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A computer experiment generates observations by running a computer model at inputs x and 
recording the output (response) Y. Prediction of the response Y to an untried input is treated 
by modeling the systematic departure of Y from a linear model as a realization of a stochastic 
process. For given data (selected inputs and the computed responses), best linear prediction 
is used. The design problem is to select the inputs to predict efficiently. The issues of choice 
of stochastic-process model and computation of efficient designs are addressed, and appli- 
cations are made to some chemical kinetics problems. 

KEY WORDS: Computer-aided design; Experimental design; Prediction; Response sur- 
face; Spatial statistics; Supercomputing. 

1. INTRODUCTION 

In a computer experiment, observations are made 
on a response function Y by running a (typically com- 
plex) computer model at various choices of input 
factors, x. For example, in the chemical kinetics of 
methane combustion, x can be a set of rate constants 
in a system of differential equations and Y can be a 
concentration of a chemical species some time after 
combustion. Solving the differential equations nu- 
merically for specified x yields a value for Y. Because 
running the equations solver is expensive, the aim is 
to estimate the relationship between x and Y from a 
moderate number of runs so that Y can be predicted 
at untried inputs. 

Another important application area is the com- 
puter simulation of integrated circuits. Here x defines 
various circuit parameters, such as transistor char- 
acteristics, and Y is a measurement of the circuit 
performance, such as an output voltage [e.g., the 
differential operational amplifier of Phadke (1986)]. 
In fact, the widespread use of computer models and 
experiments for simulating real phenomena gener- 
ates examples in virtually all areas of science and 
engineering. 

In this article, we consider the prediction problem. 
In some applications, however, the actual goal may 
be to evaluate or optimize a particular functional of 
the output, in which case prediction may be viewed 
as an intermediate step toward achieving that goal. 
For example, this is an approach that was taken in 
ongoing research on a very large scale integrated 
circuit design problem by Welch, Yu, Kang, and 
Sacks (1988). 

If the response is modeled by Response = Linear 
model + Departures, that is, 

k 

Y(x) = E /f1 j(x) + Z(x), 
j=l 

(1.1) 

then traditional response-surface methodology 
would treat Z as white noise corresponding to mea- 
surement error. In a computer experiment, however, 
often there is no measurement error, and Z(x) is 
then systematic departure from the assumed linear 
model. The form of Z(x) is, of course, usually un- 
known. Despite the lack of measurement error, Z(x) 
has sometimes been taken as white noise. 

Our approach is to model the systematic departure 
Z as a realization of a stochastic process in which 
the covariance structure of Z relates to the smooth- 
ness of the response. In some instances it is useful 
to eliminate the linear model altogether and regard 
the entire response as a realization of the stochastic 
process. This approach was also used in related work 
by Currin, Mitchell, Morris, and Ylvisaker (1988). 

Concern about systematic departures from a linear 
model and its effect on designs originated with Box 
and Draper (1959, 1963). They modeled departures 
from simple polynomials by higher-order terms. 
Welch (1983) and Sacks and Ylvisaker (1984) 
modeled the departures nonparametrically. In these, 
as in other treatments (see the last two citations for 
references), measurement error may be important 
and induces the model 

Y(x) = >E fjfj(x) + Z(x) + e(x), (1.2) 
where Z is the systematic departure and e is the mea- 
surement error. 
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Sacks and Ylvisaker (1985) modeled Z as a random 
function-that is, a realization of a stochastic pro- 
cess. There is earlier work in the context of numerical 
integration or predicting integrals in which Z is 
modeled as a random function and there is no linear 
model; see Sacks and Ylvisaker (1970), Suldin (1959, 
1960), and a survey by Diaconis (1988). In these 
references, the random function was defined on the 
real line; the more difficult, multidimensional case 
was broached by Ylvisaker (1975). Related work also 
was done by Speckman (1976) and more currently 
by Ylvisaker (1987). 

Linear prediction from (1.2), where Z is a sto- 
chastic process, is known in the geostatistics and 
other spatial statistics literature as kriging (Cressie 
1986; Ripley 1981). Our discussion then relates to 
designs for spatial problems as well as computer ex- 
periments. Sacks and Schiller (1988) and Shewry and 
Wynn (1987) discussed designs for spatial problems. 

