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Looking for Shapes in Two-Dimensional,
Cluttered Point Clouds
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Abstract —We study the problem of identifying shape classes in point clouds. These clouds contain sampled contours and are
corrupted by clutter and observation noise. Taking an analysis-by-synthesis approach, we simulate high-probability configurations
of sampled contours using models learnt from the training data to evaluate the given test data. To facilitate simulations, we develop
statistical models for sources of (nuisance) variability: (i) shape variations within classes, (ii) variability in sampling continuous curves,
(i) pose and scale variability, (iv) observation noise, and (v) points introduced by clutter. The variability in sampling closed curves
into finite points is represented by positive diffeomorphisms of a unit circle and we derive probability models on these functions using
their square-root forms and the Fisher-Rao metric. Using a Monte Carlo approach, we simulate configurations from a joint prior on the
shape-sample space and compare them to the data using a likelihood function. Average likelihoods of simulated configurations lead to
estimates of posterior probabilities of different classes and, hence, Bayesian classification.

Index Terms —Shape classification, clutter model, Fisher-Rao metric, planar shape models, diffeomorphisms
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1 INTRODUCTION 1.1 Problem Challenges

THE classification and recognition of objects in image$he biggest challenge is to select and organize a large subse
is an important problem in machine vision, biometricsf the given primitives into shapes that resemble the shapes
medical image analysis, and many other branches of scieriggerest. The number of permutations for organizing piirai
A common approach is to represent the objects of interésto possible shapes is huge. For example, if we take the
with certain discriminant features, and then use some sfaimitives to be points, the number of possible polygonsgisi
tistical models on these feature spaces for classificafion. 40 distinct points is of the order af0*”. If we select only
important feature of many objects is thehape and, as a 20 points out of the given 40 and form a polygonal shape,
consequence, shape analysis has become an integral path@fnumber of possibilities is still approximately)?. To
object classification]], [2]. One way to use shape analysis iSorm and evaluate all these shape permutations is impessibl
to estimate the boundaries of the objects (in images) andSimilar to [5], our solution is to analyze these configurations
analyze the shapes of those boundaries in order to charactethrough synthesid,e. to synthesize high-probability configu-
the original objects. Towards that end, there have beenaeveations from known shape classes and then to measure their
papers in the literature on analyzing the shapes of contisiuosimilarities with the data Although this approach has far
closed, planar curves (see for exampt}, [4] and others smaller complexity than the bottom-up combinatoric apphoa
referenced therein). While such continuous formulatiores athe joint variability of all the unknowns is still enormous.
fundamental in understanding shapes and their variabilijo go further, one must use the structure of the problem
practical situations mostly involve heavily under-samipleto break down the variability into components, and then
noisy, and cluttered discrete data, often because the ggs@fe probabilistically model the components individually. Bhgh
estimating boundaries uses low-level techniques thatexr an example presented in Figutewe will try to explain these
set of primitives (points, edges, arcs, etc.) in the imageg@l components.
(We will restrict attention to only the points in this paper—. Clutter Rejection: It is not just the object boundary that
some examples of point sets derived from real images aifll generate primitives: the background and the objecriior
shown in Figuresl7, 21 and 22—but the method generalizeswill too. From the perspective of the shape analysis of dbjec
to more complex primitives.) Therefore, an important peobl houndaries, these background and interior points arelébel
in object recognition is to (probabilistically) relate aven as clutter. Perhaps the most difficult issue is to determine
set of primitives to pre-determined (continuous) shapesela which primitives belong to the object boundary and which
and to classify the shape of this set usindully statistical pelong to the clutter. Discarding clutter takes us from (&) t
framework (b) in Figurel.
2. Ordering: Even if the primitives belonging to the object
e A. Srivastava is with the Department of Statistics, Flortate University, boundary were known, their ordering along the boundary is
Tallahassee, FL 32306. most probably unknown. If: primitives are used to form

e |. H. Jermyn is with the Ariana project-team, Project ARIANARIA, a polygonal shape, there are ordgrings. Having a specific
Sophia Antipolis, France. ordering moves us from (b) to (c) in Figufie
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fall on the boundary.
For the experiments described in this paper, we will utilize
. one of the Kimia databases (see for exampglp €onsisting
:'.' R ) of 16 classes of shapes: bone, bird, bottle, brick, catjazgar
. e . car, chopper, crown, fountain, man, rat, fork, tool, fishd an
e .-.'_. IR glass, with approximately 400 total training shapes. Fadur

Boeomomm owmo e wom e ow oo om e o @ ow @ ghows the mean shapes from these 16 shape classes.
(a) Data (b) No Clutter (c) Ordering  (d) Classificatiof, the past literature, the search for parametric shape ode

. ] . . (lines, circles, cylinders, etc) in cluttered data has bpen
F'.g' 1. Problem Challenges: The p(_)lnt cloud in () con- formed using the RANSAC algorithm/], [8]. However, the
tains clutter as well as th_e shape Qf interest. The removal multiplicity of shape classes and the non-parametric eatdr
.Of clutter Ieadg o points in (b) which when ordered result shape variability makes it difficult to apply RANSAC in this
in a polygon in (c). .S_ub_sequer?tly, this polygon can be context. Also, note that the goal here is different from reco
used for shape classification as in (d). struction of curves from point cloud data. A related problem
is the shape analysis of objects, most commonly 3D, using
discrete representations of their surfaces, for instarsiegu
point clouds as in Memoli and Shapirg][ Similarly, Glaunes
et al. [LO] represent curves and surfaces as measuris$ iand
compare the shapes by comparing their associated measures.
Although such solutions, proposed for comparing point d®u
to point clouds can also be applied to the current problem, th
presence of clutter is a problem. Peter and Rangardjdn [
Fig. 2. Examples of ordered point sets to be classified impose a very different structure, originating from a mietof
into given shape classes. The cardinality of these point Gaussian, to analyze shapes of point clouds. Felzenszwdlb a
sets decreases from left to right making the classification  Schwartz [ 1] propose a hierarchical, tree-like representation
more challenging. of curves using a triplet of points at each node and compare th
trees by comparing shapes of the triangles formed by tsplet
The specific problem of classifying shapes of 2D contours
all of them belonging to the boundary, the task of shapging cluttered points provides an additional structuoeiag
(class) determination, that is going from (c) to (d), islstifrom variability in shapes and their samplings into finiterys,
challenging, although not as difficult as going from (a) t¢hat is not exploited by some of these general methods.
(d). Depending upon where the primitives are placed on the
curve, the resulting polygons can have very different shape
To reach a statistical framework for this classification, W%'
have to develop models for the variabilities associated wifhe classification problem is described by the probability
shapes, the generation of primitivése(sampling in the case P(C|y), whereC € C is the class of the object represented by
of points), and the observation noise. the data set, ang C ) is the datai.e. a finite set of primitives.
Given these challenges, we will address the general problég€cause we are restricting attention to primitives that ar
in two steps. First, we will study the classification problem simply points inR?, we have) = R*™ for m primitives.)
the absence of clutter and assuming a known ordering. Th¥g fix an arbitrary enumeration of these points for conve-
we will extend that solution to the more general case withience. Classification can then be performed by maximizing
clutter and an unknown ordering. the probability:C' = argmax. P(Cly). The construction of
Problem |—Baseline Problem we assume that all the ob-F(C|y) is most easily performed by first rewriting it using
served points belong to the boundary of interest and that Bayes’ theoremP(Cly) o< P(y|C)P(C).
ordering of these points is known. Thus, the goal is to dgvelo In what follows, we will take the prior probability over
a statistical framework to classifyn ordered set of primitives classes to be uniform, but including a non-uniform prior is
into pre-determined shape classes. Some examples of drddfial. The difficulty of the problem is contained if(y|C’),
point sets are shown in Figutz Given shape classes, suchvhich describes the formation of the data starting from the o
as crown, glass, bottle, carriage, etc., we seek to clagisify ject class. To make any further progress, this probabilistm
observed points, or polygons, into these classes. In theefigoe broken down into components corresponding to simpler
the number of points is high on the left and decreases towaf#dges in the data formation process. Here we will provide
the right. For any observer it will be relatively easier tagdify @ schematic overview of these stages, and the algorithm to
the polygons on the left than those on the right. which they give rise. The various quantities used below el
Problem II: Extension to General Problem: in this more defined precisely in the following sections. First, we initioe
general case, not only do we not know the ordering of tf@me variables:
points generated by the object boundary, but clutter p@irds « Letg € G, whereG = (SO(2) x R?) xR, be a similarity
generated by the background and the object interior are also transformation that includes rotation, translation, and
present. We do not know how many or which of the data points scale. The symbok denotes the semi-direct product.

