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Abstract

For many complex processes laboratory experimentation is too expensive or too time-consuming
to be carried out. A practical alternative is to simulate these phenomena by a computer code. This
article considers the choice of an experimental design for computer experiments. We illustrate some
drawbacks to criteria that have been proposed and suggest an alternative, based on the Bayesian
interpretation of the alias matrix in Draper and Guttman (Ann. Inst. Statist. Math. 44 (1992) 659).
Then we compare different design criteria by studying how they rate a variety of candidate designs for
computer experiments such as Latin hypercube plans, U-designs, lattice designs and rotation designs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Computer simulators have replaced laboratory experiments in the study of many complex
processes. The major improvements in computing power have made this a cost-effective
experimental technology. Computer experiments typically involve complex systems with
numerous input variables. Computer experiments are deterministic: replicate observations
from running the code with the same inputs will be identical. As such, standard approaches
to the design and analysis of experiments are not necessarily appropriate for computer

� This research was supported by a grant from the Israeli Science Foundation.
∗ Corresponding author. Tel.: +972 3 640 8043; fax: +972 3 640 9357.
E-mail addresses:dizzal@bezeqint.net(D. Bursztyn),dms@post.tau.ac.il(D.M. Steinberg).

0378-3758/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2004.08.007

http://www.elsevier.com/locate/jspi
mailto:dizzal@bezeqint.net
mailto:dms@post.tau.ac.il


1104 D. Bursztyn, D.M. Steinberg / Journal of Statistical Planning and Inference 136 (2006) 1103–1119

experiments. In modeling data from a computer experiment, there is no need to be concerned
with reducing variance, only bias due to model inadequacy.At the design stage, concepts like
blocking and randomization are irrelevant and there is no immediate way to apply standard
optimality criteria that are functionals of the covariance matrix. SeeSacks et al. (1989)
andKennedy and O’Hagan (2001)for good general discussions of statistical problems in
computer experiments.

In this article we consider criteria for comparing experimental layouts for computer
experiments. We present some drawbacks to criteria that have been proposed in recent
years and suggest an alternative criterion based on the Bayesian interpretation of the alias
matrix inDraper and Guttman (1992).

The article is organized as follows. In Section 2, we describe the random field regression
model, which serves as the basis for many of the current design criteria. In Section 3, we
survey design criteria that have appeared in other articles and point out some problems in
using them. In Section 4, we propose a new criterion for design of computer experiments.
Section 5 compares the criteria with respect to their treatment of sample size, projected
designs and replicate design points. Section 6 describes a comparison of the criteria, using
a variety of designs, including two-level factorials, Latin hypercubes, U-designs, lattice
designs and rotation designs. A summary of the results is given in Section 7.

2. Random field regression models

Let y(x) denote the output of the simulator that results from thep-dimensional input
x = (x1, . . . , xp). A popular modeling approach is to treaty(x) as a realization of a random
field, Y (x), that includes a regression model (Sacks et al., 1989; Welch et al., 1992; Bates
et al., 1996)

Y (x)=
k∑

j=0

�j fj (x)+ Z(x). (1)

Notice thatZ(x) represents the systematic departure from the linear model
∑

�j fj (x).
The random field regression model assumes thatZ(x) is Gaussian with zero mean, constant
variance�2, and with a correlation structureR(x1, x2) betweenp-dimensional input vectors
x1 andx2. The fact that there is no measurement error in computer experiments is reflected
by requiring thatR(x1, x2) tend to 1 as the Euclidean distance betweenx1 andx2 tends to
0. The particular form studied bySacks et al. (1989)is

R(x1, x2)= corr(Y (x1), Y (x2))=
p∏

j=1

exp(−�j |x1j − x2j |�j ) (2)

with �j �0 and 0< �j �2. Denote the covariance function by�, so that�(x1, x2) =
�2R(x1, x2).

For these stochastic models, the outputY (x) of the simulator is estimated by the best
linear unbiased predictor (BLUP) of the random field (Robinson, 1991). Given a design
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S = {s1, . . . , sn} and dataYS = [Y (s1), . . . , Y (sn)]′ the BLUP ofY (x) is

Ŷ(x)= f ′(x)�̂ + r ′(x)R−1(Ys − F �̂), (3)

where�̂ = (F ′R−1F)−1F ′R−1YS is the generalized least-squares estimator of�, and we
use the following notation:

f (x)= [ f0(x), . . . , fk(x)]′,

F =




f ′(s1)

·
·
·

f ′(sn)


 is then× (k + 1) expanded regression matrix,

R = {R(si , sj )}, 1� i�n; 1�j�n, is then× n correlation matrix of(Z(s1), . . . , Z(sn)),
and r (x) = [R(s1, x), . . . , R(sn, x)]′ is the vector of correlations between theZ’s at the
design sites and at the estimation inputx. Notice thatY (si )= Ŷ (si ) for i = 1, . . . , n.

