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Summary. In many areas of science and technology, mathematical models are built to simu-
late complex real world phenomena. Such models are typically implemented in large computer
programs and are also very complex, such that the way that the model responds to changes in
its inputs is not transparent. Sensitivity analysis is concerned with understanding how changes
in the model inputs influence the outputs.This may be motivated simply by a wish to understand
the implications of a complex model but often arises because there is uncertainty about the
true values of the inputs that should be used for a particular application. A broad range of mea-
sures have been advocated in the literature to quantify and describe the sensitivity of a model’s
output to variation in its inputs. In practice the most commonly used measures are those that
are based on formulating uncertainty in the model inputs by a joint probability distribution and
then analysing the induced uncertainty in outputs, an approach which is known as probabilistic
sensitivity analysis. We present a Bayesian framework which unifies the various tools of prob-
abilistic sensitivity analysis. The Bayesian approach is computationally highly efficient. It allows
effective sensitivity analysis to be achieved by using far smaller numbers of model runs than
standard Monte Carlo methods. Furthermore, all measures of interest may be computed from
a single set of runs.

Keywords: Bayesian inference; Computer model; Gaussian process; Sensitivity analysis;
Uncertainty analysis

1. Introduction

Consider a deterministic model that is represented by y = η.x/, where x is a vector of input
variables and y is the model output. We suppose that η.·/ is a complex model, such that the
way that the model responds to changes in its inputs is not transparent. Sensitivity analysis is
concerned with understanding how changes in the inputs x influence the output y. This may
be motivated simply by a wish to understand the implications of a complex model but often
arises because there is uncertainty about the true values of the inputs that should be used for a
particular application. We have a ‘base-line’ or central estimate x0 for x but are then interested
in how the true output y =η.x/ might differ from the base-line output y0 =η.x0/.

Local sensitivity analysis is based on derivatives of η.·/ evaluated at x=x0 and indicates how
y will change if the base-line input values are perturbed slightly. This is clearly of limited value
in understanding the consequences of real uncertainty about x, which would in practice entail
more than infinitesimal changes in the inputs. Global sensitivity analysis considers these more
substantial changes in x. However, there is then the question of how far to perturb individual
inputs. Perturbing each input to the limits that might be considered plausible gives some kind of
limits of plausibility for y, but the resulting range is usually unrealistically wide if many inputs
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are perturbed together, or unrealistically narrow if they are only perturbed individually. Such
difficulties are overcome by acknowledging the uncertainty in x and formally treating it as a
random variable with a specified distribution.

Thus, denoting the unknown true inputs by X, it follows that the corresponding output
Y = η.X/ is also unknown. We suppose that our uncertainty about the elements of X is des-
cribed by some probability distribution G. The approach to sensitivity analysis which
exploits this probabilistic setting is known as probabilistic sensitivity analysis. The most imme-
diate question in this case is to characterize the distribution of Y that is induced by giving
X the distribution G. Although this may be regarded as an aspect of probabilistic sensitivity
analysis, it is known by the separate name of uncertainty analysis. Sensitivity analysis proper
is generally seen as going beyond uncertainty analysis by exploring how individual inputs or
groups of inputs contribute to uncertainty in Y . In particular, an important problem is to iden-
tify which elements in X are the most influential, in some sense, in inducing the uncertainty
in Y .

We shall be particularly interested in the case where the model is so complex that simply
computing the output y for any given set of input values is a non-trivial task. For instance, large
process models in engineering, environmental science, chemistry, etc. are often implemented in
complex computer codes that require many minutes, hours or even days for a single run. We call
such models expensive, whereas a model that can be run many thousands of times in a reason-
able time is called cheap. The distinction is important when it comes to calculating any desired
measures of sensitivity, since ‘brute force’ computation that may be the simplest solution for
cheap models is usually impractical for expensive models.

Sensitivity and uncertainty analysis are important techniques for exploring complex models.
Saltelli, Tarantola and Campolongo (2000) and Kleijnen (1997) clearly show the key role of
these tools within the wider context of the building, validation and use of process models. We
present here

(a) a discussion of sensitivity analysis that unifies various other approaches that are consid-
ered in the literature and

(b) a Bayesian method building on the approach of O’Hagan et al. (1999) that is both robust
and highly efficient, allowing sensitivity analysis to be applied to expensive models.

2. Probabilistic sensitivity analysis

We write x ={x1, . . . , xd}, and we refer to xi as the ith element of x or the ith uncertain model
input. We shall denote the subvector .xi, xj/ by xi,j, and in general if p is a set of indices then
xp is the subvector of x whose elements have those indices. Finally, x−i is the subvector of x
containing all elements except xi.

Note, however, that much of the analysis that is discussed here holds if the xis are not simple
scalars, so the notation x ={x1, . . . , xd} could denote only a partial decomposition of x into d

subvectors.

2.1. Main effects and interactions
Some widely used methods of sensitivity analysis can be seen in terms of a decomposition of
the function η.·/ into main effects and interactions:

y =η.x/=E.Y/+
d∑

i=1
zi.xi/+ ∑

i<j

zi,j.xi,j/+ ∑
i<j<k

zi,j,k.xi,j,k/+ . . . + z1,2,:::,d.x/, .1/
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where

zi.xi/=E.Y |xi/−E.Y/,

zi,j.xi,j/=E.Y |xi,j/− zi.xi/− zj.xj/−E.Y/,

zi,j,k.xi,j,k/=E.Y |xi,j,k/− zi,j.xi,j/− zi,k.xi,k/− zj,k.xj,k/− zi.xi/− zj.xj/− zk.xk/−E.Y/,

and so on. We refer to zi.xi/ as the main effect of xi, to zi,j.xi,j/ as the first-order interaction
between xi and xj, and so on.

