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Abstract

A new kriging predictor is proposed. It gives a better performance over the existing

predictor when the constant mean assumption in the kriging model is unreasonable.

Moreover, the new predictor seems to be robust to the misspecifications in the corre-

lation parameters. The advantages of the new predictor is demonstrated using some

examples from the computer experiments literature.
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1. INTRODUCTION

A kriging model gives an interpolating predictor, which can be used to approximate a

function based on its finite number of evaluations. Kriging was originated in geostatistics

(Matheron 1963), which completely revolutionized the field. Several empirical studies have

proved its superiority over the other interpolating techniques such as splines (see Laslett,

1994). Kriging is now widely used in many fields including computer experiments (see Sacks

et al. 1989) and spatial statistics (see Cressie 1991).

There are some problems with the kriging predictor. First we explain those problems

using a simple example and then propose a new predictor to overcome them. A few details

about the kriging model need to be stated before getting into the problem. Consider a

function y(x), where x ∈ Rp. The core idea in kriging is to model this function as a

realization from a stochastic process. The kriging model can be stated as follows:

Y (x) = µ + Z(x), (1)

where Z(x) is a weak stationary stochastic process with mean 0 and covariance function σ2R.

In simple kriging (see Olea, 1999) µ is assumed to be known. The covariance function is

defined as cov{Y (x+h), Y (x)} = σ2R(h). The correlation function R(h) must be a positive

semidefinite function with R(0) = 1 and R(−h) = R(h). The weak stationarity assumption

can be relaxed using the intrinsic stationarity assumption (see Wackernagel 2002), but it

will not solve the problems with the predictor studied in this article and therefore we will

present the results using weak stationary process. Some details about the intrinsic kriging

will be given at the end of the next section.

Suppose we evaluated the function at n points {x1, · · · ,xn} and let y = (y1, · · · , yn)′ be

the corresponding function values. Then the kriging predictor of the function at some x is

given by

ŷ(x) = µ + r(x)′R−1(y − µ1), (2)

where 1 is a column of 1’s having length n, r(x)′ = (R(x − x1), · · · , R(x − xn)), and R is

an n× n matrix with elements R(xi −xj). It is the best linear unbiased predictor (BLUP),
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which minimizes the mean squared prediction error E{Ŷ (x) − Y (x)}2 under (1). A better

understanding of the kriging can be obtained by taking a Bayesian point of view. Assume

Z(x) to be a Gaussian process. We can consider it as a prior distribution on the function.

Then the predictor in (2) is nothing but the posterior mean of the function given the data

(see Currin et al. 1991).

Now consider an example from Santner, Williams, and Notz (2003). Suppose the function

is y(x) = exp(−1.4x) cos(7πx/2) over 0 ≤ x ≤ 1. We choose seven equally spaced points

from [0, 1] for evaluating the function. Thus xi = (i − 0.5)/7 for i = 1, · · · , 7. The function

and the seven points are plotted in Figure 1. Suppose we use a Gaussian correlation function

R(h) = exp(−θh2) for θ > 0. Santner, Williams, and Notz suggested using θ = 136.1. Taking

µ =
∫ 1

0
y(x)dx ≈ −0.01, the kriging predictor can be obtained from (2). It is also plotted

in Figure 1, which shows a reasonably good fit to the true function. Now consider another

choice of θ. Figure 2 shows the kriging predictor with θ = 300. The fit is clearly not good

in the intervals (x2, x3), (x4, x5), and (x6, x7). The predictor is behaving in the opposite

direction of what it should have been. If we take a closer look at Figure 1, we can see the

same phenomena but it is not as pronounced as in Figure 2. This has happened because

the posterior mean is pulled towards the prior mean (µ = −0.01) in regions where data are

not available. It seems that by using the right value of θ we can avoid this problem. But in

real practice we do not know the true function and therefore will not be able to choose the

best value of θ to get the best fit. There are several methods for estimating the correlation

parameters from the data. One popular method is maximum likelihood estimation. In this

particular case the maximum likelihood estimate of θ is more than 300, which will make the

fit even more worse than the one in Figure 2.