AlternativelyY (x) in (1) can be regarded as a Bayesian prior on the true response function
of the simulator, with the�s either specified a priori or given a prior distribution (Sacks
et al., 1989; Steinberg, 1990; Bursztyn and Steinberg, 2002). The random fieldZ(x) is
viewed as a prior distribution reflecting uncertainty about the true response function. In the
Bayesian approach the predictor of the response is the posterior mean ofY (x) and, in the
case thatZ(x) is Gaussian and improper uniform priors are assigned to the�s, it is exactly
the BLUP presented above; seeSacks et al. (1989)andMorris et al. (1993).

The parameters in the correlation function can be estimated by maximum likelihood or
cross-validation (Sacks et al., 1989; Currin et al., 1988, 1991; Welch et al., 1992).

3. Experimental design criteria

A good design for a computer experiment should facilitate accurate prediction. Standard
design criteria likeA- orD-optimality, which are based on the covariance matrix of�̂, are
not suitable for computer experiments because there is no random error. We describe here
several criteria that have been proposed for computer experiments. The first three criteria are
meaningful only in the context of a random field regression model and the fourth criterion
was derived by considering implications of such a model.

SeeBates et al. (1996)for a thorough discussion of different criteria for design compar-
ison.

1.The integrated mean squared error(IMSE) criterion: A good design should minimize
IMSE, defined as

IMSE =
∫

E{Y (x)− Ŷ (x)}2 dx. (4)

The expectation is taken with respect to the random field. Following the Bayesian interpre-
tation, the BLUPŶ (x) is the posterior mean ofY (x), so the IMSE is in fact

∫
Var(Y (x)),
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where Var(Y (x)) is the posterior variance ofY (x) givenYS . A number of articles have ex-
plored this criterion, includingSacks and Ylvisaker (1966, 1968, 1970), Steinberg (1985),
andSacks et al. (1989).

2. The entropy criterion: Lindley (1956)proposed use of the change in entropy before
and after collecting data as a measure of the information provided by an experiment. The
basic form of the entropy criterion for computer experiments is

E{�H(Y)}, (5)

whereH(Y) is the entropy of the random field and�H(Y) is the reduction in entropy
after observingYS . A good design should maximize the expected reduction in entropy. See
Shewry and Wynn (1987), Currin et al. (1991), Bates et al. (1996), andKoehler and Owen
(1996).

For a random field, the expected reduction in entropy is equal to the entropy of the field
at then design sites

E{�H(Y)} =H(YS)= (n/2)[1 + ln(2�)] + 0.5 ln[det(�)], (6)

where� is the covariance matrix ofYS (Shewry and Wynn, 1987). This result has been
applied in several different ways to the random field regression model described in Section
2, generating a number of related design criteria.

The most obvious application of Eq. (6) is to simply use the entropy of(Z(s1), . . . , Z(sn))
(e.g.Currin et al., 1991). Equivalently, one obtains as a design goal to maximize

E1 = [det(�)]1/n. (7)

In the stationary case, one can obviously use the correlation matrixR in Eq. (7) rather than
the covariance matrix�. As noted byBates et al. (1996), theE1 criterion is appropriate
when the fixed regression part of the model is limited to a constant, as recommended by
Welch et al. (1992). Bates et al. (1996)andKoehler and Owen (1996)also consider limiting
forms when the coefficients of the fixed regression terms are assigned a prior distribution,
� ∼ N(b, �2�), so that� = �2F�F ′ + �2R. Rules for determinants of sums of matrices
can be used to show that

det(�)= �2n det(�2�)det(R)det(F ′R−1F + �−2�−1). (8)

The first two terms on the right-hand side of (8) are independent of the design, so the last
two can be taken as the criterion. Two special cases using the last two terms of (8) have
received the most attention. First, a non-informative prior distribution for the regression
coefficients is obtained in the limit as�2 → ∞. The corresponding design criterion is

det(R)det(F ′R−1F). (9)

Second, the fixed regression model may be limited to a single term for an overall mean, so
that matrixF is just a column of 1s. This model then leads to the criterion

E2 = det(R)|R−1|, (10)

where|| is defined to be the sum of the entries of a matrix.
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For the remainder of this article we will focus on theE1 criterion.
3. Johnson et al. (1990)showed that, using a correlation structure of form (2) with� = 2

for all factors, the computation of det(�) is dominated by those design points that are closest
to one another. They found that efficient designs for the determinant criterion can also be
found by maximizing the criterion

E3 = min
i<j

‖xi − xj‖, (11)

where‖xi − xj‖ is thep-dimensional Euclidean distance between design points and the
minimization is over all pairs of design points. Optimal designs with respect to this criterion
are calledmaximindesigns.