Note that the definitions of these terms depend on the distribution G of the uncertain inputs.
Consider, for instance, the very simple model η.x1, x2/=x1. We have E.Y/=E.X1/ and z1.x1/=
x1 −E.X1/. If G is such that X1 and X2 are independent then z2.x2/=0 and z12.x1, x2/=0. In
this case, the representation reflects the structure of the model itself, comprising a linear effect
of x1 with no x2-effect and no interaction. If, however, X1 and X2 are not independent, we have
z2.x2/=E.X1|x2/−E.X1/=−z12.x1, x2/, which will not in general be 0.

Computing and plotting the main effects and first-order interactions is a powerful visual tool
for examining how the model output responds to each individual input, and how those inputs
interact in their influence on y.

2.2. Variance-based methods
Variance-based methods of probabilistic sensitivity analysis quantify the sensitivity of the
output Y to the model inputs in terms of a reduction in the variance of Y .

This approach is reviewed by Saltelli, Chan and Scott (2000). Two principal measures of the
sensitivity of Y to an individual xi are proposed. The first is

Vi =var{E.Y |Xi/}:

The motivation for this measure is that it is the expected amount by which the uncertainty in Y

will be reduced if we learn the true value of xi. Thus, if we were to learn xi, then the uncertainty
about Y would become var.Y |xi/, a difference of var.Y/−var.Y |xi/. Since we do not know the
true value of xi, the expected difference is var.Y/−E {var.Y |xi/}=Vi, by a well-known identity.
Although var.Y/−var.Y |xi/ can be negative for some xi, its expectation Vi is always positive, so
this is the expected reduction in uncertainty due to observing xi. Note also that Vi =var{zi.Xi/}
and so is based on the main effect of xi.

The second measure, first proposed by Homma and Saltelli (1996), is

VTi =var.Y/−var{E.Y |X−i/},

which is the remaining uncertainty in Y that is unexplained after we have learnt everything
except xi.

Both measures are converted into scale invariant measures by dividing by var.Y/:

Si =Vi=var.Y/, .2/

STi =VTi=var.Y/=1−S−i: .3/

Thus, Si may be referred to as the main effect index of xi, and STi is known as the total effect
index of xi. The relative importance of each input in driving the uncertainty in Y is then gauged
by comparing their indices.
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As well as indicating the relative importance of an individual xi in driving the uncertainty in
Y , equation (2) can be seen as indicating where to direct effort in future to reduce that uncer-
tainty. If it were possible to observe one of the xis, to learn its true value exactly, and the cost of
that observation would be the same for each i, then we should choose that with the largest Si.
In practice, of course, it is rarely possible to learn the true value of any of the uncertain inputs
exactly; nor is the cost of gaining more information likely to be the same for each input. Never-
theless, the analysis does suggest where there is the greatest potential for reducing uncertainty
through new research. We do not believe that there is any comparable interpretation of STi in
terms of guiding research effort.

It does not follow that the two inputs with the largest main effect variances will be the best
two inputs to observe. We would need to calculate

Vi,j =var{E.Y |Xi,j/}=var{zi.Xi/+ zj.Xj/+ zij.Xi,j/} .4/

for all i and j, since this is the part of var.Y/ that is removed on average when we learn both
xi and xj. The search for the most informative combinations of inputs is considered further
by Saltelli and Tarantola (2002). In general, Vp = var{E.Y |Xp/} is the expected reduction in
variance that is achieved when we learn xp.

2.3. Variance decomposition
When G is such that the elements of X are mutually independent, we have already remarked
that the definitions of main effects and interactions will directly reflect the model structure. In
this case, we can also decompose the variance of Y into terms relating to the main effects and
various interactions between the input variables. A decomposition like an analysis of variance
is given in Cox (1982):

var.Y/=
d∑

i=1
Wi +

∑
i<j

Wi,j + ∑
i<j<k

Wi,j,k + . . . +W1,2,:::,d , .5/

where Wp =var{zp.Xp/}. This result holds because when the Xis are independent it is straight-
forward to show that all the terms in equation (1) are uncorrelated. Equation (5) gives us a
partition of the variance into terms that are the variances of the main effects and interaction
terms in equation (1).

We have Wi =Vi, i.e. the variance of the main effect is the reduction in var.Y/ that is obtained
by learning the true value of xi. Wi,j is the component of var.Y/ due solely to uncertainty about
the interaction between inputs xi and xj. Note that equation (4) becomes Vi,j =Wi +Wj +Wi,j =
Vi +Vj +Wi,j, so Wi,j is an extra amount of variance removed when we learn both xi and xj,
over the main effect variances Vi and Vj.

It is clear that when equation (5) holds we can identify V−i = var{E.Y |X−i/} with the sum
of all the Wp-terms not including the subscript i. Therefore the total effect index (3) is the pro-
portion of var.Y/ that is accounted for by all the terms in equation (5) with a subscript i, and
so STi �Si. It is also clear that Σd

i=1 Si �1�Σd
i=1 STi, with equalities only when all interactions

are 0.
Independence between the input variables, therefore, allows a tidy decomposition of the total

variance into component variances that are directly related to the quantities that were discussed
in Section 2.2. An analogy is that in regression analysis we have a nice partition of the total sum
of squares when the regressors, or groups of regressors, are orthogonal. Without orthogonality,
we can still define the sum of squares attributable to any set of variables, but sums of squares
for different sets of regressors no longer partition the total sum of squares.
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2.4. Regression components
The analogy with regression analysis becomes clearer if we consider the variance of Y as an
expected squared error of prediction. Thus, if we wish to predict Y without gaining any further
information about x, then the best prediction (in terms of minimizing the expected squared
error) is E.Y/. Then var.Y/ is the expected squared error of this prediction. Similarly, if we learn
the true value of the subvector xp, then the best predictor of Y becomes E.Y |xp/ and results in
an expected squared error of E{var.Y |Xp/}.