2 Problem formulation and overview
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o Let ¢ € Q be a shapei.e. an object boundary modulo
similarity transformations and reparametrizations. Thus
a specific boundary is given hyy.

o Let s € S represent the generation afpoint-primitives
on the shape boundary; among other variablesntains
n. We will call this a “sampling”. Therys will be a set Fig. 3. lllustration of sampling variability for a curve.
of n point primitives modulo a similarity transformation,
while a specific set of point primitives is given by =
gqs. the variability in shapgP(q|C)), sampling(P(s|q, C)), and

e LetZ>.:[0,...n] — [0,...m] be a one-to-one map, observation noiseand clutter(P(y|:, ggs)). We now discuss
i.e. an injection, for relating each elementofo a unique each of these in more detail, beginning with sampling, since

element ofy. our approach here is novel.
Then we can write (making certain independence assumptions
to be discussed later) 2 MODELING SAMPLING VARIABILITY
By a sampling of a continuous curve, we mean selecting an
Py|C) = Z/// PAyle, gas) Plls) Plglg, C) x orydered firF:itegnumber of points on that curve. (We underglline
ez ggg the distinction between our use of “sampling a continuous
q€Q curve” and the phrase “sampling from a probability”. To aloi

P(s|q,C) P(q|C)dg dsdq . (1) this confusion, we will use “simulating from a probabilit§gr
the latter.) The sampling step results in a significant ldss o
information about the original shape. FiguBeshows some
'examples of samplings of a single shape. Since the sampled
Cﬁboints are ordered, we can draw a polygon for improving the
visualization of the sampled points.
" A sampling is intended to represent the generation of
_ : imitives by particular types of sensor, or, more commpnly
of a class, one must In some way (at Iea§t approx'matesé simple image processing techniques such as edge detectio
sum over all possible 'r_“ec“o.”s corresponding to th_e first As such, it is heavily dependent on the procedure used to
and sqcond challel_'lges, and integrate over all pc_)53|bls-tra enerate the primitives. To avoid a presumption on the image
Iﬁirrrgaéfglfegr; Ssm_lprll'gi?; alz:‘?ezhl:?gseg’inceorr?sglz r;wdlnlgrct)%lt:ri Erocessing technique, we must treat the generation of these
correspondsgto. knowing ?P(L) S0 ))pso that’ the sum rimitives i|j a generic pr.o_babillist?c way. Before we can go
10D on to describe the probability distributid?(s|q, C'), however,

over it trivializes. Note, however, that(y|uo, ggs) still must o 13ve 1o specify on what space it will be defined.
model observation noise.

Our algorithmic strategy for dealing with this great com- )
plexity is based on two approximate methods for evaluatifgl ~Representation
the integrals and sums: Monte Carlo integration and thelsadtlow can we mathematically represent a sampling? The pro-
point approximation (also called the Laplace’s method). Weess of sampling, by itself, is seldom studied in the litemt
use the first for the integrals overand s, generating real- although the related problem of matching sampled shapes
izations from their probability distributions and then sming has received a lot of attention, see e.g]. [A sampling
the values of the integrand evaluated at these realizatibas involves two elements: a certain number of points,and
use the second for the integral ovgrand the sum over. their placement on the curve. The latter can be expressed by
For Problem I, the latter is trivial, and so the maximizatioparameterizing the curve in terms of its arc length, and then
problem reduces to a Procrustes alignment of two 2D poist sstlectingn values in the interval0, L], whereL is the length
under the likelihoodP(y|.o, ggs) describing the observationof the curve. Since we will be sampling the points from shapes
noise, which we take to be white and Gaussian. For Probleme can assume thdt = 1. Note that this assumes that the
II, we have also to find the best injectienin addition to the probability of a sampling does not depend on the position,
best transformatiog. Using a combination of the Hungarianorientation, and scale of a curve, which was implicitly venit
algorithm and the Procrustes alignment, we solve the joimto Eqn. 1.
registration-transformation problem.The cost function this If we known, then sampling a curve amounts to partitioning
optimization is the likelihoodP(y|:, ggs), which must now a circle inton subintervals. This process simplifies if we place
include a stochastic model of the clutter points. The resiilt the origin on the curve at the position of the first sample, and
these procedures is an approximation to the valu®(@f|C) thereby consider the sampling problem as that of partitigni
for each value ofC, i.e. each class, and thus, after a triviathe unit intervall0, 1] into n subintervals. The position of the
normalization, to the value oP(C|y). Classification is then origin now becomes an element of the representation: we will
immediate. denote it byr. Any partition of [0,1] by n points can be

To construct a fully statistical framework, then, we havalentified with a probability mass function with elements.
to develop probability models and computational methods fdherefore, ifn is fixed, one can represent a sampling as a

In this paper, we will take”(¢|s) and P(g|q, C') to be uniform,
a point we discuss in Sectiod.3. With these assumptions
g and . appear solely in the first factor in the integran
P(yle, 9gs).