4. The alias sum of squares criterion

We propose here an alternative design criterion based on the alias matrix for a simple
approximating model. The basic philosophy behind our criterion is that a good design
for a computer experiment should be efficient for factor screening and should also have
the flexibility to entertain more complex models in those factors that are active. We use
a spectrum of potential high-degree polynomial terms to reflect, at the design stage, the
requirement of modeling flexibility.

4.1. An approximate regression model

Suppose we begin the analysis of data from a computer experiment by using OLS to fit
a first-order regression model,

yi = �0 +
p∑

j=1

�jxij = f (xi )�, (12)

which is a natural first step in factor screening. The notation here is identical to that in
Section 2, but with the proviso thatf(x) in Section 2 referred to a general regression model
whereas here we take the specific case of a first-order model. We realize that the first-order
model will not provide a perfect description of the output data. So we assume, as inBox
and Draper (1959, 1963), that adding extra terms to the first-order model will give us a
nearly exact representation,

yi = �0 +
p∑

j=1

�jxij +
∑

j=p+1

�j fj (x)= f ′(xi )� + f ′
2(xi )�2. (13)

The full set of experimental data can then be written in matrix form as

y =



f ′(x1)
...

f ′(xn)


 � +




f ′
2(x1)

...

f ′
2(xn)


 �2 =X� +X2�2. (14)
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HereX2�2 represents the extra terms not included in the original first-order regression
model.

We will assume throughout that all the regression functions are an orthonormal set with
respect to some weight functionw(x); i.e.∫

fu(x)fv(x)w(x)dx = �uv, (15)

where�uv = 1 if u = v and = 0 otherwise. We consider here only the case of a constant
weight function and set the constant so thatfu(x) = xu, u = 1, . . . , p. The integration
extends over the entire domain of the input factors, which we take to be[−1,1]p. For the
intercept term in the model, we use Eq. (15) to achieve orthonormality rather than taking it
to be 1.

4.2. The alias matrix

We then find that the least-squares estimator for� is

�̂ = (X′X)−1X′y = � + (X′X)−1X′X2�2 = � + A�2, (16)

whereA is known as the alias matrix. The alias matrix tells us how the estimates of the
constant and the first-order effects are biased by the extra terms that are included in the
full model but are not in our simple approximation. We can learn about the effectiveness
of the design by examining the entries of the alias matrix.Box and Draper (1959)initiated
the use of the alias matrix as a guide to selecting a design and showed that the bias above
is eliminated by a design whose moments equal the moments of the regression functions
themselves with respect to a constant weight function. In that article and a sequel (Box and
Draper, 1963) they derived response surface designs for minimizing mean squared error
when the tentative model is a first- or second-degree polynomial and the extra terms are
those one degree higher.

4.3. Bias as posterior variance

Our approach follows that ofDraper and Guttman (1992), who suggested a clever method
for turning the bias from terms not included in the model into variance, thereby making it
possible to use design criteria based on the variance.Draper and Guttman (1992)assumed
that�2 is random and has a normal distribution with mean 0 and covariance matrix�2

�I .
With these assumptions, and using the lack of random error in computer experiments, it can
be easily shown that

Var(�̂)= �2
�AA

′, (17)

whereA is again the alias matrix. The matrixAA′ thus measures the extent to which the
design allows higher-order bias to affect the simple approximation.

It is now possible to apply standard variance-based design criteria and we suggest using
here theA-optimality criterion for Var(�̂),

A= tr(Var(�̂)). (18)
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Trivially tr (Var(�̂))= ∑
i,j a

2
i,j , so we are led to the alias sum of squares criterion

A=
∑
i,j

a2
ij , (19)

whereaij denotes the components of the alias matrix.Mitchell (1974)proposed a similar
criterion, which he called a “confounding index”, for assessing the degree to which first-
order terms in a regression model are biased by all possible two-factor interactions.

The Bayesian regression model here is actually a special case of the random field regres-
sion model described in Section 2. Assigning normal prior distributions to the coefficients
in �2 makes the extra terms in Eq. (13) into a random field. SeeSteinberg and Bursztyn
(2004)for details.

4.4. Defining the model components

The alias sum of squares criterion can easily be extended to include a larger base model
and additional monomials, or other regression functions, among the “extra terms” in Eq.
(13). The choice of terms for these models is a design decision that should depend on both
the anticipated functional dependence of the output on the input factors and the size of the
design. If linear effects are expected to dominate, then a linear base model with extra terms
up to third-degree monomials and a moderate runs-to-factors ratio should be appropriate.
If strongly nonlinear effects are anticipated, then it will be desirable to increase the number
of runs and to expand the base model and the extra terms. We have used two rough rules
of thumb in setting the number of runs and the models. First, the sample size must be large
enough so that the base model is not singular. Second, the sample size must be small enough
that no design meets the zero bias conditions derived byBox and Draper (1959); otherwise
designs with repeated points could be rated as highly efficient. In defining the extra terms,
we have typically chosen as extra terms monomials of at least two degrees higher than those
in the base model. For modest design sizes (say up to 3–4 times as large as the number of
factors), we believe that good results can be obtained by using a first-order model with extra
terms up to third order. We have not examined in detail how the choice of base model and
extra terms affects the designs and this could be a useful topic for further research.