Consider predicting Y =η.x/ by a linear model of the form

η̂.x/=α+g.x/Tγ: .6/

The components of the vector function g.x/ are supposed given. We wish to choose α and γ
to obtain an approximation of the form (6) to minimize the expected squared prediction error
E{Y − η̂.X/}2. We then find that the optimal approximation is given by

γ =var{g.X/}−1 cov{g.X/, Y}
and α=E.Y/−E{g.X/}Tγ. The expected squared error is var.Y/−Vg.x/, where

Vg.x/ = cov{g.X/, Y}T var{g.X/}−1 cov{g.X/, Y}: .7/

The inclusion of the constant term α leads to E{Y − η̂.X/}=0. Furthermore, it then holds that
η̂.X/ is uncorrelated with η.X/− η̂.X/, and so we have the variance decomposition

var.Y/=Vg.x/ +var{η.X/− η̂.X/}: .8/

The interpretation of equation (8) is that Vg.x/ is the component of var.Y/ that is explained
by this fitted approximation, and that the second term measures its lack of fit. Setting g.x/=xi

gives a variance component

Vxi = cov.Xi, Y/2=var.Xi/

for a best prediction of Y by a linear function of xi alone. Now, since cov.Xi, Y/ =
cov{Xi, E.Y |Xi/}, this is also the best linear predictor of E.Y |xi/, and hence of the main effect
of xi. Therefore the difference Vi −Vxi measures the lack of linearity of this main effect.

Remembering that one objective of sensitivity analysis is to understand the way that the output
responds to changes to the inputs, these linear variance components and their complementary
lack-of-fit components give further insight into the behaviour of the model. By introducing
quadratic and higher order polynomial terms in g.x/ we can refine this understanding further.
We could equally well look at other regressor variables if the nature of the phenomenon that is
being modelled suggested them, such as harmonic terms for a cyclic input.

It should be noted that regression coefficients, correlation coefficients and related sums of
squares have been widely used in sensitivity analysis. Various sensitivity diagnostics based on a
Monte Carlo sample of runs are presented by Kleijnen and Helton (1999) and the use of regres-
sion coefficients in particular is discussed in Helton and Davis (2000). However, our approach
is different in some important respects.

Their approach is based on a Monte Carlo sample {.xs, ys/, s=1, 2, . . . , N} that is obtained
by sampling the input vectors xs from the distribution G and then running the model at each
sampled xs to compute output ys =η.xs/. They regarded the regression or correlation coefficient
between y and each input variable xi as measures of sensitivity of the output to that xi. Implic-
itly, they are fitting the statistical model ys = α + Σd

i=1 βixis + "s, with random-error term "s

(although Kleijnen and Helton (1999) also considered rank regression and other analyses of the
Monte Carlo data).
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In contrast, we define the regression coefficients γ in terms of a best-fitting regression approx-
imation (6) to Y =η.x/, judged by the expected squared error. In practice, it is easy to see that
the regression coefficients of Helton and Davis (2000) are estimates of our optimal coefficients
γ in the corresponding regression fit. However, the interpretation is different, we allow for
non-linear fits and we add the very important step of interpreting the difference between the
regression variance component and the corresponding main effect variance as a lack-of-fit
variance component.

Probably the most important difference is that we define the regression fits and correspond-
ing sums of squares as properties of the model η.·/, without involving any particular sample of
model runs. We see the standard regression approach in sensitivity analysis as a way to compute
estimates of these measures, but our definition opens the way for non-sampling-based ways to
estimate them, as in Section 3.

2.5. Discussion
The preceding subsections have presented a very broad perspective on probabilistic sensitivity
analysis. There are many reasons for conducting a sensitivity analysis of a model, as set out for
instance in French (2003). The techniques of sensitivity analysis are correspondingly diverse,
but it is very useful to be able to see a range of techniques in a common framework. Our for-
mulation unifies a variety of current approaches and offers new measures, to provide a deeper
understanding of a model and its dependence on the uncertain model inputs.

The idea of estimating and plotting main effects and interactions has been used before by
Welch et al. (1992), the variance-based sensitivity measures of main effect and total effect indices
are widely used, as described in Saltelli, Chan and Scott (2000), and sample-based regression
measures of sensitivity have been widely used by Helton and Davis (2000) and others, but
these are usually seen as distinct and unrelated approaches to sensitivity analysis. We define
new population-based regression measures that provide a link between the sample measures
and variance-based sensitivity analysis. Our proposal to use the difference between Vi and Vxi

to measure non-linearity in zi.xi/ is novel and, we believe, powerful. A similar idea, compar-
ing Vxi with the same measure based on ranked data, was proposed by Saltelli and Sobol’
(1995).

We contend that a fuller understanding of how individual inputs (and groups of inputs) influ-
ence the model output can be obtained through studying all the various measures—main effects
and interactions, variance-based sensitivity indices and regression components—rather than
relying on just one of these approaches.

We end this section by briefly addressing some other issues.