The difficulties of the problem can now be seen in mat
ematical terms. In order to compute the posterior prokgbili
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point in the (n — 1)-simplex A(»~1). However, for unknown  Fortunately, while there are clearly a large number of Rie-
n, one would like to allow all possibilities in a model and thignannian metrics one could place Bnone is selected uniquely
motivates a broader representation. In particular, oneldvoly invariance requirements, as follows. It is a remarkable
like there to be some consistency between the probabitifiesfact, proved byCencov [L3, that on spaces of probability
samplings with different numbers of points, which suggestistributions on finite sets, there is a unique Riemannian
separating the choice of number of points and their placémemetric on the space of probability distributions that isanant
This can be achieved as follows. to probabilistic mappings. This Riemannian metric is the so
Let I" be the set of increasing, differentiable functions froroalled Fisher-Rao(F-R) metric. (In finite dimensions, it has
[0, 1] to itself, such that for ally € T', 4(0) = 0 and~(1) =1, been used previously in computer visior], [14].) The F-R
or, in other words, the group of positive diffeomorphisms metric extends naturally to the space of probability measur
of the unit interval. Now letU = [0...n]/n be a uniform on continuous spaces such @is1], where it is invariant to
partition of the intervall0, 1] into n sub-intervals. Then any the (re-parameterization) action of the diffeomorphismugy.
element ofA("~1) can be represented byU/), for somey €  SinceT is isomorphic toP, we can view the F-R metric as
I'. In fact, there are an infinity of elementsall of which a metric onI" too. Because of its invariance properties, this
give rise to the same point in(*~1 . A samplings will thus is the metric we choose to use. In terms of the probability
be represented by an equivalence class of trigles,v) € density representation, it takes the following form: thaen
N x St x I'. The advantage of this representation is that weroduct between tangent vectofg and §’p to the space
can change: without changingy, and vice-versa. of probability distributions on[0,1] (here tangent vectors
We still have to decide, however, how to represenThe are functions that integrate to zero) at the pagint P is
functions inT" can be thought of as cumulative distribution(sp, §'p),, = j;Jl 5p(5)5lp(s)ﬁds, It turns out, however, that
functions for probability densities off), 1], with which they the F-R metric simplifies greatly under the half-densityreep
are in bijective correspondence, and this gives rise to db@umsentation. Indeed, it becom&s, because)? = p means that
of possibilities for representing such functions: 2¢6¢ = dp, and thus thatsy, 6'y),, = fol dp(s) §'(s) ds.
Diffeomorphism: An element of[" is represented as itself,We have already seen thadt is the positive orthant of the
i.e. as an increasing function fron, 1] to itself, such that unit sphere inL?([0, 1]), and now we see that the F-R metric
7(0) = 0 andy(1) = 1. The advantage of this representatiofs simply thel.?> Riemannian metric ori.?([0, 1]) restricted
is that the action of the group of diffeomorphisms on itsslf ito w. The space¥ endowed with the F-R metric is thus

particularly simple, by composition. the positive orthant of the unit sphere i ([0, 1]) with the
Probability density: An element ofl" is represented by its induced Riemannian metric.

derivative, denoted® > p = 4, which is an everywhere
positive probability density oro, 1], i.e. a positive function
that integrates td.

Log probability : An element of " is represented by the
logarithm of a probability densityVV > v = In(p). It is
an arbitrary function whose exponential integrated tarhe
advantage of this representation is that the values of t
functionv are unconstrained apart from the normalization.
Square-Root Fornt An element ofl is represented by the We now prove the invariance property of the F-R metric.
square root of a probability densitl; > ¢ = p%, This is a This is important because using this metric, the probabilit
positive function whose square integrated tae. its L2 norm model that we construct on the space of sampling functions
is 1. The set of these functions thus forms the positive orthafill be invariant to reparameterizations of curves in a shap
of the unit sphere in the spadé([0,1]). The advantage of class.

this representation is that it greatly simplifies the formttod
most natural Riemannian metric one can placelgras we
will now discuss.

As a consequence of this analysis, geodesics under the F-
R metric are nothing but great circles on this sphere, while
geodesic lengths are simply the lengths of shortest arckeon t
sphere. Arc-length distance on a unit sphere has been used to
measure divergences between probability density funstion
% long time [L5]. This metric also plays an important role in
information geometry as developed by Amart].

Theorem. The Fisher-Rao metric is invariant to the action of

Proof: We show this using the square-root form but the

] S proof is similar for the other representations. The actibi' o
We wish to construct probability distributions dh perform on ¥ is easily deduced from its action dhby composition:

@nferences,_ compute statistic_s, and so on. Th(_a di_ffi_culty 1S*y)(s) = W%(S)w(W(S))- This is linear, and so the action
in performing calculus on this space while maintaining thg, tangent vectors is analogois*sy)(s) = W%(S)W(W(S))-

underlying nonlinear constraints on the functions invdiv&8  therefore. the inner produdt* 8¢, v*8'4)) becomes
natural solution is to work on the nonlinear manifold formed ’ Y

by these functions and to utilize the intrinsic geometry of
this manifold to perform statistics. This requires compgti 1 1
geodesic paths between points on the manifold, which in tu:/ (v*0U)(s) (v*8"p)(s) ds = / Y(8)d1b(y(s)) 0"(v(s)) ds
requires a Riemannian structure. We must thus make a choice 0
of Riemannian metric, as well as a choice of one of the above / S (t) §'(t) dt = (5, 8", .0
. . . . ’ P -
representations in which to express it. 0

2.2 Riemannian Structureon T
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2.2.1 Geodesic, exponential maps, etc

In this section we list some analytical expressions that are
useful in a statistical analysis ofi and, thus onl. As ¥ 4
is an infinite-dimensional sphere inside?([0,1]) (see e.g.
Lang [L7]), the length of the geodesic i between any
two functions~; and 2 ulnder the F-R metric is given by
d(v,72) = cos’1(<71§,’y2§>), where the inner product is - ] )
2. The geodesic between 1two poitg and v, of T' is o § .
similarly derived. Fory; = 42, the corresponding geodesic =~ —=<==~———1+—=— o
in W is given by (t) = s [sin((1 — £)0)¢r + sin(t0)¢s ], (a) (b) (c)
wherecos(0) = (¢1,12). The desired geodesic ifi is then )
given by ~(t), where~(t)(s) = j;)s »(t)(7)? dr. Due to this Fig. 4. Examples of Karcher mean in I': In each case, (a)
additional integration step, it is sometimes easier toquerf Shows ten v;, (b) shows their Karcher mean 4., and (c)
the Riemannian analysis i and to map the final result backShows the cost functions vs. iterations.
toI'. This is especially true for computing means and variances
of sampling functions, for constructing probability deies on
T", and for simulating from these probability densities.

In ¥, the geodesic starting from a point in the direction Having established a representation and a Riemannianametri

v € Ty(¥), can be written astos(t)y+sin(t) oy (with thel.2 on thg spacd” of sampling functi_qns, we now turn to the

norm). As a result, the exponential magp : Ty (V) — ¥, guestion of constructing a probability distribution. Rie¢laat

has a very simple expressiomxp,(v) = cos(|v])y + @ sampll_ngs is a triple (n,7,7) € N x Sl_ x I', and we

sin(||v])) 4. The exponential map is a bijection between Rave deliberately chosen our representation so that we can

o : : : ite the probability fors as P(s|C') = P(n)P(r|C) P(y|C

tangent space and the unit sphere if we restfigf so that Write the probability fors as P(s|C') = P(n) P(7|C) P(v|C' 7)

v € [0,7), but for large enough[v||, exp,(v) will lie i.e. P(n)_ dqes. not depend on the .shape,_we will use a

outsidel, i.e. v may take on negative values. We will discus§€0ometric distribution forn. The most interesting part of the

this further when we define prior probabilites dn For distribution is the factorP(~|C, 7). Clearly the possibilities

any 1,1, € ¥, we definev € Ty, (¥) to be the inverse here are enormous. We will restrict ourselves to “Gaussian”
9 ’ 1 . . .

exponential ofy; if exp,,, (v) = 12; we will use the notation distributions of the form

expi}(%) = v. This can be computed using the following

stepsiu = by — (o, 1)1, v = wcos™ ((t1,42))/ (u,u)?.