Earlier research on designs for computer experi- 
ments includes Latin hypercube sampling (Iman and 
Conover 1980; McKay, Conover, and Beckman 
1979; Stein 1987). These sampling designs are dis- 
cussed further in Section 4. 

Section 2 considers designing for Model (1.1) with 
Z a covariance process and addresses the issue of 
how to choose the unknown covariance structure. 
Section 3 describes two examples involving the chem- 
ical kinetics of methane combustion. Compared with 
factorial designs and least squares estimation, our 
design and prediction strategy based on (1.1) with Z 
a stochastic process reduces the actual squared error 
of prediction by factors of 8-10 in the first example. 
A similar comparison can be made in the second 
example, but, of greater interest, there is evidence 
that inclusion of a stochastic-process term may re- 
duce the need for complex linear models in (1.1). 

2. PREDICTION AND DESIGN 

Central to our methodology is the covariance 
structure of the stochastic process Z of (1.1). In the 
examples of Section 3, we use 

cov(Z(t), Z(u)) = V(t, u) 
d 

= exp (-0 (tj 
j=l 

= aR(t, u) 

- 
u)2 

(2.1) 
between d-dimensional inputs t = (t, . . . , td) and 
u = (u1, . . . , Ud). The parameter 0 > 0 defines the 
correlation structure of Z; ao is a scale factor. We 
shall always assume that EZ(x) = 0, and it is con- 
venient also to assume that the joint distributions of 

the Z(x)'s are Gaussian-that is, Z is a Gaussian 
process. The correlation function is called R. 

The appropriateness of this choice of Z for the 
examples of Section 3 stems from its smooth struc- 
ture; the realizations of Z are infinitely differentiable 
with probability 1 (see Parzen 1967). The responses 
Y in the examples of Section 3 are solutions to sys- 
tems of differential equations and depend smoothly 
on the rate constants x that form the inputs. The 
structure (2.1) is a very strong one and helps explain 
why our methods work effectively in these examples. 

For applications with more erratic responses, we 
would employ different correlation structures. For 
example, the process with correlation function 
R(t, u) = exp(- O|Itj - uj|) can be thought of as a 
model for functions only required to have one-sided 
first-order derivatives (see Sacks and Ylvisaker 
1966). Integrating this process constructs one that is 
smoother but less smooth than (2.1) and that may 
be useful for applications in which some differentia- 
bility is present but analyticity may be too strong an 
assumption. Mitchell, Morris, and Ylvisaker (1988) 
addressed stationarity issues in such constructions. 

It is convenient to use one-dimensional correlation 
functions to construct d-dimensional ones by defining 

d 

R(t, u) = corr(Z(t), Z(u)) = Rj(tj, ui). 
j=1 

Moreover, these product correlations will lead to the 
simpler computations that follow. 

The parameter 0 in the preceding correlation struc- 
tures is critical. Prediction is harder when 0 is large 
(small correlations between observations) than when 
0 is small (large correlations between observations). 
There is no added difficulty in treating the model of 
(1.2) and incorporating measurement errors inde- 
pendent of each other and independent of Z. The 
relevant covariance structure must reflect 

var(Y(t)) = a2 + a2 (2.2) 
Once 0 is specified, (2.1) can be used in (1.1) to 

provide predictions of Y(x) from data Y(s), . . . 
Y(s,) drawn from a design S = {s1, . . . , s}, a set 
of eligible inputs. The best linear predictor of Y(x) 
and its mean squared error (MSE) can be obtained 
as follows. Introduce the notation 

fx = [f(x),..., fk(x) 

V = [cov(Y(si), Y(s))]l_i<n,,l<<n 

v; = [V(s,, x), . , V(s , x)] 

Y' = [Y(s).., . Y(s) 

F = [fl(si)l<iln,ls lc<k. (2.3) 
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If c'y is a linear predictor of Y(x), then its MSE is 

E[c'y - Y(x)12 = (c'FP - fjf)2 

_ -1 
+ [c', -1] V A2 - (2.4) 

Typically, an "unbiasedness" requirement leads to 
the constraints F'c = fx. An alternative minimax 
argument is that the maximum over ,/ of the right 
side of (2.4) is infinite unless the constraints are sat- 
isfied. In any case, we adopt them. 

