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Abstract

In this paper we introduce a new interpolation method, known as kernel interpola-

tion (KI), for modeling the output from expensive deterministic computer experiments.

We construct it by repeating a generalized version of the classic Nadaraya-Watson ker-

nel regression an infinite number of times. Although this development is numerical, we

are able to provide a statistical framework for KI using a nonstationary Gaussian pro-

cess. This enables us to quantify the uncertainty in the predictions as well as estimate

the unknown parameters in the model using empirical Bayes method. Through some

theoretical arguments and numerical examples, we show that KI has better prediction

performance than the popular kriging method in certain situations.

Keywords: Computer experiments; Gaussian process; Kernel regression; Kriging.

1 Introduction

Consider the regression model

y = f(x) + ✏, (1)

and the problem of estimating f(x) from the data (xi, yi), i = 1, · · · , n, where the vector

xi belongs to an input space ⌦ ⇢ Rp. We assume ✏ to be independently and identically

distributed with mean 0 and variance �2, although these assumptions can easily be relaxed.
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Arguably this is one of the most important problems in statistics and the literature on it is

huge. Here we touch upon some of the relevant parts of the literature to motivate the work

done in this paper.

We focus on nonparameteric approaches. Among all the nonparametric regression meth-

ods, Nadaraya-Watson kernel regression ([17] and [26]) has the simplest prediction form,

which is given by

ŷ(x) =

Pn
i=1 K(x,xi)yiPn
i=1 K(x,xi)

, (2)

where K(·, ·) : ⌦ ⇥ ⌦ ! R is called the kernel function. Several improvements to kernel

regression have appeared in the literature such as local polynomial smoothing ([1], [2], [7],

and [22]). The kernel function contains some unknown parameters known as bandwidth

parameters which are estimated from the data using, for example, cross validation [11].

An alternative approach to the nonparametric regression was being developed in geo-

statistics known as kriging [13], which can be written in the form (see [24], pp. 63-64)

ŷ(x) = µ+
nX

i=1

K(x,xi)bi,

where µ and b = (b1, · · · , bn)0 are unknown parameters. When µ is a constant rather than

a function of x, it is called ordinary kriging (OK) predictor, which is the most commonly

used kriging method due to its simplicity. Here the kernel function is usually known as the

correlation function. The values of µ and b are chosen to make ŷ(x) the best linear unbiased

predictor. The resulting predictor has a simple form and is given by

ŷ(x) = µ̂+ r(x)0(R+
�2

⌧ 2
In)

�1(y � µ̂1), µ̂ =
10(R+ �2/⌧ 2In)�1

y

10(R+ �2/⌧ 2In)�11
, (3)

where 1 is an n⇥1 vector of 1’s, r(x)0 = (K(x,x1), · · · , K(x,xn)), R is an n⇥n matrix with

elements K(xi,xj), In is the identity matrix, and ⌧ 2 is another unknown parameter that

needs to be estimated from the data. One distinguishing feature of the kriging predictor

from the other kernel regression methods is that it explicitly uses the noise variance �2.

As the noise reduces to zero (�2 ! 0), the kriging predictor interpolates the data, which

makes sense. This is not achieved by the kernel regression methods. It is a crucial di↵erence

between these two approaches, which will be exploited in this work.
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Because interpolation has a longer history in mathematics, applied mathematicians have

independently developed a closely related technique to kriging known as radial basis function

(RBF) method. Recently [4] has made some important connections between approximate

moving least squares and RBF. Our work is closely related to theirs but uses kernel regression

instead of approximate moving least squares.

In this work we show that by iteratively applying a generalized version of the kernel regres-

sion on the residuals, we can obtain a predictor that interpolates the data. We show that this

new predictor has several desirable properties and has better prediction performance than

kriging under some conditions (discussed in Section 5). Although our initial development

is numerical, using its connections with kriging, we postulate a stochastic model underlying

our new predictor. This enables us to obtain empirical Bayes estimates of the unknown

parameters as well as the prediction intervals.

However, the foregoing advantages of the predictor come at the expense of increased

computations and therefore, we are able to demonstrate its performance only for small to

moderate sized data. Hence, in this work we primarily focus on its applications to the

modeling of expensive functions, where the data are hard to obtain. Extensions to large

data can be handled in the future after developing more e�cient methods for computation.

Modeling of expensive functions, also known as computer experiments, is an emerging

field in statistics ([23]). Even when the functions are deterministic, there are uncertainties

in predictions at the unobserved locations and therefore a statistical approach is useful for

quantifying the uncertainty. Kriging is the major technique used in the computer experiment

literature owing to its probabilistic framework. See [24] and [3] for details. Because our

proposed predictor has close connections to kriging, the problems in computer experiments

can be a good test bed for us to evaluate its performance.