2.5.1. Local sensitivity
Local sensitivity analysis is based on partial derivatives of the function η.·/, evaluated at the
base-line inputs x0. Defining ηi.x/= @η.x/=@xi, a measure of local sensitivity of the output to
input i that is invariant to scale changes in both inputs and output is

Di =ηi.x0/
√{var.Xi/=var.Y/}:

It is then straightforward to show that D2
i is the proportional reduction in var.Y/ if we predict

Y by using a linear predictor with slope ηi.x0/. So in general D2
i var.Y/ � Vxi . Baker (2001)

suggested approximating η.·/ by a first-order Taylor series and derived the D2
i as measures of

sensitivity.
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2.5.2. Value of information
Our use of squared prediction error as a criterion can be justified formally in decision theoretic
terms by using the squared error loss. It may then be shown that Vp is the expected value of
gaining perfect information about xp. More generally, wherever the computer model is to be
used for decision-making, we could again measure sensitivity by the expected value of infor-
mation, but now defined with respect to the relevant utility or loss function and the available
decisions. An example of this approach is Oakley (2002a), where the model was used as the basis
of a decision on relative cost-effectiveness of competing medical technologies.

2.5.3. Computation
In principle, if η.·/ is sufficiently tractable it would be possible to derive analytically any of the
sensitivity measures that were discussed in the preceding sections. For models of sufficient com-
plexity for it not to be obvious how the output would respond to the model inputs, we cannot
hope for such tractability and must instead seek to obtain the desired measures computationally.

If η.·/ is sufficiently cheap to evaluate for many different inputs, simple Monte Carlo meth-
ods can be used to estimate var.Y/ or the component of variance Vg.x/ for any regression fit
with negligible error. It is not so straightforward to obtain Vi (and hence Si), STi or the main
effects or interactions as suggested in Section 2.1, since they depend on evaluating conditional
expectations. The method of Sobol’ (1993) and the Fourier amplitude sensitivity test, devised
by Cukier et al. (1973) and extended by Saltelli et al. (1999), are techniques that have been
developed specifically to compute some of these measures. Nevertheless, sensitivity analysis by
these techniques demands many thousands of function evaluations. For an expensive function,
where the evaluation of η.x/ at a single x might take minutes or even hours, such methods are
impractical.

3. Bayesian sensitivity analysis

In this section, we shall develop Bayesian inference tools for estimating all the quantities of
interest in sensitivity analysis, for the case of expensive functions. In addition to making it fea-
sible to carry out sensitivity analysis with a much smaller number of model runs, a key benefit
of our approach is that it can estimate all the many sensitivity measures that were discussed in
Section 2, from a single set of runs.

The essence of the Bayesian approach is that the model η.·/ is treated as an unknown func-
tion. In an absolute sense, of course, η.·/ is certainly not unknown, since it implements a model
that has been specified in precise mathematical form by someone (or some group of people).
Nevertheless, in a pragmatic sense η.x/ is unknown for any particular input configuration x
until we actually run the model for those inputs.

We therefore formulate a prior distribution for the function η.·/. This is updated according
to the usual Bayesian paradigm, using as data the outputs yi = η.xi/, i = 1, 2, . . . , N, from a
set of runs of the model. The result is a posterior distribution for η.·/, which we then use to
make formal Bayesian inferences about the various sensitivity measures that were introduced in
Section 2. Similar methods to estimate some of these sensitivity measures have been described
in Welch et al. (1992) and applied by Mrawira et al. (1999) to a model for highway management.

3.1. Inference about functions using Gaussian processes
We first develop the prior model for η.·/ in the form of a Gaussian process prior distribution
and derive the posterior distribution.



758 J. E. Oakley and A. O’Hagan

Gaussian processes have been used before for modelling computer codes; examples are Currin
et al. (1991) and Haylock and O’Hagan (1996). The key requirement is that η.·/ is believed to
be a smooth function, so if we know the value of η.x/ we should have some idea about the value
of η.x′/ for x close to x′. It is this property of η.·/ that will give us the opportunity to improve
on Monte Carlo sampling, since the extra information that is available after each code run is
ignored in the Monte Carlo approach.

For any set of points {x1, . . . , xn}, we represent our uncertainty about {η.x1/, . . . , η.xn/}
through a multivariate normal distribution. The mean of η.x/ is given by

E{η.x/|β}=h.x/Tβ, .9/

conditional on β. The vector h.·/ consists of q known regression functions of x, and β is a
vector of coefficients. The choice of h.·/ is arbitrary, though it should be chosen to incorporate
any beliefs that we might have about the form of η.·/. It is quite distinct from the g.·/ that was
introduced in Section 2.4. The covariance between η.x/ and η.x′/ is given by

cov{η.x/, η.x′/|σ2}=σ2 c.x, x′/, .10/

conditional on σ2, where c.x, x′/ is a function which decreases as |x − x′| increases and also
satisfies c.x, x/= 1 for all x. The function c.·, ·/ must ensure that the covariance matrix of any
set of outputs {y1 =η.x1/, . . . , yn =η.xn/} is positive semidefinite.

We regard β and σ2 as unknown hyperparameters, and we discuss their prior distribution
below. The other components of equations (9) and (10) are the vector h.·/ of regressor functions
to model beliefs about the general way that the output will respond to the inputs, and a corre-
lation function c.·, ·/ to model beliefs about the smoothness of the model output. Considerable
flexibility is available in the choice of these functions. In particular, c.·, ·/ is typically represented
hierarchically in terms of further unknown hyperparameters. An extensive discussion of these
modelling issues is given in Kennedy and O’Hagan (2001).

For mathematical tractability, the conjugate prior form for β and σ2, the normal inverse
gamma distribution, is assumed:

p.β, σ2/∝σ−.d+q+2/=2 exp[−{.β − z/TV −1.β − z/+a}=2σ2]: .11/

In the examples that are given in this paper, we use the weak form of this prior, p.β, σ2/∝σ2.
This implies an infinite prior variance of η.x/, whereas in practice we expect there to be cases
when the model developer can provide some proper prior knowledge about the function η.·/.
Elicitation of such prior information is described in Oakley (2002b).