In this article we will propose a modification of the kriging predictor, which seems to

mitigate the above problem. The article is organized as follows. In Section 2, we introduce

the new predictor. Some of its properties are studied in Section 3. In Section 4, we use two

examples from the computer experiments literature to compare the performance of the new

predictor with the existing predictor. Some concluding remarks are given in Section 5.
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Figure 1: The plot of the function y(x) = exp(−1.4x) cos(7πx/2) (solid) and the simple

kriging predictor (dashed) with θ = 136.1 and µ = −0.01.
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Figure 2: The plot of the function y(x) = exp(−1.4x) cos(7πx/2) (solid) and the simple

kriging predictor (dashed) with θ = 300 and µ = −0.01.
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2. THE LIMIT KRIGING

If we can somehow remove µ from (2), then we might be able to overcome the problem

exhibited in Figure 2. In order to do this, introduce a new function λ(x) as follows. Let

ŷ(x) = µ + λ(x)r(x)′R−1(y − µ1).

Rearranging the terms, ŷ(x) = µ{1 − λ(x)r(x)′R−11} + λ(x)r(x)′R−1y. Assume that

r(x)′R−11 6= 0. Thus if we take λ(x) = 1/r(x)′R−11, then µ will no longer be required for

prediction. Thus we obtain a new predictor

ŷ(x) =
r(x)′R−1y

r(x)′R−11
. (3)

Since R−1r(xi) = ei, where ei is a unit vector with a 1 at its ith position, we have ŷ(xi) =

e′iy/e′i1 = yi. Therefore the new predictor is still an interpolator. In addition, it is unbiased

under the model in (1), because E{ŷ(x)} = r(x)′R−1µ1/r(x)′R−11 = µ.

The earlier work in kriging methodology tries to remove µ from the predictor in a different

way. Consider a predictor of the form ŷ(x) = µ + c(x)′(y − µ1). If we minimize the mean

squared prediction error (MSPE) with respect to c(x), then we will obtain the simple kriging

predictor as in (2). Suppose we add a constraint c(x)′1 = 1 to the above optimization. Then

the predictor becomes ŷ(x) = c(x)′y, which does not include µ. By minimizing MSPE under

this constraint we obtain

c(x)′ = {1− r(x)′R−11} 1′R−1

1′R−11
+ r(x)′R−1.

The corresponding predictor can be written as

ŷ(x) = µ̂ + r(x)′R−1(y − µ̂1), (4)

where µ̂ = 1′R−1y/1′R−11. This is known as ordinary kriging in geostatistics (see Olea

1999) and is probably the most commonly used form of the kriging predictor in practice. The

ordinary kriging predictor is similar to the simple kriging predictor in (2) with µ estimated

from the data using generalized least squares. In the Bayesian formulation, µ̂ can be thought
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of as an empirical Bayes estimate obtained by maximizing the likelihood. Another Bayesian

interpretation can also be given. Suppose we impose an improper prior distribution on µ.

Then we can obtain the ordinary kriging predictor as the posterior mean of the unknown

function given the data.

Both the ordinary kriging predictor and the new predictor in (3) are linear unbiased

predictors. In addition to that, the ordinary kriging predictor is the “best” in the sense of

minimizing the MSPE under model (1). In fact, we can obtain the following expressions for

the MSPE. Assume the correlation function to be known. Then, for the ordinary kriging

MSPE = σ2[1− r(x)′R−1r(x) +
{1− r(x)′R−11}2

1′R−11
],

and for the new predictor

MSPE = σ2[1− r(x)′R−1r(x) +
r(x)′R−1r(x)

{r(x)′R−11}2
{1− r(x)′R−11}2].

By Cauchy-Schwarz inequality {r(x)′R−11}2 ≤ (1′R−11){r(x)′R−1r(x)} and therefore, as

expected, the MSPE of the new predictor is always greater than or equal to the MSPE of

the ordinary kriging predictor. If this is the case, one would think, why should we even

look at the new predictor? The reason is, the ordinary kriging is optimal under the model

in (1), but if this model is unreasonable, then other predictors can outperform it. Before

evaluating the MSPE under a more reasonable model, let us take a look at the example

again given in the introduction. Figure 3 shows the plot of the ordinary kriging predictor in

(4) and the new predictor in (3) with θ = 136.1. Note that the new predictor is better than

the ordinary kriging predictor in those three intervals (x2, x3), (x4, x5), and (x6, x7), which

is more pronounced in Figure 4 with θ = 300. Because µ̂ = −0.01, the ordinary kriging

predictors behave exactly the same way as the simple kriging predictors in Figures 1 and 2.