Thus the best linear predictor (BLP) of Y(x) is 
obtained by minimizing E(c'y - Y(x))2 subject to 
F'c = fx. Use of Lagrange multipliers produces Vc 
- vx - F1 = 0 and F'c = f, or 

0 F' - f, 
F V c Vx 

The BLP is then 

c'y = [- i', c'] 
Y 

0 F't1 0 = [fx,vX] F V Y (2.6) 

which can also be written as Y(x) = fx/ + 
V'V- (y - F/,), where / = (F'V- F)-'F'V- y is 
the generalized least squares estimate of f. Equations 
(2.4) and (2.5) imply that 

MSE(Y(x)) = a2 - [fX, Vx] 

x F' 1 v (2.7) 
x F V 

is the MSE of prediction. 
In the absence of measurement error [a2 = 0 in 

(2.2)], the estimated response surface interpolates 
the observations because the predictor Y(si) = Y(si) 
at a design point si has MSE 0. 

Of the many possible design criteria, we minimize 
the integrated mean squared error (IMSE) of pre- 
diction. Given the true correlation parameter 0 and 
a design-prediction strategy (S, Y), the normalized 
(for U2) IMSE is 

J,(5, Y) = (1/!I) f Eo(Y(x) - Y(x))2 dx. (2.8) 

The integration is over the region of interest and 
could be adapted to include a weight function. The 
predictor Y will usually be the BLP (2.6), which de- 
pends on 0. Therefore, the design problem is to 
choose a design S minimizing (2.8). In the following 
examples, we always restrict the design points to lie 
in the prediction region. For a given design, the in- 
tegral in the criterion (2.8) can be written using (2.7) 

as 

- tr{0 Ft ffi f vx dx (2.9) 

The integrals involving fx and v, simplify to products 
of one-dimensional integrals if the elements of fx and 
v, are products of functions of a single input factor. 
Thus polynomial linear models, with each term of 
the form xq ... xqd, and a product covariance such 
as (2.1) are numerically convenient. 

To minimize the criterion (2.8) as a function of the 
n x d design-point coordinates, we have mainly used 
a quasi-Newton optimizer. Computations were per- 
formed on the Cray X-MP/48 computer at the Na- 
tional Center for Supercomputing Applications at 
the University of Illinois. The Cray vectorizing ar- 
chitecture is well suited to the linear algebra neces- 
sary for evaluations of (2.9). As often happens with 
optimization, only a local minimum may be found, 
so several random starting designs were tried. 

Note that oa plays no role in this minimization; 
knowledge of 0 is, however, critical. Because 0 is 
generally not available for the design stage, a ro- 
bustness study, described in Section 3, is used to 
choose 0. In Example 1 (Sec. 3) there are inadequate 
data for estimating 0 and the robust 0 is also used 
for prediction. In Example 2 (Sec. 3), however, there 
are enough data to estimate 0 for prediction. 

3. EXAMPLES 

Example 1 

The first example, homogeneous pyrolysis of pro- 
pane, was discussed by Miller and Frenklach (1983). 
This chemical kinetics problem is modeled by a linear 
system of 11 differential equations: 

Oj(x, t) = gj( , x, t), j = 1,..., 11, (3.1) 

where x is a set of rate constants, the inputs to the 
system. A solution to (3.1) can be obtained numer- 
ically for any input x by use of a differential-equations 
solver, yielding concentrations of five chemical spe- 
cies at a reaction time of 7 x 10-4 seconds. All but 
two rate constants are hypothesized to have been 
established by previous work, so x is two-dimen- 
sional. 