The output of η.·/ is observed at n design points x1, . . . , xn to obtain data y. In contrast with
Monte Carlo methods, these points are not chosen randomly but are selected to give good infor-
mation about η.·/. In practice, the design points will be spread to cover X , the sample space
of X, although their choice will also depend on G. The choice of design points is discussed in
Sacks et al. (1989). Given these data it can be shown that

η.x/−mÅ.x/

σ̂
√

cÅ.x, x/
|y ∼ td+n, .12/

where

mÅ.x/=h.x/Tβ̂ + t.x/TA−1.y −H β̂/, .13/

cÅ.x, x′/= c.x, x′/− t.x/TA−1t.x′/
+ .h.x/T − t.x/TA−1H/.HTA−1H/−1.h.x′/T − t.x′/TA−1H/T: .14/
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t.x/T = .c.x, x1/, . . . , c.x, xn//,

HT = .h.x1/T, . . . , h.xn/T/,

A=




1 c.x1, x2/ . . . c.x1, xn/

c.x2, x1/ 1
:::

:::
: : :

c.xn, x1/ . . . 1


,

β̂ =VÅ.V −1z +HTA−1y/,

σ̂2 ={a+ zTV −1z +yTA−1y − β̂T.VÅ/−1β̂}=.n+d −2/,

VÅ = .V −1 +HTA−1H/−1,

yT = .η.x1/, . . . , η.xn//:

The outputs corresponding to any set of inputs will now have a multivariate t-distribution, with
covariance between any two outputs given by equation (14). Full details of the prior to posterior
analysis can be found in O’Hagan (1994).

Note that the t-distribution arises as a marginal distribution for η.x/ after integrating out the
hyperparameters β and σ2. In practice, as mentioned earlier, typically further hyperparameters
will be associated with the modelling of c.·, ·/, and it is generally impossible to integrate the pos-
terior analytically with respect to these further parameters. Although it is possible to integrate
numerically or to use Markov chain Monte Carlo (MCMC) sampling (Bayarri et al., 2002; Neal,
1999) this is a highly intensive computation, and experience suggests that it is adequate simply
to estimate the hyperparameters of c.·, ·/ from the posterior distribution and then to substitute
these estimates into c.·, ·/ wherever it appears in the above formulae; see Kennedy and O’Hagan
(2001).

The following sections set out how inferences about the various sensitivity measures can be
estimated from this posterior distribution. It may be helpful first, however, to relate this approach
to that outlined for cheap functions in Section 2.5. Any method for computing a given measure
can be viewed as estimating it. Like Monte Carlo methods, our Bayesian approach estimates
such measures by formal statistical methods, and our estimates can be accompanied by standard
errors or standard deviations to indicate their accuracy. Monte Carlo methods applied to very
cheap functions typically employ many thousands of model runs, so that the estimation error is
very small. When we consider expensive functions, it will rarely be feasible to do enough runs
for the estimation error to be negligible. A key benefit of our methods, however, is that the
standard deviations that are associated with estimates are generally very much smaller, often by
orders of magnitude, than those which are obtained from a Monte Carlo method with the same
number of model runs. It is this that allows us to achieve useful sensitivity analyses of complex
expensive models without having to make prohibitively many runs.

3.2. Inference for main effects and interactions
First consider inference about

E.Y |xp/=
∫

X−p

η.x/dG−p|p.x−p|xp/,
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using obvious notation for the space of possible values for x−p and for its conditional dis-
tribution given xp. Since this is a linear functional of the Gaussian process η.·/, its posterior
distribution will be td+n, after standardizing as in distribution (12) by subtracting its posterior
mean and dividing by its posterior standard deviation; see O’Hagan (1991). We can derive the
posterior mean as follows. Note that we denote expectations, variances and covariances defined
with respect to the posterior distribution of η.·/ by EÅ, varÅ and covÅ respectively.

EÅ{E.Y |xp/}=Rp.xp/β̂ +Tp.xp/e, .15/

where

Rp.xp/=
∫

X−p

h.x/TdG−p|p.x−p|xp/, .16/

Tp.xp/=
∫

X−p

t.x/TdG−p|p.x−p|xp/, .17/

e =A−1.y −H β̂/:

Similarly, EÅ{E.Y/}=Rβ̂ +T e, where R and T are the special cases of equations (16) and (17)
when p is the null set.

We can now readily find the posterior mean of any main effect or interaction. For instance,

EÅ{zi.xi/}={Ri.xi/−R}β̂ +{Ti.xi/−T}e,

EÅ{zi,j.xi,j/}={Ri, j.xi, j/−Ri.xi/−Rj.xj/−R}β̂ +{Ti, j.xi, j/−Ti.xi/−Tj.xj/−T}e:

All the main effects and interactions are linear functionals of η.·/, and so their posterior
distributions are td+n after appropriate standardization. We have derived their means and now
require to obtain standard deviations. All these can be found from the following general result:

covÅ{E.Y |xp/, E.Y |x′
q/}= σ̂2

∫
X−p

∫
X−q

cÅ.x, x′/ dG−p|p.x−p|xp/ dG−q|q.x′
−q|x′

q/

= σ̂2[Up;q.xp, x′
q/−Tp.xp/A−1Tq.x′

q/T

+{Rp.xp/−Tp.xp/A−1H}W{Rq.x′
q/−Tq.x′

q/A−1H}T], .18/

where

Up;q.xp, x′
q/=

∫
X−p

∫
X−q

c.x, x′/ dG−p|p.x−p|xp/ dG−q|q.x′
−q|x′

q/, .19/

W = .HTA−1H/−1:

The fact that all these results are expressed in terms of integrals, such as equation (16) or
(19), is not a problem in practice. For some common formulations of h.·/, c.·, ·/ and G, as used
in the examples of Section 4, it is possible to evaluate these integrals analytically. Even if this
is not possible, they may readily be computed numerically, since the integrands are very cheap
functions. The same will hold for all the inferences in the following subsections.