Our requirement to normalize the higher-order regression functions is important in order
to justify the assumption that the coefficients of the additional regression functions are of
roughly the same order of magnitude, as reflected in their common variance. Alternatively,
one might want to adopt a prior in which the variances decrease with increasing order of the
regression function, as inSteinberg (1985). In that case, the normalization is again important
to assure that the prior variances relate to coefficients of comparable regression functions.

4.5. The A-criterion and accurate predictions

In this section, we show that theA-criterion (in Eq. (19)) can also be derived using
the idea of integrated mean squared error. Consider again the first-order model given
in Eq. (12) and the “correct” model given in Eq. (13). The least-squares estimator is given
in Eq. (16).
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We would like to assess how the extra terms affect estimates of the response from the
first-order model. The estimated response at an arbitrary inputx is

ŷ(x)= f ′
1(x)�̂ = f ′

1(x)[� + A�2] = f ′
1(x)� + f ′

1(x)A�2.

Thus

y(x)− ŷ(x)= [ f ′
2(x)− f ′

1(x)A]�2 = v′(x)�2.

In order to evaluate the model and the design we can look at the integrated mean squared
error, again usingw(x) as a weight function.

IMSE =
∫

[y(x)− ŷ(x)]2w(x)dx

=
∫

�′
2v(x)v′(x)�2w(x)dx = �′

2

[∫
v(x)v′(x)w(x)dx

]
�2.

Notice that

�′
2

[∫
v(x)v′(x)w(x)dx

]
�2 = tr

([∫
v(x)v′(x)w(x)dx

]
�2�

′
2

)

and
∫

v(x)v′(x)w(x)dx

=
∫
( f2(x)− A′f1(x))( f ′

2(x)− f ′
1(x)A)w(x)dx

=
∫
( f2(x) f ′

2(x))w(x)dx − A′
∫
( f1(x) f ′

2(x))w(x)dx

−
∫
( f2(x) f ′

1(x))w(x)dxA + A′
∫
( f1(x) f ′

1(x))w(x)dxA

= I + A′A.

The final equality results from our orthogonality requirement, which implies that

∫
f2(x) f ′

2(x)dx = Iu,

∫
f1(x) f ′

2(x)dx = 0,

∫
f1(x) f ′

1(x)dx = I r .

Again we find that the quality of the design is related to the matrixA.
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5. Sample size and projections

5.1. Comparisons across sample size

A useful experimental design criterion should be able to compare designs of different
sizes. The entropy and determinant based criteria for computer experiments have some
problems in this regard, as does the minimum distance criterion.

We noted in Section 3 that the entropy criterion used is often to maximize[det(R)]1/n.
For most random field models that have been proposed, the correlations are non-negative
and, forn�2, (det(R))1/n <1. However, trivially det(R) = 1 for a one-point design. The
conclusion that adding data leads to a worse design is obviously unreasonable. The problem
of comparing sample sizes also affects large designs. Typically, det(R) is a decreasing
function of the sample size.

The sample size problem is not resolved by using the expected change in entropy, rather
than the determinant, as the criterion. The expected change in entropy includes a direct
reduction proportional to the sample size,(n/2)[1 + ln(2�)]. However, this reduction is
independent of the other parameters in the model and can be offset by the change in the
determinant, again implying that smaller samples are preferable to larger ones. In particular,
note that the second term in the change in entropy is proportional to�2n and so is highly
sensitive to the assumed value of�.

The minimum distance between any two design points is also a monotone decreasing
function of the sample size. Thus a naive comparison of minimum distances for designs of
differing sizes will be biased in favor of the smaller design. It is not clear how one might
adjust the criterion to properly reflect sample size.

The alias sum of squares criterion can provide a direct measure for comparing designs
of different sizes. The analysis in Section 4.5 showed that the criterion can be related to
the ability to accurately predict the response function, averaged across the domain of the
experimental factors. These prediction accuracies will typically improve as the sample size
is increased. However, poor choice of design sites might actually increase the bias, indicating
that a larger design is indeed inferior.

5.2. Replicate observations

In computer experiments, replicate observations at the same input values generate identi-
cal outputs. Most of the suggested designs for computer experiments, such as Latin hyper-
cubes and lattice designs, simply avoid replicate input settings. Design criteria should also
reflect the undesirability of replicates. The “effective” design for a computer experiment is
really the design consisting of the distinct points with replicates discarded. One might nat-
urally want to require that a design criterion produce the same assessment when restricted
to the distinct sites.