The most striking feature about the new predictor is that there is no “pulling effect” from

the prior mean as it was there for the simple and ordinary kriging predictors. Therefore the

technique we applied to remove the effect of the prior mean µ from (2) was successful for

the new predictor but not for the ordinary kriging predictor. This is expected because in

the ordinary kriging predictor we only replaced the µ in (2) with an estimate of it from the

data, which cannot alter the behavior of the simple kriging predictor.
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Figure 3: The plot of the function y(x) = exp(−1.4x) cos(7πx/2) (solid), the ordinary kriging

predictor (dashed), and the new predictor (dotted) with θ = 136.1.
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Figure 4: The plot of the function y(x) = exp(−1.4x) cos(7πx/2) (solid), the ordinary kriging

predictor (dashed), and the new predictor (dotted) with θ = 300.
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Now we will try to provide more insights into the new predictor. Consider the two plots

of the simple kriging predictors in Figure 5. The first one is with µ = −0.5 and the second

one is with µ = 0.5 (both are with θ = 300). Note that the first predictor does well in

the intervals (x2, x3) and (x6, x7) and the second predictor does well in the interval (x4, x5)

compared to the predictors in Figure 2. The reason is, compared to −0.01 the function is

closer to −0.5 in the first two intervals and closer to 0.5 in the interval (x4, x5). This suggests

that if we change µ in the simple kriging predictor depending on x, then we might be able

to improve the prediction. Therefore, consider a modified predictor of the form

ŷ(x) = µ(x) + r(x)′R−1{y − µ(x)1}.

If µ(x) is close to the true function y(x), then we can expect to get excellent prediction.

But unfortunately we do not know the true function. One possible way to circumvent this

problem is to use the predicted value of y(x) as µ(x). Therefore, consider the following

recursive implementation of the above idea. Let

ŷk(x) = ŷk−1(x) + r(x)′R−1{y − ŷk−1(x)1}, (5)

where ŷk(x) is the predicted value at the kth stage with ŷ1(x) = µ(x)+r(x)′R−1{y−µ(x)1}.
Then it is easy to show that

ŷk(x) = µ(x) +
[1− {1− r(x)′R−11}k]

r(x)′R−11
r(x)′R−1{y − µ(x)1}.

If 0 < r(x)′R−11 < 2, then as k →∞ the predictor becomes

lim
k→∞

ŷk(x) = µ(x) +
1

r(x)′R−11
r(x)′R−1{y − µ(x)1} =

r(x)′R−1y

r(x)′R−11
, (6)

which is the same as the new predictor in (3). Since the new predictor can be obtained as

the limit of the simple kriging predictor with varying µ, we will name it as the limit kriging

predictor. It can also be obtained in a single step as follows. Let ŷ(x) = limk→∞ ŷk(x).

Then taking limits on both sides of equation (5) we obtain

ŷ(x) = ŷ(x) + r(x)′R−1{y − ŷ(x)1}.
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Figure 5: The plot of the function y(x) = exp(−1.4x) cos(7πx/2) (solid), the simple kriging

predictor (dashed) with θ = 300, and (a) µ = −0.5 , (b) µ = 0.5.

Solving for ŷ(x) we get the limit kriging predictor. The above interpretation of the new

predictor explains why it performed well compared to the simple/ordinary kriging predictors

in Figures 1-4. Because µ was varied depending on the predicted value, the pulling effect

from the fixed µ was removed, thereby giving a better prediction.