2.4 Probability distributions & Simulations

C 1 g?(43%
P(y|C,r) = z~te 374 OF 00 @)

whered is the geodesic distance under our chosen Riemannian
Lo
metric, and where)y = 44 is, in consequence, the mode of

2.3 Stafisticson T' the distribution. We discuss two possibilities fay and o.
Consider the task of computing the statistical mean of 1h€ simplest possibility is to emphasize the samplings
a set of sampling functiong~:,7s,...,7x} intrinsically of a curve that are uniform with respect to its arc-length

in T. As mentioned earlier, we will use the square-rogtarametrization, independently 6f, by choosingyo(s) = s,

forms of these functions to perform such calculations. L& equivalentlyy = 1. This case is simple. Alternatively,

the corresponding set of square-root forms be given ggray depend on local geometrical properties. e.g. have sam-

(b, Uad, s = 1% We define their Karcher meanpings whose density increases with increasing curvatiteso
1,V2,..., y i = Vi

as: i = argmin, ey Z;c:l d(1b,;)2, whered is the geodesic underlying curve. One could defing in a way that depends

. i= k 5 - on the shapes ifi'. Let E(s) = [ exp(—|k(s")|/p)ds’, where
distance on?. T_he minimum value)_;_, d(“’w_i) is called k(s) is the curvature of; at arc-length parameter poistand
the Karcher variance of that set. The searchfis performed p € R* is a constant. (Note that to defifi an origin~ must

using a grad|_ent approach where an esltlm%te IS |tegat|\pely he chosen and the resulting distribution will be dependent o
dated according top = exp,(€v), v = 3> i1 XD, (Vi)-  ihis choice.) Then defing,(s) = E(s)/E(1).
Here,exp andexp™" are as given in the previous section, anfe \ish to define a single, for each clas€’ based on the;,
¢ > 0is a small number. The gradient process is initialized {Qy,;es for that class. We do this based on training curves fro
/(¥ 1)), wherey = £ 37 ;. that class, as follows. First we computg for each training

In Figure 4, we show two examples of computing Karchecurve, and then, using the techniques presented in Seztipn
mean. The column (a) shows examples of sampling functione compute the Karcher mean, which we useygsand o2
1,72, - - -, Y10, @nd the column (b) shows their Karcher mearthe Karcher variance for that class. For this computatibe, t
1~ (the sampling function obtained by squared integration pfacement of the origin is aligned for all curves in a class,
u € V). We remark that one can extend this framework tso that the observeg, all use the same. (This alignment
define a full covariance structure on the tangent sgagd) is performed during the computation of geodesics between
(or equivalentlyT,, (I')) by mapping the observed samplingshapes of curves; this shape analysis is summarized in #te ne
functions to that tangent spaced]. section.) We now illustrate these ideas with some examples.
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- Fig. 7. Random samples from P(v|C)) with o2 increasing
. from left to right.

Fig. 5. Curvature-driven sampling: (a) a curve; (b) a f f J f f
smoothed version, with e~1%(*)/#| displayed as a normal
vector field; (c) 7.

ﬁ f e Fig. 8. Each row shows examples of the training shapes

with their Karcher means shown in the rightmost panels.

(@) (b) (©)

3 SHAPE AND SHAPE VARIABILITY

We now turn to the construction of the shape mod&h|C).
While objects of a given class are similar in their shapes,
there is naturally also variability within each class. It is
this commonality and variability thaP(¢|C') must describe.
Figure 8 illustrates shape variability for three classes in the
Kimia database.

There have been several recent papers that develop tools
for analyzing the shapes of planar closed curvs[f] and

ers. The main differences amongst these articles lie in

e choice of representation for the curves and of the metric
used to compare shapes. An emerging choice of metric for
fcomparing the shapes of curves is thkastic metric[19],

Fig. 6. Each row shows two examples of training curves in
a class, the sampling functions ~, for that class, and their
Karcher mean.

Shown in Figured, column (a) are two shapgsWe smooth
these curves using Gaussian filters: their smoothed vessian
shown in column (b). For these smoothed curves, we comp
x and thenE(s). This function is displayed as a normal vecto
field on the smoothed curve in (b). Finally, is computed,

it is shown in column (c). Figuré shows some examples o ;
class-specific means of the for two classes. By using these_underWh'Ch curves are allowed to stretch, compress, and ben

means asy, for each class, we can form class-specific prioﬂhg or(lz)ler to rtez:lj(_:hdan optlmall TatCh'”?' AIthoug? this metric
of the form given in Eqn2. as been studied in several forms, two recent papeik [

To simulate from probability densities of the form in EQp. [21] present an efficient representation under which the elasti

i ) 5 . .
we first randomly generate a functighe T, (¥) such that metric beco”?es a S."T‘p'“” metric, with _the result that

1 shape analysis simplifies considerably. This has beendcalle
|f| = 1, where, as beforey, = 5.

_ Then, we generate au,q gquare-root elastic framework, and we describe it in the
normal random variable ~ N(0,02), and compute a point next section.

1 = cos(x)g +sin(z) f/|| f|I. The random sampling function

is then given byy(s) = fos Y(s")? ds'. Figure7 shows some )

examples of random simulations from such a class-specificc Representation

prior density for increasing values of’. If o, is too large, Consider a closed, parameterized curve: a differentialalp-m
then many of the sampled points will lie outsidei.e. > will ping 8 from S* to R?, and we want to analyze its shape.
take on negative values. Including such samples still define There are two invariances we have to include in our analysis.
probability density o, but its interpretation is complex dueOne is that the notion of “shape” is independent of the size,
to the “folding back” effect of taking the square @¢f Such orientation, and position of the curve. Secondly, it is nisat
points may, however, simply be rejected from the samples, tho the reparameterizations of the curve. The variabilityege
preserving the form of the density given above. For effigfgnc ated by changing these variables can be written as actions of
sake, though, the proportion of such points should not be tappropriate groups on the spaces of closed curves and, thus,
large, and this implies a constraint o1. can be “removed” from the representation using quotients.
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Before we present shape analysis in more details, we
consider an important question: Why do we use parameterized Q
curves to represent boundaries or regions? It is possible to
analyze the shapes of regions using representations that de
not involve explicit parameterizations. For instance, cae M ﬁm& \J
use a level set of a function to represent a regiad],[

[23], or one can view a region as a subset®f and use

set-theoretic metricse.g. the Hausdorff metric, to compare
shapes]4]. Since there is no parametrization involved in these % G
representations, one does not have to “remove” it in shape

analysis. However, this becomes a disadvantage when the goa

is to associate arbitrarily sampled points to given shapgsels:

it is simply more difficult to associate sampled points instae Fig- 9. Karcher means of the 16 shape classes used.
representations than by using an explicit parameterizatio

On the other hand, approaches that represent shapes by a

small subset of points on the boundary seleaegtiori, e.g. 095
active shape modeld], cannot introduce arbitrary samplings. Ozz
Hence, the choice of parameterized curves for shape asalysi 0s
of boundaries is important. o5

As described in 0], [21], we will represent a curves o
by its square-root velocity functiony : S* — R?, where 06
q(t) = ﬁ | - | is the Euclidean norm irR?, and os
t is an arbitrary coordinate o8'. Note that the use of 04

115 3 5 212 416 711 9 1014 6 8 13

the derivative already eliminates translations. To elaign
scalings, we restrict ourselves to the space of unit len
closed curves The resulting space is a unit sphgre=
{al Jeu (a( (t)) dt = 1}, where(-) is the Euclidean inner
product mR2 The transformations that remain are rotations

SO(2) and reparameterizationsiff (S'). Since the actions of

these two groups oi8 are isometric, with respect to tHe?

metric, we can define the shape space to be the quotient s %ggnthms will have more difficulty separating similar stes.