The entropy criterionE1 and the minimum distance criterion will equal 0 when there are
replicates and so correctly label such designs as undesirable. However, these criteria make
no distinction among designs with replicate points. A natural alternative is to evaluate these
criteria and to fit the BLUP using only the distinct design sites. For design comparison, we
are again faced with the sample size comparison problem discussed in Section 5.1.
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The alias sum of squares criterion also does not rate designs on the basis of their distinct
sites. In general, the assessment will depend on which sites have been repeated. There is
one special case where the alias sum of squares criterion is identical for replicates and that
occurs when an entire design is replicated an equal number of times. In that case, it is easy
to show that the replication does not modify the design assessment.

5.3. Projections

Some of the input factors in a computer experiment may prove to have negligible effects
on the outputs, a property often described asfactor sparsity. In that case, the effective design
is the projection of the original design onto the subset ofactive factors. Typically there is
no advance knowledge as to which factors will be active, so designs should perform well
under arbitrary projections. For example, projection can generate replication. We will see
in the next section that the entropy and minimum distance criteria sometimes favor designs
whose points are at the extremes of the input space and that do have replicate points under
projection.

A simple way to include projection efficiency in comparing designs is to take a global
criterion (like the determinant or the entropy) and to evaluate it for projections along with
the full set of input factors. This approach still leaves some questions, such as how to
summarize performance across the various projections and how much weight should be
given to projections as opposed to the full factor design. There are also some computational
issues, as the number of projections will be very large for experiments with many factors.
Ideally, one would prefer a criterion that automatically produces good projected designs,
without having to explicitly define and assess them.

6. Design comparisons

In this section we study the performance of five design criteria by examining their as-
sessment of several candidate classes of designs for computer experiments. As one of the
classes is the standard two-level fractional factorials, we consider only run sizes that are
powers of 2. In all cases the design region is[−1,1]p, wherep is the number of factors. The
particular settings we examine are designs for (1) five factors in 16 runs, (2) nine factors
in 32 runs and (3) 21 factors in 64 runs. We present assessments of both the full designs
and of projections onto subsets of select sizes. For the five-factor designs, we average the
design criteria over all possible projections onto three of the five factors. For the nine-factor
designs, we average over all possible projections onto three or five factors. For the 21 factor
designs, we average over projections onto five or eight factors. Due to the large number of
projections in this case, we chose 30 random projections of each size.

6.1. Design criteria

The design criteria we compared are

1. The alias sum of squares criterion, when a first-order model is fitted and there are extra
terms for all second-order effects, pure cubics and pure quartics.
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2. The entropy criterion Det= [det(R)]1/n. We considered four cases of theSacks et al.
(1989)covariance function:� = 0.05,0.5 and� = 1,2. The combinations are denoted
by Det(1):� = 0.05 and� = 2, Det(2):� = 0.5 and� = 2, Det(3):� = 0.05 and� = 1,
Det(4):� = 0.5 and� = 1.

3. The minimum distance criterion ofJohnson et al. (1990), Dist = {mini<j ‖xi − xj‖}.
4. The integrated mean squared error criterion IMSE= ∫

E{Y (x)− Ŷ (x)}2 dx for random
field models. The same covariance functions as noted in point (2) for the entropy criterion
were considered and results are denoted by IMSE(1) . . . , IMSE(4). We evaluated the
IMSE by averaging the posterior variance at a random sample of 5000 points (for five-
factor designs) or 15,000 points (for nine-factor designs). The IMSE criterion requires
much more computer time than the other criteria. So we did not evaluate this criterion
for the 21-factor designs or for projections of the smaller designs.

6.2. Classes of designs

We included the following classes of experimental designs in our comparison.
Latin HypercubeDesigns(McKay et al., 1979): We generated Latin hypercube plans with

the values for each factor chosen at random from withinn equal width bins. LHC designs
are easily computed and projections onto subsets of input factors are also LHC designs.
LHC designs include random permutation of the values for each factor. All our results for
LHC designs were computed by averaging over 100 realizations of the corresponding LHC
design.
U-Designs(Owen, 1992; Tang, 1993): U-designs are a special class of Latin hypercube

designs in thep-dimensional unit cube that use orthogonal arrays (OAs) (Hedayat et al.,
2000) to obtain nearly uniform projections jointly for two or more input variables. These
designs divide each factor axis inton bins, as in LHC designs, but also group the bins into
a small number (say 2–5) of coarser bins. The OA works at the coarse level and guarantees
equal numbers of design points in each coarse bin formed by crossing two or more factors.
Within the coarse bins, the points are still spread out in accord with the rules for a LHC.