It is important to elaborate on the last point made in the above discussion. The simple

kriging predictor in (2) can be written as

ŷ(x) = µ +
n∑

i=1

ci(x)(yi − µ).

where ci(x) = (R−1r(x))i is the weight given for the ith observation. If we replace µ by
∑n

i=1 ci(x)yi/
∑n

i=1 ci(x), then we get the limit kriging predictor. Typically, the kriging

weights are large for observations closer to x and small for observations farther from x. In

such a case, the limit kriging predictor can be interpreted as a simple kriging predictor with

µ replaced by a local average of the yi’s. Therefore the pulling from the global mean as in

the case of ordinary kriging is avoided. In this sense limit kriging is similar to the idea of

kriging with a moving neighborhood (see Chilès and Delfiner 1999).

As noted in the derivation, the limit in (6) exists only if 0 < r(x)′R−11 < 2. Although
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this seems to be true under some conditions on the correlation function, we are able to

prove only for some special cases given in the Appendix A. Fortunately, the only condition

required for the existence of the predictor is r(x)′R−11 6= 0. A necessary condition for this

is r(x) 6= 0. For certain correlation functions such as the linear correlation function, cubic

correlation function etc. R(h) = 0 when the length of h is more than a threshold value. In

such cases the limit kriging predictor cannot be computed. The problem can be avoided by

defining the predicted value equal to µ̂ when r(x) = 0 (so that it gives the same value as

the ordinary kriging). In the next section we will show that for certain class of correlation

functions the limit kriging predictor exits in the limit as r(x) → 0 and therefore it is defined

for all x.

Now we will give a justification on why the limit kriging is able to produce better perfor-

mance over the ordinary kriging in some cases. Note that we cannot compare the performance

of two predictors for a given function, because a predictor that is exactly equal to the given

function is optimal. We can only compare the average performance of the predictors with

respect to a family of functions (such as by using MSPE). Consider a family of functions

generated from the model

Y (x) = µ(x) + Z(x), (7)

where Z(x) is a weak stationary process with mean 0 and covariance function τ 2R. In

particular, we assume the true function to be closer to µ(x) than a constant µ. Let

µ = (µ(x1), · · · , µ(xn))′. The MSPE of the ordinary kriging under the model in (7) is

(for simplicity r(x) is denoted as r)

MSPEOK = {(1− r′R−11)
1′R−1µ

1′R−11
+ r′R−1µ− µ(x)}2 + τ 2{1− r′R−1r +

(1− r′R−11)2

1′R−11
}

(8)

and for limit kriging

MSPELK = {r′R−1µ

r′R−11
− µ(x)}2 + τ 2{1− r′R−1r +

r′R−1r

(r′R−11)2
(1− r′R−11)2}. (9)

As noted before, when µ(x) is a constant, the MSPE of ordinary kriging will be smaller

than that of limit kriging. But when µ(x) is not a constant, the bias term can dominate
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the variance term and the MSPE of limit kriging can become smaller. To demonstrate

this, suppose there is a linear trend, µ(x) = βx for x ∈ R. Let the design points be

D = {1, 2, · · · , n}. For the correlation function R(h) = ρ|h|, we obtain R = (ρ|i−j|)n×n and

r(x)′ = (ρ|x−1|, · · · , ρ|x−n|). Then as shown in the Appendix B, for an x ∈ [1, 2]

MSPEOK = β2

{
(1− φ(x))

(n + 1)

2
+

(1− 2ρ)ρ2x−2 + 2ρ− ρ2

(1− ρ2)ρx−1
− x

}2

+ τ 2(1 + ρ)

{
1− φ2(x)

1− ρ
+

(1− φ(x))2

n− (n− 2)ρ

}
, (10)

and

MSPELK = β2

{
1 +

(1− ρ2x−2)

(1− ρ)(1 + ρ2x−3)
− x

}2

+ 2τ 2 (1− φ(x))

(1− ρ)

{
1 + ρ− ρ(1− φ(x))

φ2(x)

}
,

(11)

where φ(x) = r(x)′R−11 = (ρx−1 + ρ2−x)/(1 + ρ). Since φ(x) < 1 for all x ∈ (1, 2) and

ρ ∈ [0, 1], MSPEOK → ∞ as n → ∞, whereas the MSPELK does not increase with n.

Thus for n large enough, the MSPE of ordinary kriging can be much larger than that of limit

kriging. Therefore, although the ordinary kriging is optimal under the model in (1), the limit

kriging can outperform it under a different model. In summary, the ordinary kriging shall

be preferred when the function is expected to vary around a constant and limit kriging shall

be preferred when the function is expected to have some trends.