Q — B/(SO(2) x Diff(S!)) and inherit theL.? metric from or example, classes 1 and 15 — bones and tools — will be
B. In other words, for a poing € Q the Riemannian metric harder to distinguish than say bones and glasses.

takes the form(dg, dg2), = Jo1 0qu(t) - 6q2(t) dt. To perform The next step is to impose a probability model ¢h
statistical analysis mQ however, which is our goal, onePerhaps the simplest model is the one usedIfpiEqgn. 2.
needs to construct geodesics@ Joshiet al. [21] describe a As was suggested inl§], it is much easier to express this
gradient-based technique for computing geodesic®.imhe distribution using the tangent spa@g, Q to Q at the mean
technique uses path-straightening flows: a given pair gheshia shapeq, than usingQ itself, because the former is a vector

is first connected by an initial, arbitrary path that is thespace. In that space, one can use the principal component
iteratively “straightened” so as to minimize its lengthC]. analysis (PCA) and impose a standard Gaussian distribation
The length of the resulting path is then the geodesic distarthe PCA coefficients, and use the exponential map to “push
between the shapes. Since one of the effect®if(S') is forward” these tangent vectors t@ itself. Empirical study
different placements of the origin on closed curves, itsaesth  shows, however, that the histograms of these tangent pghci

gII—JPg. 10. A dendrogram plot of the Karcher means in
Figure 9 using geodesic distances.

results in an alignment of shapes in that regard. coefficients are often far from Gaussian. We therefore use
kernel estimates of the underlying densities to capturs thi
3.2 Statistics and Probabilites on O more complex behavior. This is illustrated in Figur& The

istribution on Q that we can simulate. For the purpose of
mulatmg from this model, we treat the tangent principal
coefficients as independent random variables. In practee w
e approximately 10 tangent principal coefficients pepsha

One can define and compute the mean of a collection of shaE
using the Karcher mean, now based on the geodesic dista
defined in the previous sectiori]. Three sets of examples
of shapes and their Karcher means are shown in Figure
while the Karcher means for all the 16 classes used in tﬁjs
paper are displayed in Figue Figure10shows a dendrogram
clustering of these mean shapes using the geodesic distanc&o simulate fromP(¢|C) described above, we first simulate
We make two observations from this clustering. Firstlysthifrom the estimated density of the tangent principal coeffits,
clustering agrees with our human inference in that similand then use the exponential map to generate corresponding
shapes have been clustered together. Secondly, later am whlements of0. Figure12 shows some examples of simulations
we study classification of shapes, we anticipate that tfimm one such non-parameteric model.

%ential methodology is unaltered, and indeed applieayto a
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The probabilityP(y.) thus depends solely ofim — n). Note
this likelihood also applies Problem I, except thgre= y
and the likelihood consists only of the first tetRiys|ggs).

5 es 5 es ¢ isds

5 PROBLEM | SOLUTION

For Problem I is fixed to be the number of points yn and
s is reduced to the paifr, 7). In terms of Figurel, our task is
to go from (c) to (d). So we take up the problem of evaluating

the posteriorP(C;|y) and note that the Bayes’ integral in
Eqgn.1 is too complicated to solve analytically. It is therefore
approximated using numerical techniques. There are devera
ways of approximating such an integral.

One possibilty is to use the Laplace’s

Fig. 11. Empirical distributions (solid lines) and kernel es-
timates (broken lines) of densities of four tangent principal
coefficients in shape class 1.

Fig. 12. Some randomly generated shapes from a TPCA approximation by  maximizing  the  integrand
model on a shape class. over the variables of integration: P(C;ly) ~
B Pyluo, g ar s) P} |Ci) P71 Ci) P(s7]C),
- where (g7, qf,s;) are the maximizers of the function
3.3 Probability distribution for G P(yleo, 9qs)P(q|C;)P(g|C;)P(s|C;). Such an approximation

We have described a representation for shapes Q, and is reasonable when the integrand has a single mode with a
some possible model#(¢|C). In order to describe a setsupport that remains similar from class to class.
of points with a particular position, orientation, and sgal A more classical approximation is the Monte Carlo ap-
however, we have to transform the using a similarity proach where one independently simulates values from the
transformationg € G and then sample itP(g|q, C) is the prior probabilities, evaluates the likelihood functiondaav-
corresponding probability distribution. In this paper, wél  erages the likelihoods to estimate the required postéFumt
assume a uniform prior o, suitably truncated for large is, generatey; ~ P(q|C;), g; ~ P(g|C;) ands; ~ P(s|C;),
enough scales or translations to allow normalization. forj=1,2,...,J independethIy and form the Monte Carlo
estimate:P(C;|y) ~ Zé;i(cé),)z(:i:} Pﬁf(‘;fgfjjfj JS) 3

4  OBSERVATION MODEL Sometimes it is more efficient to use a combination of
Depending upon the technique used to extract primitives frahese two ideas. For instance, since the use of white Gaussia
the image data, the actual observations will often diffenfr observation noise leads to a quadratic likelihood enefy, t
the corresponding points on the curves. This may be dueaptimal value ofg for matching ay to anx = ggs can be
low quality, coarse resolution, and quantization of imagetound easily using the standard point registration. Sirlyila
A standard way to treat this variability is to introduce af the two variables making up— ( 7 and~) — one can also
independent observation noise that perturbs the samplatspooptimize overr while randomly simulatingy from the prior
according to some probability model. In this paper, we tak@(v|C;). Sincer decides which element of the circular set
this noise to be additive, white, and Gaussian, but the useisthe starting point, there are onlypossibilities and they can
Gaussian noise is purely for convenience; more sophisticabe searched exhaustively. Thus, it is easier to remgoard 7
noise models can similarly be included in the solution. THeom the integration using optimization. Lef and~; be the
deterioration of data due to obscuration of shapes is r&tulated values fronP(q|C;) and P(v|C;), and let
included in the observation noise. . s

In addition to the perturbation of the primitives generated (g5:75) = ar%faxp(yho’gqﬂ'sj)’ sj=(my) . (4)
by the object boundary, we expect to have primitives fro '
the background and the object interior, creating “clutt€@ur > . . )

g"le shapey;, sampling functiony;, registrationr?, and the

likelihood term needs to model these points as well. So,ngiv i tor all ted f Jels for cl h
n unperturbed pointx = gqs generated by the curve, what?!'9NMentg;, all generated from models 1or clags. Then,

is the probability of a given dataset of pointsy (m > n)? an estimate of the posterior is given by

I’Befine a point set;; to be the one resulting from taking

If we know the injection. relating x to n unique elements Po(Ci)Zil P(ylxz,)
of y, then we can dividey in two sets: a set of. points, P(Cily) ~ e — - e (5)
namedy,, related tox and the remainingn — n points, 225 Po(Ci) (i P(yx5,))

namedy., attributed to clutter. The first set is modeled usingiere, the likelihood is given by the first term in Ecf.
additive, white-Gaussian noise and the second is modeled
using a homogeneous Poisson process with intengitylhe

likelihood function for the complete data is given by: 5.1 Joint Registration And Alignment

The subproblem we address here is given in EgnGiven

P(yle,gqs) = Plyslgas) Plyc) two sets of ordered points iR, call themx, y € R"*2, we
1 o S e —=xll> A" want to rotate, scale, translate, and circularly skiffo as to