Lattice Designs(Fang et al., 1994, 2000): Lattice sets were motivated by the desire
to find good sets of evaluation points for numerical computation of multi-dimensional
integrals. Such sets can also be useful as factorial designs for computer experiments. For
our comparisons, we used lattice designs that are generated as follows:

xij =
{

2ihj − 1

2n

}
, i = 1, . . . , n, j = 1, . . . , p,

where {x} is the fractional part ofx, (n;h1, . . . , hp) is a vector of integers satisfying
1�hj <n, hi �= hj for i �= j , andp<n, and(h1, . . . , hp) = (1, a, a2, . . . , ap−1), as
suggested byKorobov (1959). For some run and factor sizes of interest here, we were not
able to find a lattice design with this type of generating vector that is not singular for the
first-order model. So we used 17 runs (witha=3), 31 (witha=3) and 61 runs (witha=2).

Rotation designs(Beattie and Lin, 1997; Bursztyn and Steinberg, 2001, 2002): These
designs are generated by rotating standard fractional factorial designs. Take an orthogonal
starting designD and rotate it to obtain a new design matrixDR = DR, whereR is any
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Table 1
Values of the design criteria forn= 16 andp = 5

Criteria LH LD UD RD3 RD4 FF

A 11.64 7.58 8.55 9.28 4.47 81.67
Det(1) 0.0376 0.0337 0.0384 0.0987 0.0329 0.2877
Det(2) 0.5900 0.6397 0.6142 0.8394 0.6386 0.9984
Det(3) 0.1478 0.1491 0.1648 0.1943 0.1543 0.1197
Det(4) 0.8204 0.8329 0.8440 0.9133 0.8412 0.9372
Dist 0.6403 1.0189 0.7416 0.7997 1.0593 2.8284
IMSE(1) 0.0068 0.0067 0.0072 0.0077 0.0075 0.0313
IMSE(2) 0.360 0.324 0.360 0.369 0.324 0.749
IMSE(3) 0.0682 0.0630 0.0600 0.0666 0.0648 0.157
IMSE(4) 0.659 0.638 0.644 0.664 0.641 0.881

The experimental designs are (1) Latin hypercube—LH (2) Lattice design—LD (3) U-design—UD (4) Rotation
design with rotations of three factors using two angles 25◦ and 80◦—RD3 (5) Rotation design with rotations of
four factors using two angles 25◦ and 80◦—RD4 (6) Fractional factorial design—FF.

Table 2
Values of the design criteria forn= 32 andp = 9

Criteria LH LD UD RD3 RD4 RD4 FF
(1) (2)

A 24.73 15.03 16.37 17.65 9.29 7.41 147.00
Det(1) 0.0791 0.0799 0.0798 0.0935 0.0655 0.0721 0.4069
Det(2) 0.8483 0.8882 0.8691 0.8920 0.8480 0.8891 0.9998
Det(3) 0.2096 0.2299 0.2326 0.1879 0.2014 0.2099 0.1648
Det(4) 0.9524 0.9644 0.9633 0.9478 0.9453 0.9572 0.9859
Dist 1.0196 1.4267 0.9553 0.9352 0.8519 1.3589 2.8284
IMSE(1) 0.0282 0.0271 0.0275 0.0282 0.0261 0.0259 0.0942
IMSE(2) 0.732 0.725 0.723 0.739 0.701 0.695 0.996
IMSE(3) 0.125 0.119 0.111 0.127 0.126 0.122 0.268
IMSE(4) 0.909 0.905 0.902 0.913 0.910 0.905 1.000

The experimental designs are (1) Latin hypercube—LH (2) Lattice design—LD (3) U-design—UD (4) Rotation
design with rotations of three factors using four angles 25◦, 55◦, 80◦, 125◦—RD3 (5) Rotation design with rotations
of four factors—RD4. RD4(1) is using two angles 25◦ and 80◦ and RD4(2) six angles 15◦,25◦,35◦,45◦,55◦,65◦
(6) Fractional factorial design—FF.

orthonormal matrix. Then scale the points inDR so that all lie in[−1,1]p. One can choose
Rso that each factor has many levels which makes it possible to detect and to estimate many
possible higher-order effects. For the rotation designs we usedBursztyn and Steinberg’s
(2002)method for rotations of three factors andBursztyn and Steinberg’s (2001)method
for rotations of four factors. In both cases we used two rotation angles, 25◦ and 80◦.

6.3. Design comparison

The results of our assessments are presented inTables 1–6. We summarize them below.
1. The alias sum of squares criterion tends to favor the rotation designs and the lattice

designs. The good performance of these designs holds both for the full design and for the
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Table 3
Values of the design criteria forn= 64 andp = 21

Criteria LH LD UD RD3 RD4 FF

A 135.36 49.58 112.39 80.99 31.36 343.00
Det(1) 0.2893 0.2932 0.2679 0.3162 0.1628 0.8440
Det(2) 0.9982 0.9987 0.9944 0.9883 0.9846 1.0000
Det(3) 0.4342 0.4450 0.4643 0.4051 0.3643 0.5176
Det(4) 0.9998 0.9999 0.9999 0.9990 0.9987 1.0000
Dist 2.0463 2.4732 1.8256 1.3899 1.9881 4.8990

The experimental designs are (1) Latin hypercube—LH (2) Lattice design—LD (3) U-design—UD (4) Rotation
design with rotations of three factors with four angles 20◦, 55◦, 80◦, 125◦—RD3 (5) Rotation design with rotations
of four factors using two angles 25◦ and 80◦—RD4 (6) Fractional factorial design—FF.