Note that the optimal predictor (that minimizes the MSPE) under model (7) is given by

ŷ(x) = µ(x) + r(x)′R−1(y − µ).

Since the true function is unknown to the investigator, µ(x) will also be unknown and

therefore the above predictor cannot be used in practice. One practical implementation

strategy is to let µ(x) =
∑m

i=0 βifi(x), where fi’s are some known functions and βi’s are

unknown parameters. This is known as universal kriging in geostatistics. The optimal

predictor can be obtained as follows. Usually f0(x) = 1. Let f(x) = (1, f1(x), · · · , fm(x))′,

β = (β0, β1, · · · , βm)′, and F = (f(x1), · · · , f(xn))′. Note that F is an n× (m + 1) matrix.

Then the universal kriging predictor is given by

ŷ(x) = f(x)′β̂ + r(x)′R−1(y − F β̂),
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where β̂ = (F ′R−1F )−1F ′R−1y. If the fi’s are able to capture some of the global trends

in the true function, then this approach could give a better prediction than the ordinary

kriging. The limit kriging can also be improved as follows. The idea is to do the limit

kriging on Y (x)−∑m
i=1 βifi(x) instead on Y (x). This gives us the universal version of the

limit kriging as

ŷ(x) = f̃(x)′β̃ +
r(x)′R−1(y − F̃ β̃)

r(x)′R−11
,

where f̃(x) is the f(x) without 1, F̃ is the F matrix without the first column of 1’s, and

β̃ is the last m components of β̂. The above predictor can be interpreted as follows. The

universal kriging is used to remove the known trends and then the limit kriging is applied

to get a protection against unknown trends.

Another generalization of the ordinary kriging is to use an intrinsic stationary process.

The intrinsic stationary model (of order 0) is given by

Y (x) = µ + Z(x),

where

E{Z(x + h)− Z(x)} = 0,

1

2
var{Z(x + h)− Z(x)} = γ(h).

The γ(h) is known as a variogram, which is more commonly used in geostatistics than

a correlation function (correlogram). The advantage of the intrinsic model is that it can

entertain a wider class of processes than the weak stationary processes. Note that a weak

stationary process will always be an intrinsic stationary process, but the converse is not

true. See Myers (1989) for an interesting discussion on stationarity and examples. Under

the intrinsic model, the predictor that minimizes the MSPE is given by (see Cressie 1991)

ŷ(x) = µ̂IK + γ(x)′Γ−1(y − µ̂IK1), (12)

where µ̂IK = 1′Γ−1y/1′Γ−11, γ(x)′ = (γ(x − x1), · · · , γ(x − xn)), and Γ is an n × n

matrix with elements γ(xi − xj). In the literature, the above predictor is also called the
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Figure 6: The plot of the function y(x) = exp(−1.4x) cos(7πx/2) (solid) and the intrinsic

kriging predictor (dashed) with γ(h) = |h|0.5.

ordinary kriging predictor (or intrinsic random function kriging predictor of order 0). The

difference between (4) and (12) is that the former uses correlation functions and the latter

uses variograms. To avoid confusion, we will refer to (12) as intrinsic kriging predictor. If

the process is weak stationary, then there exists a correlation function such that γ(h) =

σ2{1−R(h)}. Then, it can be shown that the prediction from the intrinsic kriging is exactly

the same as that of the ordinary kriging (Christensen 1990). Thus the limit kriging can

outperform the intrinsic kriging under the same situations that we have discussed earlier. It

only remains to see whether the intrinsic kriging can perform better when we use variograms

for which correlation functions do not exist. To check this consider the example in the

introduction. Let γ(h) = |h|0.5. Note that the power variograms are unbounded and cannot

be obtained from correlation functions (see Wackernagel 2002). Figure 6 shows the plot of

the predictor. We see that the intrinsic kriging exhibits the same problem as that of the

ordinary kriging. Thus extending the weak stationarity to intrinsic stationarity and using

unbounded variograms do not solve the problem of “pulling towards the mean”.
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3. SOME PROPERTIES

Consider an exponential correlation function of the form R(h) = exp{−θd(h)} with θ >

0, where d(h) =
∑p

i=1 hα
i for some α ∈ (0, 2]. Let D = {x1, · · · ,xn} be the design. Consider

any point x ∈ Rp and let xN be the nearest point in D, i.e. mini d(x − xi) = d(x − xN).