Z¢ (m —mn)! ®) minimize its Euclidean distance squared frgmDefinex™ to
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six examples of computing posterior using simulated data
under Problem 1. In each block, the left panel shows the
true underlying curve and the points sampled on it to form
y (elements ofy are joined to form a polygon). The middle
panel shows a bar chart of the estimated posterior probabili
P(C;ly) for each of the 16 classes. The last panel shows
the simulated configuratios™ (dotted line) that results in
the maximum likelihood, along with the hypothesized cugve
and the datay (solid lines). As these examples demonstrate,
the algorithm is quite successful in generating high-iikebd
candidates from the correct shape classes, even when
generated for a relatively small value of Of all these nine
cases, only the top row has the highest posterior for the

Fig. 13. Examples of several x* (broken line), correspond- incorrect classes. This is expectedqas= 3 is clearly too

ing to different shape classes, for the same y(solid line). ~ Small to distinguish shape classes. .
Once the posterioP(C;|y) is approximated, it can be used

for classifyingy into a shape class. Since the dgtaere has
be a circular shift of the elements &fsuch that-'" element been simulated with known shape classes, we can evaluate
becomes the first element nowe {1,2,...,n}. the algorithm’s performance by comparing the estimatesscla
If 7 is fixed, then the two sets of points are completelyith the true class. To estimate the posterior for egclwe
registered and their alignment is performed using the Praave used/ = 300 realizations from the posterior, and to
crustes method as follows. Compute the< 2 matrix A =  estimate probability of correct classification, we haveds80
(y —y)T(x™ —x7)T, wherey andx” are means ofy and runs (simulations of) for each value of, ando,. For these

x7, respectively. Letd = ULV, the SVD of A. The optimal simulations, the underlying shape class is picked randomly

rotation, scaling, and translation &f are given by: with equal probability. The results are shown in the leftgdan
) of Figure 15 where the probability of correct classification is
uv’r if det(A4) >0 plotted versus, for three different observation noise levels.

o = 1 0 The noise levels arer, = 0.01, 0, = 0.025, ando, =

U VT  otherwise.

0.05, expressed in terms of the arc-lengths of the curve. For
T or example,o, = 0.01 implies thaty was simulated by adding
oo B =y) KT =XN)) g oo noise at standard deviatian01 times the length of the true
Tr((x7 = x7)T(x™ = x7)) curve to each component gf This plot suggests that, in case
The search for optimak is exhaustive. That is, for eachof low noise, the sampling of shapes hy= 6 points results
possible shift, and there aresuch possibilities, we computein approximately 50% classification rate. To reach over 90%,
the best alignment of the resultingto y and keep the closestone will need more thag0 points in this setting. Even at a
one. This is the optimak* for the given pair(x,y). Some very high noise leveb, = 0.05, the algorithm can classify
examples of this registration/alignment process are ajygul more than 45% of observations with only 15 points. If we use

0 -1

in Figure13. a k-nearest neighborhood classifier (kNN), with increasing
Here is a summary of steps needed to approximate te get the result shown in the middle panel of Figiite The
posteriorP(C;|y) for a giveny. right panel shows the classification performance for eaasscl

. . ) individually, for the case: = 12 ando, = 0.01. In this plot
Algorithm 1. For j =1,2,.....J ] the classification performance was estimated by averagieg o
1) Randomly generate a shape claSs and simulate a 100 simulations ofy generated from only one class at a time.

shapeg; ~ P(Q|Cz')_- _ As the dendrogram in Figurk0 shows, shapes in classes 1, 3,
2) Generate a sampling functiop; ~ P(7|C;). and 15, and 4, 16, and 7 are quite similar, respectively, laisd t
3) Solve forgj, 77, and thenxj using the Procrustes patyrally affects the classification rate for these clasEbsir
method. o _ _ classification rates increase drastically when we go froNL-
4) Evaluate the likelihood functioR (y[x] ;) using Eqn3. o 3-NN classifier. For example, the classification rate fass
Approximate the posterioP(C;|y) using Eqn.5. 3 jumps from 0.64 to 0.97 and for class 15 from 0.62 to 1.0.

The noise varianceg is a free parameter here. Its vaIueTh'S supports the argument that the classification is ojdgesd

affects the shape of the posterior histogram but not t}t]%.dlst.mctlveness of s_h.ape.s across classes. Anothgemm
posterior mode. point is the low classification rate of classes in which slsape

are more complicated — cat (6) and mouse (13). We believe
) this is because the shape variability within the class isemor
5.2 Experimental Results complex and the shape model used here does not completely
We now describe some experimental results on estimatiogpture this variability.
P(C;ly). In this experiment, we simulate the dataccording  In terms of the computational cost, the time taken to
to the data model and apply Algorithin Figure14 presents estimate P(C;|y) for eachy using Algorithm 1 is approx-
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Fig. 14. Each block shows — Left panel: the data y (solid polygon) superimposed on the underlying true curve (broken
line); Middle panel: the posterior P(C;|y); Right panel: highest likelihood sample x* (broken polygon) drawn over the
hypothesized curve 3 (solid line). Data polygon y is drawn in solid lines for comparison here. The top row has n = 3,
the middle n = 5, and the bottom row n = 20. The numbering of classes in the bar chart is same as the order in Figure
9 and the correct classes (from top left to bottom right) are 8, 1, 14, 5, 11, and 3.
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Fig. 15. Classification performance versus n. Left: Shape classification performance of nearest neighbor classifier for
four different noise levels. Middle: Classification performances of one-, two-, and three-nearest neighbors classifiers,
versus n, when o, = 0. Right: Classification performance by the class for n = 12 and ¢, = 0.

imately 20 seconds in MATLAB whe/ = 300. Since we to these sampled points. So far, the data formation is simila
estimate the probability of correct classification usin@ $6ch to the baseline problem studied earlier. Then we introduce
evaluations of the classifier, for each valueqf andn, it background clutter by simulating from a homogeneous Pnisso
takes approximately 50 minutes to estimate each point on fli®cess with mean,. The result is shown in panel (b) of this
performance curves shown in Figuté. figure. Finally, we take all the points: sampled with noisanr

¢ and simulated from Poisson, and randomly permute them to

result in the sey of observed data points, as shown in panel
6 PROBLEM Il SOLUTION (©).
Now we return to the more general problem of finding shapihe second set of experiments in this section involves prim-
classes in given point clouds, where the given points aye: tives derived from the image data using a simple processing
unordered and (ii) may or may not lie on the object boundarstep demonstrated in Figut&. For an imagd (left panel), we
In terms of the problem description in Figute our goal in have used,, = |2£|+ |g—£| to isolate (vertical and horizontal)
this section is to go from the data (a) to the inference (dp Twedges in/ (second panel). Then, we threshdigd using three
sets of results are presented: one from the simulated ddta atandard deviations from the mean value Jip, to obtain
one from primitives extracted from real images. a binary edge map (third panel). To obtain point primitives

We start by describing the formation of the simulated datkom the binary map, we randomly select a predetermined

As shown in Figurel6, we start by picking a clasg’;, number, saymg, from the points with value 1 (also shown
generating a shape ~ P(q|C;) and sampling it according in the third panel). Finally, we use a thinning procedure to
to a randomly generated sampling functien= (n,7,~). discard(mg—m) points to results in a set of m points (last
Heren ~ Geometri¢ng), 7 is random in{1,2,...,n}, and panel). This thinning basically computes all pairwise atistes
v ~ P(v|C;). Next, we introduce additive, Gaussian noisbetween points and iteratively discards those points that a
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(a) (b) (c) o
o]

Fig. 16. Simulated data. (a) The original curve § and its

sampling ggs, (b) with Poisson clutter, () the resulting y. Fig. 18. Association Problem: For the data set y shown in

—m , — top left, we show four examples of: x (thicker points), the
selected y,, and an estimated ordering of y; (solid lines)
inherited from corresponding ordering in x (broken lines).

given by the Kuhn-Munkres or the Hungarian algorithm and
their MATLAB implementations are readily available. Hence
we do not reproduce that algorithm here but directly present
our experimental results. Once the optimal mappifgis
found, it solves the two original issues: background répect
and point ordering. Note that the ordering of pointsie= ggs
is known and this ordering, in turn, imposes an ordering @n th
corresponding elements gf. Shown in Figurel8 are some
examples of registering a given top-left panel, with several
hypothesis ofx, shown in the remaining panels. For each
(a) (b) (©) (d) hypothesis, we use the Hungarian algorithm to find optimal
t* (for m = 40, n = 20) and an ordering orautomatically
Fig. 17. Examples of pre-prcessing of images: (a) I, (b) selectedelements ofy (solid polygon) inherited from the
I.,, (c) a random selection from binary image (d) thinning ~ corresponding elements af (broken line polygon).
step to result in y drawn over 1.