Miller and Frenklach (1983) took a nine-point de- 
sign and approximated each of the five log concen- 
trations with a two-dimensional quadratic. Similarly, 
our model is 

Y(x) = fo + AlXl + f2X2 + Aixx 

+ fi22x2 + /12xx2 + Z(x). (3.2) 

where Y(x) is the log concentration, but we model 
the departure Z as a stochastic process with corre- 
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lation function given by (2.1). No measurement error 
is involved here. The inputs x are transformed so 
that the prediction region is the square of side [- , 
i]. We present the results of modeling one of the Y's; 
similar results were obtained for the others. 

To select a design by minimizing (2.8) we need to 
specify 0. We will also use this 0 in (2.6) to give the 
BLP Yo. Unfortunately, before taking observations 
from an experiment, there is no way to know 0 or 
even make an intelligent guess. Therefore, we need 
to choose an assumed OA that will give a design- 
prediction strategy that performs well for a wide 
range of true (but unknown) OT. 

To do this, we select several assumed values OA; 
for each, we find the optimal design SHA and BLP 
Yo0. Figure 1 gives the designs for OA = 1 and OA = 
100. The OA = 1 design is typical of those for OA - 

1. As OA increases, the designs become more regular 
as depicted in the OA = 100 design. We want to select 
a strategy that performs well over a wide range of 
true Or. Table 1 gives values of JT(SA, YA), the 
measurement of performance of the strategy (St, 
YoA) when 0T is true. Since Jo,(SoT, YeT) is the best 
one can do when OT is true, the ratio 

JOT(SO, Y0,) JT(S,SA YA,) 

is the relative efficiency of (S* YOA) at OT. These 
efficiencies appear in parentheses in Table 1. 

On the basis of the relative efficiencies in Table 1, 
the strategy (Sr, Y') for OA = 1 appears most robust 
in the sense of maximizing minimum efficiency. It is 
interesting that large absolute differences are 
guarded against by the strategy for OA = 100. The 
IMSE using OA = 100, however, is uniformly poor 

a 
0.5 

. 

. 

. 0.3- 

and improvements from 1.55a2 to 1.20a2 are of little 
value. 

We compared the strategy (S Yi, Y1) with the Miller 
and Frenklach (1983) strategy of a 3 x 3 factorial 
design {- .5, 0, .5}2 and least squares (LS) prediction, 
denoted by (3 x 3, YLs). We took a 101 x 101 grid 
of points, G, on the unit square and ran the com- 
putational model to produce true Y's at each x E G 
and then computed the empirical integrated squared 
error 

EISE = (1/(101)2) E (Y(x) - y(x))2 (3.3) 

for the two strategies. 
The design S* is not completely symmetric, and 

there are three equivalent designs obtained by re- 
flections in the unit square. Therefore, four EISE 
values for strategy (SY, Yi) are 1.6, 1.7, 1.9, and 
2.2. The EISE for (3 x 3, YLs), 16.3, shows that our 
method reduces the EISE in this example by a factor 
of 8-10, depending on which one of the S* designs 
is (arbitrarily) chosen. 

Example 2 

The second example is more complicated than Ex- 
ample 1. In this instance, there is a large linear system 
of differential equations describing a methane com- 
bustion process. Seven rate constants are deemed 
active in the solution for a given set of initial con- 
ditions. The output of interest is the induction-delay 
time. 

Modeling proceeds as in Example 1 using quad- 
ratic approximation (following discussion with M. 
Frenklach). In seven dimensions, the quadratic 
model has 36 terms. Again, the stochastic process is 

b 
0.5 

* 0. 

0.3- 

0.1 

-0.1 - 

-0.3 - 

. 

. 

0.1 - 

-0. 1 - 

. . . 

. 

. 
. 