For a single input xi, we can plot the posterior mean of the main effect EÅ{zi.xi/} against
xi, with bounds of, for instance, plus and minus two posterior standard deviations. If we stan-
dardize each input variable, we can give EÅ{zi.xi/} for i=1, . . . , d on a single plot, and this will
provide a good graphical summary of the influence of each variable.
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However, unless n is large this combined plot may give a false impression of the importance
of each input, relative to that obtained from considering the main effect variance terms Vi. From
the plot, it is tempting to think of the inputs showing the greatest variation as the most impor-
tant, but var[EÅ{zi.Xi/}] is not the same as the posterior mean of Vi, i.e. EÅ[var{zi.Xi/}]. This
is why it is important to consider the posterior variance of zi.xi/ as well as its posterior mean.
From a graph showing an individual EÅ{zi.xi/} with standard deviation bounds, we could
visually judge (admittedly rather crudely) both var[EÅ{zi.Xi/}] and E[varÅ{zi.Xi/}]. Since

EÅ[var{zi.Xi/}]=var[EÅ{zi.Xi/}]+E[varÅ{zi.Xi/}]−varÅ[E{zi.Xi/}],

and, since E{zi.Xi/}=0 for all i, we have

EÅ.Vi/=var[EÅ{zi.Xi/}]+E[varÅ{zi.Xi/}]:

If the design set is sufficiently large and well chosen to make varÅ{zi.xi/} small for almost all
xi (with respect to G) then the second term can be ignored, but this will not usually be so in
practice.

3.3. Inference for variances
We now consider posterior inference for Vi and VTi. Note that these are quadratic functionals of
η.·/, and their posterior distributions will no longer be obtainable analytically. We can, however,
derive posterior means and variances. For instance, Haylock and O’Hagan (1996) derived the
posterior mean and variance of var.Y/. We generalize their approach to derive the posterior
mean of Vp =var{E.Y |Xp/} for any subvector xp. First note that

var{E.Y |Xp/}=E{E.Y |Xp/2}−E{E.Y |Xp/}2

=E{E.Y |Xp/2}−E.Y/2:

Since EÅ{E.Y/2} can be derived from results that we already have for varÅ{E.Y/} and EÅ{E.Y/},
we just need EÅ[E{E.Y |Xp/2}]. (Note that the expression for varÅ{E.Y/} in Haylock and
O’Hagan (1996) was incorrect, and we have given the correct result here via equation (18).)

EÅ[E{E.Y |Xp/2}]

=
∫

Xp

∫
X−p

∫
X−p

EÅ{η.x/ η.xÅ/}dG−p|p.x−p|xp/ dG−p|p.x′
−p|xp/ dGp.xp/

=
∫

Xp

∫
X−p

∫
X−p

{σ̂2 cÅ.x, xÅ/+mÅ.x/ mÅ.xÅ/}dG−p|p.x−p|xp/ dG−p|p.x′
−p|xp/ dGp.xp/,

where Gp.·/ denotes the marginal distribution of Xp and xÅ denotes the vector with elements
made up of xp and x′−p in the same way as x is composed of xp and x−p. We have
∫

Xp

∫
X−p

∫
X−p

σ̂2 cÅ.x, xÅ/ dG−p|p.x−p|xp/dG−p|p.x′
−p|xp/ dGp.xp/

= σ̂2[Up − tr.A−1Pp/+ tr{W.Qp −SpA−1H −HTA−1ST
p +HTA−1PpA−1H/}]

and∫
Xp

∫
X−p

∫
X−p

mÅ.x/mÅ.xÅ/ dG−p|p.x−p|xp/ dG−p|p.x′
−p|xp/ dG−1.x′

−1/

= tr.eTPpe/+2 tr.β̂Spe/+ tr.β̂Qpβ̂/,
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where

Up =
∫

Xp

∫
X−p

∫
X−p

c.x, xÅ/ dG−p|p.x−p|xp/ dG−p|p.x′
−p|xp/ dGp.xp/,

Pp =
∫

Xp

∫
X−p

∫
X−p

t.x/t.xÅ/T dG−p|p.x−p|xp/ dG−p|p.x′
−p|xp/ dGp.xp/,

Qp =
∫

Xp

∫
X−p

∫
X−p

h.x/h.xÅ/T dG−p|p.x−p|xp/ dG−p|p.x′
−p|xp/ dGp.xp/,

Sp =
∫

Xp

∫
X−p

∫
X−p

h.x/t.xÅ/T dG−p|p.x−p|xp/ dG−p|p.x′
−p|xp/ dGp.xp/:

The formula for varÅ[var{E.Y |Xp/}] is complex and will not be presented here. As before, all the
required integrals can be done numerically if necessary but are available analytically for certain
common modelling choices.

From this derivation of EÅ.Vp/ the posterior means of the main effect variance Vi and the
complementary effect variance VTi follow immediately. For inference about the indices Si and
STi, it is natural to divide these estimates by EÅ{var.Y/}. This does not of course give EÅ.Si/ or
EÅ.STi/, but the posterior expectations of ratios cannot be derived analytically.