Now r(x) = exp{−θd(x − xN)}δN , where δN is an n-dimensional vector with elements

exp[−θ{d(x − xi) − d(x − xN)}]. In the limit as θ → ∞, we have that δN → eN . In

addition, R → In, the n-dimensional identity matrix. Then for the limit kriging

lim
θ→∞

ŷ(x) = lim
θ→∞

δ′NR−1y

δ′NR−11
=

e′Ny

e′N1
= yN , (13)

whereas for the ordinary kriging

lim
θ→∞

ŷ(x) =





µ̂ , x /∈ D

y(x) , x ∈ D
.

Thus, for the limit kriging the predicted value is the closest function value in the design,

but for the ordinary kriging it is the mean value. This shows that the prediction from the

limit kriging will be better if the function does not vary around a constant. This statement

can be made more rigorous by comparing the MSPE of the two predictors under the model

in (7). Taking the limit as θ →∞ in (8) and (9), we obtain (for x /∈ D)

MSPEOK = {µ̄− µ(x)}2 + τ 2(1 +
1

n
)

and

MSPELK = {µ(xN)− µ(x)}2 + 2τ 2,

where µ̄ =
∑n

i=1 µ(xi)/n. Clearly, although the second term is larger for the limit kriging

compared to the ordinary kriging, the first term can be much smaller. Thus roughly speaking,

the limit kriging performs better than the ordinary kriging when the variation in the function

with respect to µ̄ is much larger than τ 2. As an example, consider a function y(x) = sin(2x)

over x ∈ [0, 1]. Let R(h) = exp(−θh2). Suppose again we use a 7-point design as in the

example given in the introduction. The true function and the limit kriging predictors are
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plotted in Figure 7 for various values of θ. We can see that the limit kriging predictor

becomes like a step function as θ increases. The ordinary kriging predictors are also plotted

in Figure 7. Clearly the limit kriging predictor is uniformly better than the ordinary kriging

predictor for all values of θ. It is clear from Figure 7 that the variation in the limit kriging

predictor with respect to the correlation parameter θ is smaller compared to that of the

ordinary kriging predictor. Thus the limit kriging predictor is not greatly affected by a

misspecification of θ.
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Figure 7: The plot of the function y(x) = sin(2x) (solid), the ordinary kriging predictor

(dashed), and limit kriging predictor (dotted) with (a) θ = 100, (b) θ = 300, (c) θ = 500,

(d) θ = 700.

The above discussion throws some light on the optimal sampling of points to observe
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y(x). Let X be the region of interest and D = {x1, · · · ,xn} denotes the sampling design,

where xi’s are distinct points in X . Since for limit kriging as θ → ∞, ŷ(x) → yN , the

prediction will be good if x is close to xN . Therefore a good design criterion is to

min
D

max
x∈X

d(x− xN),

which is the minimax distance criterion proposed by Johnson, Moore, and Ylvisaker (1990).

Thus, the minimax distance design seems to be the most natural design to be used in

conjunction with limit kriging. Note that for ordinary kriging ŷ(x) → µ̂ as θ → ∞ (for

x /∈ D) and therefore it does not possess the above connection with the minimax distance

design. Johnson, Moore, and Ylvisaker (1990) had shown that as the correlation becomes

weak (as θ →∞), a minimax distance design is asymptotically G-optimum (i.e. it minimizes

the maximum prediction variance). Interestingly, as we have shown here that when θ →∞
limit kriging is more meaningful to use than ordinary kriging with a minimax distance design.

This could be considered as another justification for preferring limit kriging over ordinary

kriging, because if one strongly believes in the usefulness of minimax distance design, then

it is the limit kriging that produces the expected prediction behavior and not the ordinary

kriging.