6.2 Joint Registration and Alignment
associated with the smallest distances. In the experitherita addition to the registration*, we also need to solve for

results presented here we used = 70 andm = 40. the optimal transformationg® in Eqn. 7. The transformation
g consists of a rotatiorO € SO(2), scalep € R, and a
6.1 Registration Problem translationT € R?, as was the case in Problem I. For a fixed

The key step to handle Problem Il is to solveegistration ¢ We have a registration between elementscaindy, and
problem given two sets of points € R"*2 andy € R™*2, ~ We can solve for the optimal transformatigh directly (using

n < m, associate to each element »fa unique element EQns. in Sectiors.1). _ - _
of y so as to minimize a certain cost function. Using an Now we have a situation that is familiar to problems in
injection © : {1...n} — {1...m} each hypothesis point registration/alignment of point clouds. For a given regisbn

x;, has to be associated with a data paint). This results ¢, We can solve for the optimal transformation and for a given
in a subsety, of points that are assigned to the shape arftRnsformationg we can solve for the optimal registration.
a subsety. of remaining points assigned to the backgrounidowever, we need a joint solution. This we accomplish by
clutter. The likelihood energy function for this model iwgn initializing a transformation of; and iterating back and forth
by: —log(P(y]i, ggs)), whereP(y|i, ggs) is given in Eqn 3. between the two conditional optimizations. The result is a
Similar to the hybrid approach taken in Problem I, we woultpcal solution to the joint optimization problem; we willdel

like to solve for the pa“(g’L) exp||C|t|y using: the final values Ofg and . as g* and v, reSpeCtively. The
N initial value of T' is taken to bey — x while the initial
(¢*,¢*) = argmin Z 1y, ) — xx||2 for x = ggs rotations ofy andx are obtained using the SVD of matrices
b - L v ) - M . _ _ —
9€G.€T \ i Sk —¥) (e —¥) T andY", (x — %) (x; — x)T. The scale

(7) p is initialized by scalingx andy in such a way that the
The minimization problem over, for a fixedg, is one version Frobenious norm of is \/m/n times the Frobenious norm
of the famous optimal assignment problem. The solution @& x. The logic for this choice is that a subset of sizérom
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performance is expectedly low. It is interesting to notd the
performance of the nearest-neighbor classifier is more than
50% even whenv < .5. As these experiments suggest, the
algorithm is able to put high probability on the correct shap
class despite the presence of clutter.

As a comparison, we have studied the performance of
classification using the Hausdorff metric and the Iterated
L Closest Point (ICP) algorithm. In both cases hypothesis
x are generated as earlier but the likelihood is computed
differently. In the case of Hausdorff metric it is com-
puted usinge—4»™%° where d, is the classifical Haus-
dorff distance,d,(y,x) = max;(min; [|x; — y;||) andx =
argmingy oeso2) du(y, Ox). The scale and the translation of
x is initialized as previously and kept fixed. The classificati
performance for this metric, for different levels of cluite
is shown in the right panel of Figurg0. Similarly, ICP
algorithm is another commonly used procedure for regisgeri
and aligning arbitrary point clouds. The basic idea is to
iterate between the Procrustes alignment and nearedtbwig
registration until convergence. We have used ICP to registe
elements ofx to the elements of, resulting inx, and use
the resulting squared distandg., = >, (min; |[|x; — y;[/)?)

y, although we don't yet know which particular subset, hag compute the likelihood%<. The results for recognition

to be matched tax. Two examples in Figurd9 illustrate paseqd on this likelihood are also shown in the right panel.

this iterative optimization. Once the optimal associatedl Tpese general-purpose methods do not account for therclutte
transformation ofx are found, we have the optimal version,odel and do not ensure that a unique elementyofs

of the hypothesized configuratiat™. Using a large number 5ssigned to each elementsaf Consequently, their recognition

of simulated hypothesis, we can estimate the posteriogusiferformance is lower than the structured approach proposed

Fig. 19. Left panels show y (points) , x before (broken
line) and x after (solid line) the joint registration and
alignment. Right panels show the cost function in Eqgn. 7.

Ean.5. o in this paper.
_Here is a summary of steps for approximating the posterigjgyres21-22 show several examples of inferences on shape
distribution in Problem Il for a givery. classes in real images. In each row, the left panel shows the

Algorithm 2. Same as Algorithni except these two steps: original image and the data drawn over it. The next panel
shows the posterior probability estimated using Algorithm

and the remaining two panels show examples of high probabil-
ity y, drawn over the image. In this experiment, we have used
m = 40 andny = 20. The examples of; can viewed as most
likely polygons that can be constructed using the primgive
The parameters;, o, andn are free parameters here. present in the corresponding Several observations can be
made from these results. Firstly, the algorithm finds it easy
to detect distinct, elongated objects (bottle, tools, hate)
. _ but not so easy to distinguish between them. The first and the
Two sets_ of results, corresponding to the simulated data a9¢t examples in Figurgl all show high posterior probability
the real mage-based data, are pr_esented here. . on those three related classes (1,3 and 15). Secondly, the
Shown in top_three rows of F_|guréo are experimental algorithm is sensitive to the difference between trainingpes
results on the simulated data with = 40 and no = 20. and the test shapes. The test glass in Figarie quite different
In each case, the left panel shows the true underlying Cufyepqioht from the glasses used in training shape priors for
which was sampled to generate the data pewhich are (.5 5 gimilarly, the helicopter in Figur22 is different
alsp shown there. The_ nexﬁ panel dlsplays_ a bar Chartf? m the training helicopters in class 9. This adverselgetf
estimatedP(C;ly) for thisy, i =1,2,...,16 using J = 300 Algorithm 2’s ability to discriminate between classes. thgs
samples. _The last figure Sh_OWS a h_|gh probability poWgQHe clutter present in this data is much more structured that
formed using the subsegs using Algorithm2. In each of the i, yhe simulated data (where clutter came from the Poisson
three cases, the amount of clutter is quite high — the numbgp o)) Therefore, the algorithm is not as immune to cluter
of_pomts on t_he curve equa_ls the numbe_r_of clutter POINR\yas in the simulated case. In the third example of Fidiite
Still, the algorithm puts the highest probability on thereot where we get points from both the fishes, the algorithm tries

class for all cases. The bott(_)m left chart is_ the estim_at%iﬁt shapes using points from both the fishes. In the lastlpane
average performance of Algorithtplotted against the ratio ¢ s row, the algorithm does succeed in ignoring clutred a

number of points on curve . .
v, Wherev = - numbgr of points iy - -OW values of finding the fish contour.

denote a larger amount of clutter and %e related classditat In terms of the computational cost, the time taken to

2) Generate a sampling function; ~ P(vy|C;) and a
sample sizer ~ min(Geometric(ng), m).

