiment. These designs are compared with the frequently-used combination of an I-optimal
designwith anMmLHD. For a large test bed of stationary and non-stationary surfaces and for each design studied, a Bayesian
calibrated predictor is used to estimate the mean of the physical system. EMSPE values are calculated for each test surface
at a grid of inputs.

This simulation study shows that no single design predicts better than all competing designs for all test-beds and all
design sizes. However certain designs should be avoided, general recommendations can be made, and particular designs
can be recommended for specific surface types. The I-optimal physical design + MmLHD for the simulator is inferior to the
MmANLHD. The I-optimal physical design + local IMSPE-optimal simulator designs are inferior to both the local IMSPE-
optimal combined designs and to the MmLHD for the simulator + local IMSPE-optimal physical system experimental
designs. Local IMSPE-optimal combined designs or local IMSPE-optimal physical system experimental designs that use
ρZ = 0.5 are inferior to those that use ρZ = 0.25.

The five recommended designs, ANLHD, DPS
0.25,0.25, D

PS
0.25,0.5, D

P
0.25,0.25, and DP

0.25,0.5, have different strengths. ANLHD is
least expensive to compute, and DPS

0.25,− is the most expensive to compute. Among the local IMSPE-optimal designs, DP
0.25,−

requires the least computational effort. For stationary GP draws, DP
0.25,− and DPS

0.25,− predict well, with DP
0.25,− often being

superior to the correlation comparable DPS
0.25,−. For non-stationary surfaces, designs with inputs near the non-stationary

activity predict well. For example, DPS
0.25,0.5 and ANLHD have design points near the spike in the Sobol´–Levitan simulator

surface and consistently predict well for this surface. ANLHD predicts well for the non-stationary modified Xiong/Ba
simulator surfaces that have activity near the edges of the input space. Finally, many designs, including ANLHD, DP

0.25,0.25,
and DP

0.25,0.5 have points near the middle of the design space and thus predict well for the non-stationary simulator surfaces
with activity near the middle of the input space.

A second simulation study shows that local IMSPE-optimal designs perform best for draws from stationary GPs having
the same θ used to construct the design. These studies show both an increase in the median EMSPE and the range of EMSPE
values as the physical surface draws have θ values that are further from the θ used to construct the design.

Acknowledgments

The authors wish to thank the reviewers and the Editor for suggestions which led to the improvement of this paper. The
authors also wish to thank Bradley Jones for helpful discussions. This research was sponsored, in part, by an allocation
of computing time from the Ohio Supercomputer Center, and by the National Science Foundation under Agreements
DMS-0806134 and DMS-1310294 (awarded to The Ohio State University). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

Appendix A. Supplementary material

The designs and construction code discussed in this manuscript can be found on the first author’s website
http://stat.wvu.edu/∼erl/CombinedDesigns/. Supplementary material related to this article can be found online at
http://dx.doi.org/10.1016/j.csda.2016.07.013.
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