This article is organized as follows. In Section 2, we start with a generalized version of

the kernel regression and develop our new predictor known as kernel interpolation (KI) using

an iterative implementation of the kernel regression. In Section 3, we provide a statistical

framework for our method using a nonstationary Gaussian process (GP) model. The esti-

mation of the unknown parameters in the model is discussed in Section 4. Some properties

of the KI are described in Section 5. In Section 6, we apply the new predictor on two simu-
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lated examples and compare its performance with some popular interpolation and regression

methods. In Section 7, the stochastic model for KI is extended to the case where there is

random noise involved in the observations, i.e., �2 > 0 and we conclude the paper with some

remarks and future research directions in Section 8.

2 Kernel Interpolation: A Numerical Approach

Consider a more general version of the kernel regression given by

ŷ(x) = µ+
r(x)0(y � µ1)

s(x)
, (4)

where s(x) is a positive scaling function and µ is an unknown mean parameter. For the

kernel regression in (2), s(x) =
Pn

i=1 K(x,xi) = r(x)01, which restricts the predicted values

ŷ(xi) to be between the smallest and largest values of yi’s. To overcome this restriction and

make (4) more flexible, we can use other types of positive functions such as

s(x) =
nX

i=1

K(x,xi)ci = r(x)0c, (5)

where c is a positive vector in Rn.

The kernel regression in (4) only smooths the data and does not interpolate, which is not

suitable if �2 is small in (1). Therefore, to improve the predictions we may consider applying

another kernel regression of the form (4) to the residuals. Let e1 be the vector of residuals

from the kernel regression, i.e., e1 = y� ŷ1, where y and ŷ1 are the vector of responses and

predictions using (4). Thus, we obtain a new predictor:

ŷ2(x) = µ+
r(x)0(y � µ1)

s(x)
+

r(x)0e1

s(x)
.

For simplicity, we have set the mean parameter to be zero and used the same kernel and

scaling functions as before in the second application of the kernel regression, which will

be generalized at a later stage. Extending this idea, we can repeatedly apply the kernel

regression to the residuals and add it back to the predictor. Suppose we repeat this N times,

then the new predictor becomes:

ŷN(x) = µ+
r(x)0(y � µ1)

s(x)
+

r(x)0e1

s(x)
+ · · ·+ r(x)0eN�1

s(x)
, (6)
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Figure 1: Comparison between the true function y(x) = 0.5x � sin(2x) � exp(�2x) and

iterated kernel regressions ŷ1(x), ŷ2(x), and ŷ3(x) with ✓ = 0.50.

where ej = y � ŷj are the residuals from the jth stage. Let U = S

�1
R, where Rrs =

K(xr,xs) and S be the diagonal matrix S = diag{s(x1), . . . , s(xn)}. Then

ej = y � ŷj = ej�1 �Uej�1 = (In �U )ej�1 = (In �U )j(y � µ1).

Throughout the paper, we define e0 = y� µ1 and A

0 = In for any matrix A. Thus (6) can

be written succinctly as

ŷN(x) = µ+ u(x)0
N�1X

i=0

(In �U )i(y � µ1), (7)

where the weight vector u(x) is defined as

u(x) = r(x)/s(x). (8)

Figure 1 shows an example of these iterative fittings with the Gaussian kernel

K(xi,xj) = exp

 
�

pX

k=1

✓i(xk,i � xk,j)
2

!
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and s(x) = r(x)01. We can see that overall the fitted curves get closer to the observations as

N is increased. Naturally this raises the question: will the kernel regression in (7) interpolate

the observations as N becomes infinitely large? The answer to this question is positive. As

N ! 1, the kernel regression becomes an interpolator as stated in Theorem 1. To prove

it, we need the condition that the kernel functions are symmetric positive definite functions,

which is often assumed in nonparametric regression literature and is a necessary condition

for valid correlation functions. Under this assumption, R becomes a symmetric positive

definite matrix.

Theorem 1. If the kernel function K(·, ·) is symmetric positive definite and s(x) > 0 for

all x 2 Rp, as N ! 1, the kernel regression (7) converges to

ŷKI(x) = u(x)0U�1
y, (9)

which interpolates all the observations (xi, yi) for i = 1, . . . , n, if and only if

�i(U ) < 2, for i = 1, . . . , n. (10)

where �i(U ) denotes the ith eigenvalue of U .