Table 4

Criteria LH LD UD RD3 RD4 FF

(a)Values of the design criteria for projections of three factors out of five, for a 16 run computer experiment
A 2.59 1.92 1.64 2.62 1.59 49.00
Det(1) 0.0032 0.0018 0.0041 0.0028 0.0030 0
Det(2) 0.1912 0.1782 0.2384 0.1475 0.2041 0
Det(3) 0.0761 0.0748 0.0815 0.0452 0.0774 0
Det(4) 0.5604 0.5639 0.5946 0.3423 0.5652 0
Dist 0.3193 0.6264 0.4358 0.1489 0.5205 0

(b)Values of the design criteria for projections of four factors out of five, for a 16 run computer experiment
A 5.86 4.18 4.17 5.35 2.85 65.33
Det(1) 0.0161 0.0121 0.0187 0.0191 0.0131 0.1087
Det(2) 0.4118 0.4272 0.4622 0.4136 0.4305 0.9637
Det(3) 0.1118 0.1112 0.1224 0.0891 0.1149 0.0329
Det(4) 0.7148 0.7244 0.7473 0.5834 0.7289 0.7476
Dist 0.4901 0.8169 0.6291 0.3976 0.8007 2.0000

projected design and for all the design sizes. The Latin hypercube designs were rated as
somewhat less successful for the full designs but were comparable to the best designs for all
the projections. The two-level fractional factorials were clearly inferior in all cases studied.

2. The Integrated mean squared error criterion gives the two-level fractional factorials
consistently bad performance ratings. The other designs are given similar ratings. The best
design depends on the particular covariance model, but there is not much difference among
the non-factorial designs.

3. The entropy criterion typically favors the 2k−p designs when all factors are considered.
When� = 2 and� is small, there is a sharp preference for the 2k−p designs. When� is
large, the correlations fall off quickly and all the designs have determinants close to 1. The
only full designs in which the 2k−p is not the winner is when� = 1 and� is small. For the
five-factor, 16 run and the nine-factor, 32 run settings, the two-level design is slightly worse
than all the others (which are comparable), but with 21 factors and 64 runs, the two-level
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Table 5

Criteria LH LD UD RD3 RD4 RD4 FF
(1) (2)

(a)Values of the design criteria for projections of three factors out of nine, for a 32 run computer experiment
A 1.05 0.92 0.58 1.19 1.52 1.02 49.00
Det(1) 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0
Det(2) 0.0473 0.0509 0.0587 0.0120 0.0329 0.0405 0
Det(3) 0.0427 0.0453 0.0442 0.0135 0.0369 0.0389 0
Det(4) 0.4166 0.4416 0.4387 0.1449 0.3723 0.3940 0
Dist 0.1769 0.4889 0.2407 0.0260 0.1699 0.1942 0

(b)Values of the design criteria for projections of five factors out of nine, for a 32 run computer experiment
A 4.38 2.72 3.37 4.14 3.41 2.50 81.67
Det(1) 0.0081 0.0097 0.0079 0.0071 0.0065 0.0075 0.0376
Det(2) 0.3844 0.4373 0.4259 0.3432 0.3311 0.3768 0.5759
Det(3) 0.0943 0.1002 0.1012 0.0682 0.0857 0.0899 0.0084
Det(4) 0.7195 0.7491 0.7482 0.6027 0.6829 0.7095 0.4193
Dist 0.4586 0.5877 0.8645 0.2044 0.4663 0.5735 1.2063

Table 6

Criteria LH LD UD RD3 RD4 FF

(a)Values of the design criteria for projections of five factors out of21, for a 64 run computer experiment
A 2.07 1.86 1.42 1.89 3.39 81.67
Det(1) 0.0011 0.0009 0.0013 0.0007 0.0003 0
Det(2) 0.2018 0.2147 0.2252 0.1534 0.0796 0
Det(3) 0.0596 0.0607 0.0614 0.0347 0.0472 0
Det(4) 0.6130 0.6298 0.6328 0.4831 0.5068 0
Dist 0.3228 0.7067 0.3981 0.0952 0.2742 0

(b)Values of the design criteria for projections of eight factors out of21, for a 64 run computer experiment
A 6.94 5.59 5.82 6.56 6.74 130.67
Det(1) 0.0201 0.0192 0.0213 0.0199 0.0072 0.1491
Det(2) 0.6448 0.6712 0.6718 0.6325 0.3950 0.9550
Det(3) 0.1267 0.1276 0.1326 0.0938 0.1006 0.0436
Det(4) 0.8759 0.8842 0.8906 0.8312 0.7844 0.8456
Dist 0.6864 1.1185 0.8536 0.4745 0.5643 2.0438

fractional factorial again has the highest determinant. Similar results hold for the projected
designs when there are enough factors that the 2k−p projections do not have replicates.
When there are replicates, the 2k−p projections get 0 ratings and the best design is usually
the U-design.