In the case of independent Xis, the variance decomposition (5) is of interest. To compute
posterior means of interaction variances Wp, it is straightforward to show that (for independent
inputs)

cov{E.Y |Xp/, E.Y |Xq/}=var{E.Y |Xp∩q/}:

3.4. Inference for regression fits
To derive inferences for the regression fits and corresponding variance components in Sec-
tion 2.4, it is helpful first to note that

cov{g.X/, Y}=E{gÅ.X/Y}=
∫

X
gÅ.x/ η.x/ dG.x/,

where gÅ.x/= g.x/−E{g.X/}. The posterior mean of the regression fit may now be obtained
from

EÅ.γ/=var{g.X/}−1
∫

X
gÅ.x/ mÅ.x/ dG.x/,

then expanding mÅ.x/ from equation (13) and integrating term by term, as in equation (15).
Similarly, the posterior mean of the regression variance component Vg.x/ is obtained from

EÅ{Vg.x/}= tr[var{g.X/}−1]
∫

X

∫
X

gÅ.x/ gÅ.x′/T{cÅ.x, x′/+mÅ.x/ mÅ.x′/} dG.x/ dG.x′/,

then expanding cÅ.x, x′/ and mÅ.x/mÅ.x′/ from equations (14) and (13), and integrating term by
term. All the resulting integrals may be computed numerically and may be obtained analytically
for common modelling choices.

Posterior variances may be obtained, and since γ is a linear functional of η.·/ its posterior
distribution is td+n after appropriate standardization.
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We also note that it is possible to derive posterior inferences about any desired derivatives.
Relevant theory is given for one dimension in O’Hagan (1992) and is easily generalized to higher
dimensions. We find, for instance, that the posterior distribution of ηi.x/ has mean @mÅ.x/=@xi,
and is td+n after appropriate standardization. Inference about D2

i can then also be derived.

4. Examples

We present two illustrative examples, which are typical of a variety of models that we have con-
sidered. To apply the techniques of Section 3 in practice, it is necessary to identify the functions
h.·/ and c.·, ·/ that represent prior beliefs about the function η.·/, and the distribution G.·/ that
defines the uncertainty about the model inputs.

The general principles for specifying h.·/ and c.·, ·/ are discussed in Kennedy and O’Hagan
(2001). In both examples our choice for c.·, ·/ is the Gaussian form

c.x, x′/= exp{−.x −x′/TB.x −x′/}, .20/

where B is a diagonal matrix of (positive) roughness parameters. This implies a belief that the
output is an analytic differentiable function of its inputs.

The distribution G.·/ in these examples is multivariate normal. Together with the choices of
h.·/ and c.·, ·/ above, a normal G.·/ allows all the integrals in Section 3 to be done analytically,
conditional on B.

4.1. Synthetic example
We illustrate our methodology first with a synthetic example. The following test function is used:

η.x/=aT
1 x +aT

2 sin.x/+aT
3 cos.x/+xTMx: .21/

A 15-dimensional input vector x is considered. The elements of the unknown true input X all
have independent N.0, 1/ distributions. The weights a1, a2 and a3 are chosen so that one group
of five input variables accounts for the majority of the variance of Y = η.X/, another group
of five variables makes a relatively small contribution to the variance, and the remaining five
have very little effect. The values of these and of the matrix M can be downloaded from www.
sheffield.ac.uk/st1jeo.

In the prior mean function we set h.x/= 1, to represent no prior knowledge about how the
model output relates to its inputs. A more usual choice would be h.x/T = .1, xT/, representing a
belief that the output will be approximately linear in all the inputs. However, the function (21)
includes a linear component, and by not including this in our prior information we shall pose
a stronger test for our methods.

We evaluated η.x/ at 250 design points, chosen to make the expected posterior variance∫
X

cÅ.x, x/ dG.x/ .22/

small, conditional on guessed values of the roughness parameters in B. This is done by using
a suboptimal, but computationally simple, scheme. We start with a Latin hypercube sample of
250 points and evaluate integral (22). We then consider exchanging each design point in turn
with a randomly drawn candidate design point. If the new design decreases the value of the
integral, the candidate design point is exchanged for the current point. This process is repeated
until reductions in integral (22) become small.

Given the 250 runs, we found the posterior mode of B, and conditional on this estimate var.Y/

and Vi by their posterior expectations for each of the 15 input variables. We then estimated the
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Table 1. True and estimated main effects and linear compo-
nents: synthetic example

100Si 100Ŝi 100Vxi=var(Y) 100V̂xi =v̂ar(Y)

X1 0.1560 0.1738 0.1258 0.1369
X2 0.0186 0.0944 0.0164 0.0355
X3 0.1307 0.1331 0.1130 0.1136
X4 0.3045 0.3025 0.0921 0.1731
X5 0.2905 0.3382 0.0719 0.0559
X6 2.3035 2.2980 1.7123 1.8968
X7 2.4151 1.9681 1.6283 1.3838
X8 2.6517 2.8173 2.3651 2.5833
X9 4.6036 4.4774 2.2383 2.1671
X10 1.4945 1.3914 1.3189 1.3283
X11 10.1823 9.4742 7.9852 7.7383
X12 13.5708 13.2545 11.6408 11.8991
X13 10.1989 10.7672 8.3444 8.5742
X14 10.5169 10.2401 9.1020 8.4137
X15 12.2818 12.8899 10.9820 11.9776
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Fig. 1. Posterior expectation of E.Y jxi / against xi for each input variable: synthetic example (. . . . . . .,
X1, X2, X3, X4, X5; , X6, X7, X8, X9, X10; � – � – �, X11, X12, X13, X14, X15)

main effect indices Si by the ratio Ŝ i of these posterior means. The true values of these terms
can also be determined analytically. We also estimated the contributions to the variance from
the best linear fit, defined as Vxi . These results are summarized in Table 1.