All the proofs are given in the Appendix. Interestingly, the unknown mean parameter

µ disappears in the limit. Thus we obtain a new interpolator, which we name as kernel

interpolation (KI). In Figure 2, we use the same test function and the five equally spaced

design points as in Figure 1, and fit KI with s(x) = r(x)01 and OK. Figure 2 shows that

both of the predictors interpolate the data, but KI gives better fitting which is closer to the

true test function.

Note that �i(U ) < 2 for i = 1, . . . , n is the su�cient and necessary condition for the

convergence ŷN(x) ! ŷKI(x). This condition looks quite restrictive, but the following

proposition shows that it can be easily relaxed through a simple modification of the initial

predictor. Introduce a new parameter ⌘ in the kernel regression as ŷ(x) = r(x)0y/(⌘s(x)).

Interestingly, ⌘ disappears in the limit, leaving the KI predictor una↵ected.

Proposition 1. Given s(x) > 0 for any x, there exists a scalar ⌘ > 0 such that �i(U ) < 2⌘

for i = 1, . . . , n. The kernel regression of the form

ŷN(x) = µ+ ⌘�1
u(x)0

N�1X

i=0

(In � ⌘�1
U )i(y � µ1)
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Figure 2: Comparison between KI and OK for the test function y(x) = 0.5x � sin(2x) �

exp(�2x) with ✓̂OK = 0.97, ✓KI = 0.50 and c = 1

converges to the kernel interpolator ŷKI(x) = u(x)0U�1
y as N ! 1.

KI can be extended to a more general form with di↵erent kernel and scaling functions.

Let Ki(·, ·) be a symmetric positive definite kernel function and si(x) > 0 a positive scaling

function, for i = 1, . . . , N . Then, similar to the development of (7), N iterations of the

kernel regression on the residuals gives

ŷN(x) = µ+

 
NX

i=1

ui(x)
0
i�1Y

j=0

(In �U j)

!
(y � µ1),

whereU 0 = 0, ui(x) = ri(x)/si(x) andU i = S

�1
i Ri. Here ri(x)0 = (Ki(x,x1), . . . , Ki(x,xn)),

Si = diag{si(x1), . . . , si(xn)}, and Ri is a n ⇥ n symmetric positive definite matrix with

elements Ki(xs,xk). As given below, the corresponding KI also has a more general form.

Proposition 2. If ||In�U i|| < 1 for i = 1, 2, . . ., as N ! 1, the kernel regression converges

to

ŷKI(x) = lim
N!1

ŷN(x) = µ+

 1X

i=1

ui(x)
0
i�1Y

j=0

(In �U j)

!
(y � µ1), (11)
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which interpolates all the observations (xi, yi) for i = 1, . . . , n. Here || · || can be any matrix

norm and the product
QN

i=1 Ai = ANAN�1 . . .A1 denotes left matrix multiplication.

KI has interesting connections to some of the existing interpolators. For example, as

stated below, the kriging predictor in (3) with �2 = 0 can be seen as a special case of the

KI.

Corollary 1. Let s(x) ⌘ 1 and ⌘ > 0. Then as N ! 1,

ŷN(x) = µ+ ⌘�1
r(x)0

N�1X

i=0

(In � ⌘�1
R)i(y � µ1), (12)

converges to the kriging predictor ŷ(x) = µ + r(x)0R�1(y � µ1), if and only if �i(R) < 2⌘

for i = 1, . . . , n.

A similar representation to (12) was used by [20] for the purpose of achieving numerical

stability. Another interesting connection is with the limit kriging predictor proposed in [10]

as stated below in Corollary 2. Note, however, that in the original definition of limit kriging

s(x) = r(x)0R�11 is not guaranteed to be positive.

Corollary 2. If s(x) = r(x)0c and c = R

�11, kernel interpolation in (9) becomes

ŷLK(x) =
r(x)0R�1

y

r(x)0R�11
,

which is the limit kriging predictor.

3 Kernel Interpolation: A Statistical Approach

By exploiting the connections between the OK predictor and kernel interpolator, we can

develop a statistical framework for KI. This will enable us to obtain empirical Bayes estimates

of the unknown parameters and construct prediction intervals.