-0.5 -0.5 
.3 -0.1 0.1 03 0.5 -0.5 -0.3 -0.1 0.1 0'3 0.5 

-0.3 - 

03- 

-0.5 
-05 -0.3 -0.1 0.1 0'3 0.5 

Figure 1. Optimal Nine-Point Designs for a Quadratic Model: (a) OA = 1; (b) QA = 100. 
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Table 1. Integrated Mean Squared Error of Strategy (SA, ~YA) When the True Correlation 
Parameter Is OT 

True OT 

Assumed 0A .25 .5 1 2 5 10 100 

.25 .17 x 10-4 .15 x 10-3 .00128 .0100 .099 .33 1.55 
(100%) (99%) (96%) (89%) (78%) (74%) (78%) 

.5 .17 x 10-4 .15 x 10-3 .00125 .0096 .095 .32 1.54 
(99%) (100%) (98%) (92%) (81%) (77%) (78%) 

1 .18 x 10-4 .15 x 10-3 .00122 .0092 .089 .31 1.51 
(94%) (98%) (100%) (97%) (87%) (81%) (80%) 

2 .21 x 10-4 .17 x 10-3 .00128 .0089 .082 .29 1.48 
(79%) (87%) (96%) (100%) (94%) (87%) (82%) 

5 .33 x 10-4 .24 x 10-3 .00164 .0099 .077 .26 1.41 
(51%) (60%) (74%) (90%) (100%) (96%) (85%) 

10 .48 x 10-4 .34 x 10-3 .00221 .0122 .081 .25 1.36 
(35%) (43%) (55%) (73%) (95%) (100%) (89%) 

100 1.46 x 10-4 1.02 x 10-3 .00631 .0317 .166 .39 1.20 
(11%) (14%) (19%) (28%) (47%) (64%) (100%) 

defined by (2.1) but with d = 7. Frenklach adopted 
a "box and star" design, usually called a central- 
composite design (Box and Hunter 1957). The box 
is a half-fraction of a 27 design on the vertices of the 
7-cube, and the star points are the 14 points (?+, 
0, ... , 0), (0, ?+, 0, * . * , 0), . . . , and the origin. 
The design consists of these 79 points. Such designs 
are commonly used for fitting quadratic responses 
with independent errors. Because of the computa- 
tional complexity of minimizing over designs with 79 
x 7 coordinates, we also restricted attention to box 
and star designs and sought best designs of the form 
(a, box, a2 ? star), where a, and a2 are between 0 
and 1. By ac box, we mean a scale shrinkage of the 
box design by ac with a similar meaning for a2 ' star. 

Let SB be the best 79-point box-star design for a 

quadratic model assuming OA; that is, SA minimizes 
JOA(S, YA) over S E (albox, a2star). Enough data 
are available to estimate the true 0 for the prediction 
stage, so the robustness study is slightly different 
from that in Example 1. Here we evaluate JoT(SBA 
YOT) for the efficient predictor Y0T. This leads to Table 
2 and the conclusion that Sg with .64 ? box, 1.00 
star is reasonably robust as are the designs for 0A 
between 1 and 5. 

For brevity, Table 2 is based on the assumption of 
a second-order linear model, but it is possible to 
perform an expanded robustness study that also al- 
lows for various assumed and true linear models as 
well as assumed and true values of 0. Thus the IMSE 
of a design optimal for assumed OA and assumed 
linear model is evaluated under various Or and var- 

Table 2. Integrated Mean Squared Error of Strategy (SA, Ye) When the True Correlation 
Parameter Is Or 

Shrinkage TrueT 
factors 

Design 
assumed OA a, a2 .1 .5 1.0 5.0 25.0 

.1 .67 .80 .80 x 10-4 .0099 .065 1.16 1.94 
(100%) (98%) (96%) (86%) (71%) 

.5 .65 .93 .81 x 10-4 .0098 .063 1.04 1.68 
(98%) (100%) (99%) (96%) (83%) 

1.0 .64 1.0 .83 x 10-4 .0098 .062 1.00 1.60 
(96%) (100%) (100%) (100%) (87%) 

5.0 .64 1.0 .82 x 10-4 .0098 .063 1.00 1.59 
(97%) (100%) (100%) (100%) (87%) 

25.0 1.0 1.0 1.52 x 10-4 .0254 .147 1.14 1.39 
(52%) (38%) (42%) (88%) (100%) 
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ious true linear models. Table 2 is actually just part 
of such a study considering an eight-parameter first- 
order model and a one-parameter constant model, 
in addition to the second-order model. Simpler linear 
models might seem reasonable because of the flexi- 
bility allowed by the stochastic process, but the more 
extensive comparisons showed that the design for the 
second-order model and 0A = 5 continues to be ro- 
bust. 