Although kriging is not recommended for extrapolation, it is interesting to see how the

predictors behave as we try to extrapolate. For the ordinary kriging, as any of the com-

ponents of x tends to ±∞, r(x) → 0 and therefore ŷ(x) → µ̂. The behavior of the limit

kriging is not that easy to see, because both numerator and denominator in (3) goes to 0.

But by using (13), we can see that for θ large enough the extrapolated value is yN . For small

values of θ, the extrapolation depends on the correlation function. For R(h) = exp(−θh2),

(x− xi)
2 − (x− xN)2 →∞ as x → ±∞ and therefore, ŷ(x) → yN . This can be observed in

Figures 3, 4, and 7.
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4. EXAMPLES

Example 1 : Consider the following test function used by Currin et al. (1991):

y(x) = {1− exp(−0.5/x2)}2300x3
1 + 1900x2

1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
,

over x ∈ [0, 1]2. We use a 42 full factorial design with levels (0.125, 0.375, 0.625, 0.875), which

is the minimax distance design in 16 points. Let the correlation function be

R(h) = exp(−
2∑

i=1

θih
2
i ).

The maximum likelihood estimate of θ = (θ1, θ2)
′ can be obtained by minimizing the function

(see Santner, Williams, and Notz 2003, page 66)

n log{σ2(θ)}+ log det{R(θ)},

where σ2(θ) = {y − µ̂(θ)1}′R−1(θ){y − µ̂(θ)1}/n and µ̂(θ) = 1′R−1(θ)y/1′R−1(θ)1. We

obtain θ̂ = (1.9046, 0.1725). Now the limit kriging and ordinary kriging predictors can

be computed from (3) and (4). To compare their performance, 400 points were randomly

sampled from [0, 1]2. Because the true function is known, the actual prediction errors can

be computed for both the methods. Define

RMSPE =

[
1

400

400∑
i=1

{ŷ(xi)− y(xi)}2

]1/2

.

The RMSPE of the ordinary kriging is 1.094 and that of the limit kriging is 1.029. Thus

the limit kriging gives a better prediction in this example. Now consider the case with

θ1 = θ2 = θeq. The RMSPE is calculated for different values of θeq (using the same set of 400

design points) and is given in Table 1. We can see that the limit kriging shows a remarkable

improvement over the ordinary kriging at high values of θeq.

Example 2 : Morris, Mitchell, and Ylvisaker (1993) used the following borehole function

for the comparison of several methods in computer experiments. The function is given by

y =
2πTu(Hu −Hl)

ln(r/rw)
[
1 + 2LTu

ln(r/rw)r2
wKw

+ Tu

Tl

] ,
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Table 1: RMSPE values for the ordinary and limit kriging predictors.

Example 1 Example 2

θeq Ordinary Limit Ordinary Limit

1 0.998 0.997 25.49 22.66

10 1.097 1.094 42.82 32.37

100 1.830 1.180 43.50 36.66

1000 2.624 1.252 43.50 37.75

where the ranges of interest for the eight variables are rw : (0.05, 0.15), r = (100, 50000),

Tu = (63070, 115600), Hu = (990, 1110), Tl = (63.1, 116), Hl = (700, 820), L = (1120, 1680),

and Kw = (9855, 12045). We scale these eight variables to (0, 1) and denote them as

x1, x2, · · · , x8. Morris, Mitchell, and Ylvisaker gave a 10-run design using the maximin

distance criterion. In that design each variable takes only two levels 0 or 1. We use the

same design except that the two levels are taken as 0.25 and 0.75. Like in their paper we use

the Gaussian product correlation function R(h) = exp(−∑8
i=1 θih

2
i ). By constraining each

θi in [0.01, 4.6], they obtained the maximum likelihood estimates of θ from their design as

(0.71, 0.31, 0.01, 0.03, 0.01, 0.04, 0.21, 0.01). We use these estimates to compute the ordinary

and limit kriging predictors. A random sample of 400 points were obtained from [0, 1]8 and

the RMSPE for both the predictors were computed. The RMSPE for the ordinary kriging

was 11.97 and that of the limit kriging was 11.30. Thus in this example also the limit kriging

does a better job than the ordinary kriging. Again consider the case with equal θ’s. Table 1

also tabulates the RMSPE of both the predictors for different values of θeq. We see that the

limit kriging performs better than the ordinary kriging.