The GP model for OK is

y(x)� µ = Z(x), where Z(x) ⇠ GP (0, ⌧ 2K(·, ·)),
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where µ and ⌧ 2 are the unknown mean and variance parameters. Denote the unknown

correlation parameters in K(·, ·) by ✓ = (✓1, . . . , ✓p)0. Then, the posterior distribution of

y(x) given the data y is

y(x)|y, µ, ⌧ 2,✓ ⇠ N
�
µ+ r(x)0R�1(y � µ1), ⌧ 2

�
1� r(x)0R�1

r(x)
 �

. (13)

Integrating out µ by assuming a noninformative prior distribution: p(µ) / 1, we obtain

y(x)|y, ⌧ 2,✓ ⇠ N

✓
µ̂+ r(x)0R�1(y � µ̂1), ⌧ 2

⇢
1� r(x)0R�1

r(x) +
(1� r(x)0R�11)2

10
R

�11

�◆
,

(14)

where µ̂ = 10
R

�1
y/10

R

�11. It is also easy to integrate out ⌧ 2 [24], but we will not do it

here for the ease of comparison with the new predictor.

Now consider the KI predictor in (9) with s(x) = r(x)0c. Since u(x)0U�11 = 1 for all

x, we can write (9) in the form:

ŷKI(x) = µ+
r(x)0

s(x)
R

�1
S (y � µ1) , (15)

where S = diag{Rc}. Comparison of (15) with the posterior mean in (13) motivates us to

propose the following GP model for KI:

s(x){y(x)� µ} = Z(x), where Z(x) ⇠ GP (0, ⌧ 2K(·, ·)). (16)

Here, var{y(x)|µ, c,✓, ⌧ 2} = ⌧ 2/s(x)2 is no longer a constant with respect to x, which

makes it a nonstationary GP model. This is quite di↵erent from the stationary GP model

for kriging. The joint distribution of (y(x),y0)0 given µ, ⌧ 2,✓, c is N(µ1n+1,⌃), where

⌃ = ⌧ 2

2

4 s(x)�2, r(x)0S�1s(x)�1

s(x)�1
S

�1
r(x), S

�1
RS

�1

3

5 .

It can be easily shown that the posterior distribution of y(x) given the data is

y(x)|y, µ, ⌧ 2,✓, c ⇠ N

✓
r(x)0

s(x)
R

�1
Sy,

⌧ 2

s2(x)

�
1� r(x)0R�1

r(x)
 ◆

. (17)

Since the right side of (17) is independent of µ, the unconditional distribution of y(x)|y, ⌧ 2,✓, c

is the same as the normal distribution in (17). Also note that r(xi)0R
�1
r(xi) = 1 for

i = 1, 2, . . . , n. Thus the posterior variance becomes 0 at all of the observed locations.
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A (1� ↵) confidence interval for the prediction at any x can be obtained as

ŷKI(x)± z↵/2
⌧

s(x)
{1� r(x)0R�1

r(x)}1/2. (18)

It is plotted as a shaded region in Figure 3 for the test function y(x) = 0.5 � sin(2x) �

exp(�2x), where the unknown parameters are chosen by empirical Bayes methods as dis-

cussed in the next section. The confidence interval for the ordinary kriging is given by

ŷ(x)OK ± z↵/2⌧OK{1� r(x)0R�1
r(x) + (1� r(x)0R�11)2/10

R

�11}1/2, which is also plotted

in the same figure as a dotted line. We can see that the confidence interval for KI is nar-

rower in the middle than that of OK and it becomes wider at both ends. This is because

s(x) = r(x)0c decreases as x is moved away from the observed locations, whereas the width

of the OK confidence interval converges to a constant 2z↵/2⌧OK . Overall, the KI confidence

interval looks narrower than that of OK, but it could be because of not incorporating the

uncertainties in c. Unfortunately, it is not easy to account for the uncertainties in c because

of the high-dimensionality and nonlinearity of the parameters.

0 1 2 3 4 5

-2
0

2
4

x

y

y(x)
ŷKI(x)
ŷOK(x)

Figure 3: Confidence intervals for KI and OK predictions for the test function y(x) =

0.5x� sin(2x)� exp(�2x) with ✓̂OK = 0.97, ✓̂KI = 0.34, and ĉ = (0.86, 0.0, 0.55, 0.04, 0.83)0.
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4 Empirical Bayes Estimation

Under (16), the marginal distribution of the responses is y ⇠ N(µ1, ⌧ 2S�1
RS

�1). Thus the

likelihood (omitting the proportionality constant) is

L =
1

⌧n|S�1
RS

�1|1/2
exp

✓
� 1

2⌧ 2
(y � µ1)0SR�1

S(y � µ1)

◆
,

which gives

�2 logL = n log ⌧ 2 + log |R|� 2 log |S|+ 1

⌧ 2
(y � µ1)0SR�1

S(y � µ1). (19)

The empirical Bayes estimates of µ, ⌧ 2, c, and ✓ are the solution of

min
µ,⌧2,c,✓

�2 logL, subject to ✓ � 0, c > 0.