3) Solve forg;, and .} using Sectior.2 This gives rise
to an optimal version of the hypothesis; ;.

6.3 Experimental Results
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Fig. 22. Same as Figure 21. The correct classes in these examples are: 12, 9, 16, 14, and 14.
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7 CONCLUSION

We have presented a Bayesian approach for finding shaﬁﬁe y

| . . fi fi f points that is charamdri T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham{iti&cshape
classes in a g'Ve_n conriguration ot pol > |. I models: Their training and applicationComputer vision and image
by under sampling of curves, observation noise, and back- understandingvol. 61, no. 1, pp. 38-59, 1995.

ground clutter. Rather than trying all possible permutatio[2] TF.Cootes, G. Edwards, and C.J.Taylor, “Active appeae models,

. : . in in Proc. ECCV, H.Burkhardt & B. Neumann Edwol. 2, 1998, pp.
of points, we take a synthesis approach and simulate con- »g4_49g

figurations using prior models on shape and sampling. T{8 E. Klassen, A. Srivastava, W. Mio, and S. Joshi, “Anadysif planar
class posterior is estimated using a Monte Carlo approach. shapes using geodesic paths on shape spadé&s Patt. Analysis and

L . Machine Intell, vol. 26, no. 3, pp. 372-383, March, 2004.
The strengths and the limitations of this framework depe P. W. Michor and D. MumfordpeRiemanman geometries omcas of

squarely on the strengths and the limitations of the models plane curves,”Journal of the European Mathematical Societl. 8,
used, especially’(¢|C;) and P(v|C;). In this paper, we have __ Pp. 1-48, 2006.

tricted t ints. but additi | orimiti includiti A. Srivastava, M. |. Miller, and U. Grenander, “Bayesiantomated
restricted to points, but aadiional primitives, nc UQ' nes target recognition,Handbook of Image and Video Processing, Academic

(first order) and arcs (second order) can be also be used. Press pp. 869-881, 2000.

REFERENCES



IEEE TRANSACTION PAMI

o
r's .. N on
- o® et
LI . € oy
. .
g . . 008
Ftoe Fottonn
.
14 J
o § ood
. -
. ” 002

g 10 15 02 015 01 005 0 005 01 015 02

3

g 10 15 02 015 -01 -005 0 005 01 015 02

— Hausdorft
——I|CP
——Bayesian

Fig. 20. Top three rows — The original curve and the simu-
lated dataset y (left), and the estimated posterior P(C;|y)
(middle), and a high-probability configuration (last). The
correct classes in these examples are: 16, 9, and 5. The
bottom left plot shows the average classification perfor-
mance versus v for the Bayesian approach, while the
bottom right compares this approach with a classification
that uses the Hausdorff metric and an ICP algorithm.

[6] T. B. Sebastian, P. N. Klein, and B. B. Kimia, “On alignirayirves,”
IEEE Transactions on Pattern Analysis and Machine Inteliige
vol. 25, no. 1, pp. 116-125, 2003.

[71 M. A. Fischler and R. C. Bolles, “Random samples conssns
paradigm for model fitting with applications to image anayand
automated cartographyCommunications of the ACMol. 24, pp. 381—
395, 1981.

[8] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC fooipt-cloud
shape detection,Computer Graphics Forumvol. 26, no. 2, p. 214226,
2007.

[9] F. Memoli and G. Sapiro, “A theoretical and computatibframework
for isometry invariant recognition of point cloud dat&Sundations and
Computational Mathematicsvol. 5, no. 3, pp. 313-347, 2005.

[10] J. Glaunes, A. Trouve, and L. Younes, “Diffeomorphiatehing of dis-
tributions: A new approach for unlabelled point-sets anig-sianifolds
matching.” inCVPR (2) 2004, pp. 712-718.

[11] P. Felzenszwalb and J. Schwartz, “Hierarchical magtdf deformable
shapes,” inProceedings of CVPR007.

[12] A. Peter and A. Rangarajan, “A new closed-form inforimatmetric for
shape analysis,” iProc. of MICCAI, Copenhager2006.

[13] N. N. Cencov, Statistical Decision Rules and Optimal Inferencser.
Translations of Mathematical Monographs. Providence, USKS,
1982, vol. 53.

[14] S. J. Maybank, “Detection of image structures usingRgher informa-

14

Fig. 21. (a) Original image and detected primitives, (b)
estimated P(C;|y) for 16 shape classes, (c)-(d) two exam-
ples of high-probability x and optimal correspondences
with y. The correct classes are 3, 3, 5, and 15

[16] S. Amari, Differential Geometric Methods in Statistjcser. Lecture
Notes in Statistics, Vol. 28. Springer, 1985.

[17] S. Lang,Fundamentals of Differential Geometry Springer, 1999.

[18] A. Srivastava, S. Joshi, W. Mio, and X. Liu, “Statisfichape analysis:
Clustering, learning and testinglEEE Trans. on Pattern Analysis and
Machine Intelligencevol. 27, no. 4, pp. 590-602, 2005.

[19] W. Mio, A. Srivastava, and S. Joshi, “On shape of plarestat curves,”
International Journal of Computer Visiowol. 73, no. 3, pp. 307-324,
2007.

[20] S. H. Joshi, E. Klassen, A. Srivastava, and I. H. Jern¥movel repre-
sentation for efficient computation of geodesics betweeatimensional
curves,” inlEEE CVPR 2007.

[21] ——, “Removing shape-preserving transformations inasg-root elas-
tic (SRE) framework for shape analysis of curves EMMCVPR, LNCS
4679 A. Y. et al., Ed., 2007, pp. 387-398.

[22] M. Leventon, W. E. L. Grimson, and O. Faugeras, “Statidtshape
influence in geodesic active contours,"Rnoc. IEEE Conf. Comp. Vision
and Pattern Recognitiqr2000, pp. 316-323.

[23] M. Rochery, I. H. Jermyn, and J. Zerubia, “Phase field ei®dcand
higher-order active contours,” IlCCV, Beijing, China, 2005.

[24] G. Charpiat, O. Faugeras, and R. Keriven, “Approximsi of shape
metrics and application to shape warping and empirical esiségtistics,”
Journal of Foundations of Computational Mathematiesl. 5, no. 1, pp.
1-58, 2005.

tion and the Rao metricJEEE Transactions on Pattern Analysis and

Machine Intelligencevol. 26, no. 12, pp. 1579-1589, 2004.

[15] A. Bhattacharya, “On a measure of divergence between dtatistical
populations defined by their probability distributiond®Bull. Calcutta
Math. Soc. vol. 35, pp. 99-109, 1943.



	Introduction
	Problem Challenges
	Problem formulation and overview

	Modeling Sampling Variability
	Representation
	Riemannian Structure on 
	Geodesic, exponential maps, etc

	Statistics on 
	Probability distributions & Simulations

	Shape and Shape Variability
	Representation
	Statistics and Probabilities on Q
	Probability distribution for G

	Observation Model
	Problem I Solution
	Joint Registration And Alignment
	Experimental Results

	Problem II Solution
	Registration Problem
	Joint Registration and Alignment
	Experimental Results

	Conclusion
	References