5. CONCLUSIONS

In this article we have proposed a modified version of the kriging, known as limit kriging,

and discussed some of its properties. The ordinary kriging predictor minimizes the mean

squared prediction error under the model in (1), whereas the limit kriging predictor is not

“optimal” in this sense. This could be the reason why it was never studied before, besides
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having a long history for the kriging methodology. The optimality of the ordinary kriging

holds under the weak stationarity assumption of the model which requires a constant mean.

The true function can exhibit some global trends and therefore the stationarity assumption

may not be realistic in practice. Universal kriging could be an option if the trends are

known, but is rarely the case. In most practical situations ordinary kriging is used (see

the comments in Currin et al. 1991 and Welch et al. 1992). The limit kriging is found to

produce a superior performance over the ordinary kriging when the true function does not

vary around a constant. This is because, the limit kriging uses a varying µ and therefore

gives a better local fit than the ordinary kriging.

Global trends are quite common in engineering systems. For examples, in electroplating

the plated thickness increases with plating time and current, in turning operation the surface

roughness of the machined parts increases with feed rate, and so on. Whereas “regression

effect” towards mean may be present in geological problems. Therefore, ordinary kriging

may be more suitable for some geostatistical applications, but limit kriging may perform

better in engineering applications.

Limit kriging also seems to be robust against the misspecifications of some correlation

parameters. This is a great advantage because the investigator usually does not have precise

information about the correlation parameters.
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APPENDIX A: BOUNDS FOR r(x)′R−11

We claim that 0 < r(x)′R−11 < 2 for all x ∈ X under some conditions on the correlation

function. This is proved for some special cases given below.

Assume that R(h) ∈ (0, 1] for all h. It is easy to verify the claim for n = 1 and n = 2,

because for n = 1,

r1(x)′R−1
1 11 = R(x− x1)
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and for n = 2,

r2(x)′R−1
2 12 =

R(x− x1) + R(x− x2)

1 + R(x1 − x2)
.

Note that here we use subscripts for r(x), R, and 1 to explicitly show their relation with

the number of design points. The claim is difficult to prove analytically for n ≥ 3. We prove

the following case for sufficiently large n.

Proposition 1. If R(h) is a continuous function in h, then there exists an N and a design

DN = {x1, · · · ,xN} such that 0 < rn(x)′R−1
n 1n < 2 for all n > N , Dn ⊃ DN , and for all

x ∈ X .

Proof: We have rn(xi)
′R−1

n 1n = 1 for all i = 1, · · · , n. Since R(h) is a continuous function

in h, rn(x)′R−1
n 1n is a continuous function in x. Therefore, there exists an εi > 0 such that

|rn(x)′R−1
n 1n − 1| < 1 if |x− xi| < εi,

for all i = 1, · · · , n. Define the ball around xi as {x : |x−xi| < εi}. The proposition follows,

because X can be covered with a finite number of balls. ♦

APPENDIX B: PROOF OF EQUATIONS (10) and (11)

Using a matrix inversion result (Cressie, 1991, page 133), we obtain

R−1 =
1

1− ρ2




1 −ρ 0 0 0

−ρ 1 + ρ2 −ρ · · · 0
...

. . .
...

0 0 −ρ 1 + ρ2 −ρ

0 0 0 −ρ 1




.

For µ(x) = βx, µ = β(1, 2, · · · , n)′ and for x ∈ [1, 2], r(x) = ρ1−x(ρ2x−2, ρ, ρ2, · · · , ρn−1)′.

Thus we obtain

1′R−11 =
n− (n− 2)ρ

1 + ρ
,

1′R−1µ = β
(n + 1)

2

(n− (n− 2)ρ)

1 + ρ
,
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r(x)′R−11 =
ρx−1 + ρ2−x

1 + ρ
,

r(x)′R−1µ = βρ1−x (1− 2ρ)ρ2x−2 + 2ρ− ρ2

1− ρ2
,

r(x)′R−1r(x) =
ρ2x−2 − 2ρ2 + ρ4−2x

1− ρ2
.

Substituting the above expressions in (8) & (9) and simplifying, we obtain (10) & (11). ♦
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