This is a nonlinear optimization problem in n+p+2 dimensions, which can be hard to solve

for large n and/or p. We can simplify the optimization procedure as follows.

First, di↵erentiating �2 logL with respect to ⌧ 2 and equating to 0, we obtain

⌧̂ 2 =
1

n
(y � µ1)0SR�1

S(y � µ1). (20)

Substituting for ⌧ 2, �2 logL becomes

�2 logL = n log

⇢
1

n
(y � µ1)0SR�1

S(y � µ1)

�
+ log |R|� 2 log |S|.

Thus,

L�2/n / (y � µ1)0SR�1
S(y � µ1)

(
Qn

i=1 r(xi)0c)
2/n

|R|1/n. (21)

Now consider minimizing this expression with respect to c. This is again not an easy problem

because c appears in the numerator and denominator of (21). However, the numerator can

be written as

Q = (y � µ1)0SR�1
S(y � µ1) = c

0
Pc,

where P = Rdiag{y � µ1}R�1diag{y � µ1}R. Moreover,

Q

(
Qn

i=1 r(xi)0c)
2/n

|R|1/n  Q|R|1/n

11



if r(xi)0c � 1 for i = 1, . . . , n. Thus, an approximate solution of c can be obtain by solving

the quadratic programming problem:

min
c

Q = c

0
Pc, s.t. Rc � 1, c > 0. (22)

The foregoing simplification brings tremendous reduction in computation, because quadratic

programming is polynomial time solvable. In the quadratic programming, we specify a very

small lower bound ⌫ > 0 for ci i = 1, . . . , n, so that the constraint c > 0 can be replaced

by c � ⌫1. Note that since R is positive definite, P is also positive definite assuming

that y 6= µ1. Furthermore, a small nugget is added to the diagonal of R to avoid any

ill-conditioning problem of the R matrix [19].

Now minimizing �2 logL with respect to µ, we obtain

µ̂ =
10
SR

�1
Sy

10
SR

�1
S1

=
ĉ

0
Sy

ĉ

0
Rĉ

. (23)

Because ĉ depends on the value of µ, this needs to be solved iteratively. We start with an

initial value of µ = ȳ and then iterate between (22) and (23) until convergence.

For any given value of the correlation parameters ✓, the foregoing description shows how

to obtain the optimal ⌧ 2, µ, and c. Substituting them in (19), we obtain �2 logL as a

function of only ✓. Thus, the optimal ✓ can be obtained as the solution of

min
✓�0

n log ⌧̂ 2 + log |R|� 2 log |S|. (24)

We use iterative procedures such as the classical L-BFGS-B algorithm to solve this p-

dimensional nonlinear optimization problem. Multiple random starts are used in the op-

timization algorithm for finding the global optimum. In each iteration, evaluation of the

objective function involves estimation of ⌧ 2, µ and c as illustrated above. Thus, the opti-

mization procedure is still computationally very intensive, but much simpler than the initial

(n+ p+ 2)-dimensional optimization problem.

5 KI vs OK

Consider again the example presented in Section 2. Figure 4 shows the OK and KI predic-

tors with a large correlation parameter value (✓OK = ✓KI = 40). We can see that the OK

12
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Figure 4: Comparison of KI and OK for a large ✓ (✓OK = ✓KI = 40).

predictor is pulled towards the mean, whereas the KI predictor becomes almost a step func-

tion. Overall, the deterioration in the prediction performance is much larger for OK than

KI. This indicates robustness of the KI predictor against misspecification of the correlation

parameters. The behaviors of the two predictors are shown in more general terms in the

following proposition.

Proposition 3. Assume the isotropic power exponential correlation function of the form

K(xi,xj) = exp(�✓d(xi,xj))

for both the kernel interpolation and the ordinary kriging predictor. Here ✓ > 0 and d(xi,xj) =
Pp

l=1 |xi,l � xj,l|↵l, with 0 < ↵l  2 for l = 1, . . . , p. The following results are true.

(i) For kernel interpolation,

lim
✓!1

ŷKI(x) =

P
i2⇠ ciyiP
i2⇠ ci

,

where ⇠ = {i : d(x,xi) = � where � , minj d(x,xj)}.

13



(ii) For ordinary kriging,

lim
✓!1

ŷOK(x) =

8
<

:
µ̂, x 6= xj, j = 1, . . . , n,

yj, x = xj, j = 1, . . . , n.