From design S5, we generated data with the com- 
puter model and estimated o2 and 0 by maximum 
likelihood; aZ = 4.6 x 10-5 and 0 = 12.4. For this 
purpose Z is assumed to be Gaussian process. (Only 
0 is used for prediction, but b2 is required for in- 
ference.) The IMSE evaluations in Table 2 indicate 
that the strategy (S5, Y12.4) has an IMSE between 
1.00a2 and 1.59a2 and a2 is about 5 x 10-5 from 
the maximum likelihood estimation. When the true 
Y was evaluated at 200 random inputs, the EISE 
computed analogously to (3.3) was 15.2 x 10-5 with 
standard error 3 x 10-5. The IMSE, being an ex- 
pectation over hypothetical realizations of the sto- 
chastic process, is not necessarily a proper measure 
of uncertainty in the prediction. In this case, how- 
ever, its order of magnitude is correct; the IMSE is 
about 3 of the EISE. 

Concern that the use of the 36-parameter quadratic 
model leads to overfitting prompted us to evaluate 
the simpler first-order and constant models. In each 
case we retained the design S5 based on the second- 
order model but reestimated the parameters 0 and 
o2. The estimates and EISE (including those for the 
quadratic model for comparison) are shown in Table 
3. Interestingly, the three linear models have similar 
EISE's. This suggests a trade-off between the com- 
plexity of the model and the magnitude of 0 and 
a2. Further work is needed to determine the gen- 
erality of this phenomenon. 

The designs in Table 2 differ little in their shrink- 
age parameters for the box points (which predomi- 
nate) except for the 0A = 25 design. Using a quad- 
ratic model and reestimating 0 by 0 - 2.57, the OA 
= 25 design has an EISE of 40.8 x 10-5 or 37% 
efficiency relative to the (robust) 0A = 5 design. A 
similar comparison shows that a 79-point Latin hy- 
percube design (McKay et al. 1979) supplied to us 

Table 3. Parameter Estimates and Empirical Integrated 
Squared Error of Prediction (EISE) for the 8A = 5 

Box-Star Design 

Linear model 0 62 EISE 

Constant .080 1.75 10.7 x 10-5 
First-order .28 .053 13.0 x 10-5 
Quadratic 12.4 4.6 x 10-5 15.2 x 10-5 

by R. Iman has an efficiency of 58%. (The Latin 
hypercube method gives very variable results in the 
first example when the design is reflected, but the 
efficiency averages about 30%.) 

4. DISCUSSION 

Although we have restricted attention to issues in 
which the design space and the region of interest 
coincide, it is clear that similar tactics work with 
contexts in which, for example, the region of interest 
is larger than the design region. The IMSE criterion 
can be replaced by other criteria. The maximum 
mean squared error (MMSE) is a natural criterion, 
but it involves a multidimensional optimization at 
every design step. Comparisons of IMSE and MMSE 
for discrete regions were made by Sacks and Schiller 
(1988). 

Design optimization can be computationally for- 
midable for the models considered in this article. 
With n design points and d-dimensional inputs, full 
optimization requires the solution of a large system 
of equations to compute the IMSE. The n x n co- 
variance matrix V involved in these equations is 
poorly conditioned for small correlation parameter 
0, which is often the case of interest (e.g., Table 3). 

For larger problems, therefore, heuristics like the 
box-star (central-composite) designs employed in 
Section 3 may be useful. Sequential design is also 
natural; information about the unknown 0 can be 
acquired, thus bypassing the design-robustness issue. 
Linear-model adaptation might also be possible. Our 
experience, however, is that simple-minded sequen- 
tial rules, such as looking one point ahead, are in- 
effective. Another approach that circumvents the 
problem of not knowing 0 at the design stage is to 
design for asymptotic 0's (0 approaching 0). Recent 
results obtained with Y. B. Lim and W. J. Studden 
on asymptotic (0 -> 0) designs makes this method 
appear promising as a tool for design construction. 
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