From Table 1 we can see that, although there is some error in the estimates of the main effects
and linear components, we have successfully identified the three distinct groups of variables,
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Fig. 2. Posterior expectation of E.Y jx11,12/�E.Y jx11/�E.Y jx12/ against x11 and x12: synthetic example

and we have obtained the correct order of magnitude for the effect of each variable. To estimate
the posterior uncertainty about each Si, a simulation method presented in Oakley and O’Hagan
(2002) is used. (It is possible to derive formulae for varÅ[varX {E.Y |X/} and varÅ {var.Y/} for
certain modelling choices, though the number of terms is very large.) The simulation method
involves generating many additional runs of the code η.·/ from its posterior distribution and
re-estimating Si each time. For the three groups X1, . . . , X5, X6, . . . , X10 and X11, . . . , X15
approximate standard errors of the corresponding estimates 100Ŝ i were of the order of 0.2,
0.5 and 1 respectively. The Bayesian method is clearly validated in this case by the agreement be-
tween these figures and the errors that are seen in Table 1 between 100Ŝ i and the true values 100Si.
In comparison, Saltelli and colleagues (personal communication) report that, for this example,
1024 runs are needed per input factor (so 15360 runs in total) to achieve a standard error of 1.
Clearly, our approach based on 250 runs has demonstrated a substantial gain in efficiency.

Note that the main effect proportions do not sum to 100% of the variance. The remaining
variance after the main effects is estimated as 29% of the total variance (true value 28%). Since in
this example we have independent inputs, this represents the sum of the interaction components.

Plotting the posterior expectation (with respect to the unknown function η.·/) of E.Y |xi/

against xi for each variable also allows us to identify the three groups of variables. This is
illustrated in Fig. 1. To illustrate the effect of interactions between xi and xj, we can plot the
posterior expectation of E.Y |xi, j/ − E.Y |xi/ − E.Y |xj/ against xi and xj, and an example is
given in Fig. 2.

4.2. Oil-field simulator
We now give a second example involving a computer model of a hydrocarbon reservoir. This
model was used in Craig et al. (1997, 2001) to demonstrate their methodology for calibration
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and forecasting. The model predicts pressures at various wells throughout the reservoir, at var-
ious time points. As in Craig et al. (2001), we consider 40 uncertain inputs. These include seven
inputs ranging between 0.1 and 10 related to permeability in different regions of the reservoir,
and 33 inputs ranging between 0 and 1 related to fault transmissibility. We choose notional
distributions for these inputs; we first take log-transformations of the permeability inputs as in
Craig et al. (2001). A further linear transformation is taken so that each input is on the same
scale. We then suppose that each input has a normal distribution, with the ranges of each input
representing six standard deviations.

We perform a sensitivity analysis on the output at a single well at a single time point. We
have 101 runs of the code, with the design points chosen to form a Latin hypercube. For the
prior mean function we set h.x/T = .1, xT/. We then estimate the roughness parameters in B by
their posterior mode and compute the main effect and best linear fit components. Out of the
40 inputs, it was found that three inputs accounted for almost all the variance. In Table 2 we

Table 2. Main effect indices and linear
components: reservoir example

100Ŝ i 100V̂ xi =v̂ar(Y)

X2 6.3921 6.3921
X3 70.4647 66.7173
X4 17.2029 11.0936
Others 4.2252 4.0175
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Fig. 3. Posterior expectation of E.Y jxi / against xi for each input variable: reservoir example (. . . . . . ., X2;
� – � – �, X3; – – –, X4; , others)
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Fig. 4. Posterior expectation of E.Y jxi / against xi for four input variables (. . . . . . ., ˙2 standard deviations):
reservoir example

show the main effect indices and best linear fit components for these three inputs, and the sums
of the main effects and for the other 37 inputs.

The sum of the main effect indices is close to 100%, so there is little evidence of interactions
between the inputs. From Table 2 we can see evidence of non-linearity, particularly in input x4.
This can also be seen in Fig. 3, where we plot the conditional expectations of the output for
each input.

Finally, to illustrate the uncertainty that we still have about the model, we show conditional
means with 95% intervals of the output for four inputs, in Fig. 4.

Though we do not show the results here, we have also performed the same sensitivity analysis
for different wells in the reservoir, and at different time points. In each case inputs x3 and x4
were by far the most influential, though in some cases in reverse order.

5. Conclusions

We have presented a Bayesian approach to probabilistic sensitivity analysis that builds on a
range of existing measures and tools. Our method facilitates a deep and thorough analysis of
the sensitivity of a model output to variation in its inputs—through decomposition of the output
variance into components representing main effects and interactions, through further decom-
position of individual terms into components for linear or other regression-based fits, and for
non-linearity, and through graphical presentation of main effects and first-order interactions.

The method is highly efficient computationally. It will typically require far fewer model runs
than are needed for conventional Monte-Carlo-based methods (even those employing variance
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reduction techniques such as Latin hypercube sampling). This is particularly important in the
case of expensive models, since Monte Carlo methods become infeasible if each model run takes
an appreciable amount of computer time. The Bayesian approach also allows the complete range
of sensitivity measures to be computed from a single set of model runs. It may therefore be valu-
able even for cheap models if a full decomposition of the output variance is desired, since other
methods typically demand large repeat runs to compute each variance component.

The greater efficiency is achieved through a prior belief in smoothness of the function η.·/.
The methods that are presented here will not be appropriate if it is known that the model can
respond erratically or discontinuously to changes in its inputs.

We have presented two examples to illustrate the power of this method. It is worth noting
that the kinds of model for which a sensitivity analysis is required in many areas of science and
technology will usually have large numbers of uncertain inputs. Our examples involve 15 and 40
uncertain model inputs and are therefore of realistic, albeit moderate, dimensionality. In con-
trast, most other available methods experience severely increasing computational demands as
the number of inputs increases, so they are generally only applied in low dimensional problems.
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