Here � is the minimum distance between x and all the design points {xi}ni=1, and ⇠ is the

index set of the points whose distance to x is equal to the minimum distance. When there

is only one design point (which is often the case), which has the minimum distance to x, we

obtain

lim
✓!1

ŷKI(x) = yi, where i = argmin
j

d(x,xj).

Thus, the KI prediction converges to the nearest observation, whereas the OK prediction

converges to the mean value (for x 6= xi). This property of avoiding reversion to mean is

also captured by the fractional Brownian fields, another non-stationary Gaussian process

recently proposed by [27]. Thus, KI is expected to perform better than OK for the class of

functions where the nearest neighbor gives a better prediction than using the overall mean.

For example, this holds true for the class of monotone functions.

Although the foregoing asymptotic result gives some insights on the class of functions in

which KI is expected to perform better than OK, we cannot use it to choose between KI and

OK for a given function. One option to decide between KI and OK is to use cross validation.

Let ŷOK
�k (x) and ŷKI

�k (x) be the OK and KI predictors estimated without using the point

(xk, yk) respectively. Neglecting the changes in ✓̂OK , the leave-one-out cross validation error

for OK can be easily shown to be

yk � ŷOK
�k (xk) =

1

(R�1)k,k

�
R

�1(y � µ̂�k1n�1)
�
k
,

where

µ̂�k =
1R�1

y � (R�1
y)k/(R

�1)k,k
1R�11� (R�11)k/(R

�1)k,k
.

Similarly, when computing the leave-one-out cross validation error for KI, we use the same

✓̂KI estimated from the complete data. However, the coe�cients c should be re-estimated

for each k, following the same iterative estimation procedure described in Section 4.
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6 Examples

Example 1. Borehole Example ([16]):

The flow rate (y) through a borehole is given by

y =
2⇡Tu(Hu �Hl)

ln(r/rw)
h
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

i ,

where the ranges of interest for the eight variables are: rw 2 [0.05, 0.15], r 2 [100, 50000],

Tu 2 [63070, 115600], Hu 2 [990, 1110], Tl 2 [63.1, 116], Hl 2 [700, 820], L 2 [1120, 1680], and

Kw 2 [9855, 12045]. Denote them by x1 through x8, respectively.

We generated a maximin Latin hypercube design (LHD) ([15]) with 80 runs (10 times

the number of variables) and fitted KI. Since the true function is known in this example,

we can compute its prediction errors. For this purpose we generated a 1000-run random

LHD from the same design region and computed the root mean-squared prediction error

(RMSPE). Two other interpolating methods (OK and limit kriging) and four nonparametric

regression methods treed GP ([5]), local linear regression, multivariate additive regression

splines (MARS), and neural network ([21]) were chosen for comparison. They are fitted

using the R packages tgp ([6]), np ([9]), mda ([8]), and nnet ([25]) using the same 80-run

training dataset. The RMSPE’s of the seven methods are given in Table 1. In general,

the interpolation methods give superior performance over the four nonparametric regression

methods, which is expected because of the deterministic nature of the data. Among the

interpolation methods, KI gives the smallest RMSPE, which is about one-third of the two

kriging methods. This excellent performance of KI comes with a price: the CPU time for

fitting KI was 96 seconds which is about 40 times more than that of the kriging methods.

However, when approximating computationally expensive functions, it is worth spending a

few extra minutes to obtain better prediction.

We were able to compute the RMSPE in this example because the function was known.

In real applications where the function is expensive to compute, we should compute cross

validation errors for choosing a method. As explained in the previous section, the root mean-

squared cross validation error for OK can be computed as 0.8708 and that of KI as 0.2474.

This shows that KI is expected to work significantly better than OK in this example.
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Table 1: RMSPE’s of di↵erent predictors for Examples 1 and 2.

Example

Interpolation Nonparametric Regression

KI OK
Limit

TGP
Local Linear

MARS
Neural

Kriging Regression Network

Borehole 0.2158 0.6478 0.6091 7.9725 2.3978 5.1961 3.5684

Cyclone 0.0197 0.0360 0.0370 0.1114 0.0723 0.1477 0.0407

To exclude the e↵ects of experimental design, we generated 100 more training datasets

of size n = 80 using random LHDs and fitted both KI and OK. Figure 5 compares the

RMSPE’s of the two methods on the same test dataset of size 1000. All the points fall above

the y = x line indicating that OK has larger prediction errors than KI.

Example 2. Cyclone Example ([14] and [12]):

A cyclone is used for separating solid mass and gaseous mass. The critical parameter of

particles (y) is related to seven input variables by

y = 174.42

✓
x1

x5

◆✓
x3

x2 � x1

◆0.85✓1� 2.62[1� 0.36(x4/x2)�0.56]3/2(x4/x2)1.16

x6x7

◆1/2

.