4. The minimum distance criterion also favors the 2k−p designs when all factors are
considered. The lattice designs are at or near the top among the other classes, but are a
distant second to the two-level factorials. For the projected designs, as with the entropy



D. Bursztyn, D.M. Steinberg / Journal of Statistical Planning and Inference 136 (2006) 1103–11191117

criterion, the 2k−p projections continue to get the best ratings when there are no replicates,
but are ruled out when there are replicates. In those cases, the lattice design is typically
rated as much better than the others.

5. It is not surprising that the entropy and minimum distance criteria favor the two-level
factorials for the settings that we have examined. The determinant in the entropy criterion
is bounded from above by 1 and would achieve that bound if the responses at the design
points were all independent (i.e. had 0 correlation). In general, spreading the points far apart
decreases all the correlations, so the entropy criterion and the minimum distance criterion
will both be improved, in general, by pushing the design points to the extremes of the design
space.

6. There is good overall agreement between the alias sum of squares and IMSE criteria
with respect to the best and worst designs in our tables. We also examined how closely these
criteria agreed with one another for the 100 randomly generated LHC designs. Although
these designs cover a much narrower range of criteria values than the designs in our tables,
we found high correlations (0.65–0.85) between theA- and IMSE-criteria values. These
correlations are similar to those found between values of the IMSE-criteria for different
covariance function parameters. For the parameter values and designs that we studied, the
correlations among the IMSE-criteria ranged from 0.60 to 0.88.

7. Discussion

The choice of experimental points is an important issue in planning an efficient computer
experiment. Various authors have suggested intuitive goals for good designs, including
“good coverage”, ability to fit complex models, many levels for each factor, and good
projection properties. At the same time, a number of different mathematical criteria have
been put forth for comparing designs. We have proposed here a new criterion, based on the
alias matrix for a simple model, and compared it to three criteria that have been advocated
by other researchers, the integrated mean squared error, the design entropy and minimum
distance criteria. We have compared these criteria with respect to ability to guide the choice
of sample size and to produce good designs with respect to lack of replication and projective
properties. We also compared several classes of designs using the criteria..

The results of our comparison show that the entropy and minimum distance criteria both
tend to favor regular fractional factorial designs when the factor space is large. Fractional
factorials do not match up well to the intuitive goals listed above. All the points are in
corners of the design space, which does not correspond well to notions of good coverage.
Each factor has only two levels so that nonlinear dependence on a single factor cannot
be modeled. Projections onto small subsets typically contain replicate points, which have
no value in computer experiments. The reason that fractional factorials do well is that the
criteria favor designs in which the points are distant from one another. With a small number
of factors, inter-point distances can only be made large by spreading out the design points
in the interior of the region. However, a high-dimensional design space provides a large
number of distant corners and inter-point distances are maximized by designs with all the
points in those corners. With the entropy criterion, this phenomenon is especially strong
when the exponent in the correlation function is 2. We have seen that, to some extent, this
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problem can be overcome by considering projections, and not just the full design space, in
assessing design options. Certainly that should be a part of any design inquiry.

The entropy and mean squared error criteria discussed in this paper are motivated by a
random field regression model whereas ourA-criterion relies on a simple low-degree poly-
nomial approximation, with some of the terms part of a fitted model and others considered
as bias. Although these two modeling approaches appear quite different from one another,
they actually have much in common.Steinberg and Bursztyn (2004)show that the random
field model can be viewed as a Bayesian regression model with proper priors assigned to
all but a small subset of the coefficients. The “extra terms” in our Eq. (13) then form the
basis for the random field.

We believe that the simple criterion that we have proposed, based on the alias matrix
relative to a first-order model, is a simple and effective solution for assessing and comparing
different designs. In our study, it showed good consistency between how full designs were
rated and how their projections were rated. The criterion gave consistently low marks to the
fractional factorial. The criterion favored designs that have little confounding between high-
and first-order terms. Such designs will also be the most able to accommodate high-order
terms in the predictor. We found good overall agreement between theA-criterion and the
IMSE-criterion, both with respect to the widely differing designs in our tables and with
respect to the much narrower range of criterion values in our randomly generated LHC
designs. TheA-criterion has a major computational advantage over IMSE and this may be
especially important in attempting to optimize within a class of designs.
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