The ranges of the variables are x1 2 [0.075, 0.125], x2 2 [0.225, 0.375], x3 2 [0.075, 0.125],

x4 2 [0.075, 0.125], x5 2 [1.125, 1.875], x6 2 [12.0, 20.0], and x7 2 [0.5625, 0.9375].

The comparisons of KI with the other methods are performed in the same way as in the

Borehole example, except that the size of the training dataset is n = 70. The second row of

Table 1 shows the RMSPE’s of the seven di↵erent methods. The KI predictor again gives

the smallest RMSPE, which is about half of the other kriging methods. The performance

of the nonparametric regression methods is relatively better in this example, but still the

best performing method (neural network) has three times larger RMSPE than that of KI.

Figure 6 shows the RMSPE’s of the KI and OK predictors fitted on 100 training datasets

generated using random LHDs. We can clearly see that KI is much more accurate than the

OK predictor for approximating the cyclone function.
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Figure 5: RMSPEs of KI and OK in the Borehole example for 100 datasets.
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Figure 6: RMSPEs of KI and OK in the Cyclone example for 100 datasets.
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7 Extension to Noisy Data

In this section, we extend the KI method to deal with data having random noise. Consider

the model in (1) with

f(x) = µ+ Z(x)/s(x).

For the noisy data, replicates of observations are necessary to estimate the noise variance. If

we have ni replicates at the design point xi for i = 1, . . . ,m, then we can estimate the noise

variance as �̂2 =
Pm

i=1(ni � 1)s2i /(n�m), where n =
Pm

i=1 ni and s2i is the sample variance

of the responses at xi. Denote the vector y = (ȳ1, . . . , ȳm). Its sampling distribution is

y|µ, ⌧ 2, �2, c,✓ ⇠ N
�
µ1, ⌧ 2S�1

RS

�1 + �2
L

�
,

where L = diag{1/n1, . . . , 1/nm}. Assuming a noninformative prior for µ as in Section 3,

the posterior distribution of y(x) can be obtained to be normal with mean

E
�
y(x)|⌧ 2, �2, c,✓,y

 
= µ̂+

r(x)0

s(x)

✓
S

�1
R+

�2

⌧ 2
LS

◆�1

(y � µ̂1) (25)

and variance

var
�
y(x)|⌧ 2, �2, c,✓,y

�
=

⌧ 2

s2(x)

(
1� r(x)0

✓
R+

�2

⌧ 2
LS

2

◆�1

r(x)

)

+ ⌧ 2

8
<

:

 
1� r(x)0

s(x)

✓
S

�1
R+

�2

⌧ 2
LS

◆�1

1

!2
1

10
�
S

�1
RS

�1 + �2

⌧2
L

��1
1

9
=

;+ �2,

where

µ̂ =
10
⇣
S

�1
RS

�1 + �2

⌧2
L

⌘�1

y

10
�
S

�1
RS

�1 + �2

⌧2
L

��1
1
.

The posterior mean of y(x) in (25) no longer interpolates the data, and therefore, we call it

kernel approximator (KA).

The empirical Bayes estimation is slightly di↵erent when �2 > 0 from Section 4. Let

� = �̂2/⌧ 2. Then the likelihood L can be derived similarly as in (21):

L�2/n / (y � µ1)0SV �1
S(y � µ1)

(
Qn

i=1 r(xi)0c)
2/n

|V |1/n,

where V = R+ �LS

2. Similar to Section 4 we also need to solve c and µ iteratively. Since

V involves c, we approximate V by using the value of c obtained in the previous iteration.
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Figure 7: Prediction and confidence intervals with noisy data. (a) KA and (b) OK.

Specifically, for given ✓ value, set the initial value µ0 = ȳ and c0 = 1. It is necessary to

specify the initial value for c because of V , whereas in Section 4 we only need to specify µ0.

Then iteratively update c and µ as follows until convergence.

ci = argmin
c

c

0
P i�1c, s.t Rc � 1, c > 0,

and µ̂i =
10
SiV

�1
i Siy

10
SiV

�1
i Si1

,

where P i�1 = Rdiag{y � µ̂i�11}V �1
i�1diag{y � µ̂i�11}R, V i = R + �LS

2
i , and Si =

diag{Rci}. In each iteration, � is also updated along with µ and c. To start the itera-

tions, we choose a reasonable initial value for � by setting ⌧ 2 =
Pm

i=1 ni(ȳi � ȳ)2/m.

For illustration, we chose five equally spaced design points and generated 6 replications

from the model yij = 0.5xi � sin(2xi) � exp(�2xi) + ✏ij, where ✏ij ⇠iid N(0, .22). Figure

7 shows the prediction and confidence intervals of KI and OK. We can see that the KI

continues to perform better near the boundaries for this function, however, there is no clear

improvement in the middle region.
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8 Conclusions

In this paper, we proposed an interpolator for analyzing deterministic computer experiments,

called kernel interpolation. It is developed by iteratively applying the kernel regression on

the residuals infinite number of times. We also proposed a nonstationary GP model for KI,

which helped in estimating the unknown parameters, constructing confidence intervals, and

extending the method to noisy observations. Compared with the popular kriging method, KI

seems to be more robust to the choice of correlation parameters and better in approximating

functions having monotonic global trends.

The main disadvantage of KI is its high computational cost for estimation of the unknown

parameters compared to kriging. However, the prediction using KI is as fast as that of

kriging. Therefore, the disadvantage in estimation diminishes as the function becomes more

and more expensive to evaluate. However, faster computational tools need to be developed

for dealing with large datasets and high dimensional problems.
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Appendix: Proofs

Proof of Theorem 1.

Proof. To show that

ŷKI(x) = lim
N!1

ŷN(x) = µ+ u(x)0
1X

i=0

(In �U )i(y � µ1)

interpolates all the observations, we only need to show for any y 2 Rn, U
P1

i=0(In�U )i(y�

µ1) = y � µ1, or equivalently,
P1

i=0(In �U )i = U

�1. This convergence is true if and only

if ⇢(In �U ) < 1, where ⇢(·) denotes the spectral radius of a matrix. Because

⇢(In �U ) = max
j

|�j (In �U ) | = max
j

|1� �j(U )| < 1,
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the condition ⇢(In �U ) < 1 is equivalent to 0 < �j(U ) < 2 for j = 1, . . . , n. The matrix R

is always symmetric positive definite since the kernel function is symmetric positive definite.

The entries of the diagonal matrix S are all strictly positive. Since both S and R are

symmetric positive definite matrices, U = S

�1
R is weakly positive definite. Therefore,

�i(U ) > 0 for i = 1, . . . , n ([18]). Thus, ŷN(x) ! ŷKI(x) as N ! 1, if and only if

�i(U ) < 2 for i = 1, . . . , n.

Furthermore, since

u(x)0U�11 =
r(x)0

s(x)
R

�1diag{Rc}1 =
r(x)0

r(x)0c
R

�1
Rc = 1

for all x,

ŷ(x) = µ+ u(x)0U�1(y � µ1) = u(x)0U�1
y.

Proof of Proposition 2.

Proof. To show that ŷN(x) converges to an interpolator, we need to show ||y� ŷN || ! 0 as

N ! 1 for any matrix norm. We have

y � lim
N!1

ŷN =

 
In �

1X

i=1

U i

i�1Y

j=0

(In �U j)

!
(y � µ1)

=

 1Y

i=1

(In �U i)

!
(y � µ1).

||y � lim
N!1

ŷN || 
1Y

i=1

||In �U i|| · ||y � µ1||.

If ||In �U i|| < 1 for all i, then
Q1

i=1 ||In �U i|| = 0. Therefore, y = limN!1 ŷN .

Proof of Proposition 3.

Proof. The KI prediction form is:

ŷKI(x) =
r(x)0

r(x)0c
R

�1
Sy.
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The jth element of the vector r(x)/r(x)0c is

uj(x) =
exp{�✓d(x,xj)}P

m cm exp{�✓d(x,xm)}
.

Define the notations � and ⇠ as in the Proposition 3. Then

uj(x) =
exp{�✓(d(x,xj)� �)}P

m cm exp{�✓(d(x,xm)� �)} .

If j /2 ⇠, then d(x,xj) > �. As ✓ ! 1, we have uj(x) ! 0. Similarly, if j 2 ⇠, then

d(x,xj) = �, and thus uj(x) ! 1/
P

i2⇠ ci as ✓ ! 1. Meanwhile, if ✓ ! 1, K(xi,xj) ! 0

for i 6= j, and thus R pointwise converges to the identity matrix In. The vector R

�1
Sy

pointwise converges to the vector diag{c}y. Therefore,

r(x)0

r(x)0c
R

�1
Sy !

P
i2⇠ ciyiP
i2⇠ ci

, as ✓ ! 1.

The result of OK can be proved similarly.
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