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Abstract —We study the problem of identifying shape classes in point clouds. These clouds contain sampled contours and are
corrupted by clutter and observation noise. Taking an analysis-by-synthesis approach, we simulate high-probability configurations
of sampled contours using models learnt from the training data to evaluate the given test data. To facilitate simulations, we develop
statistical models for sources of (nuisance) variability: (i) shape variations within classes, (ii) variability in sampling continuous curves,
(iii) pose and scale variability, (iv) observation noise, and (v) points introduced by clutter. The variability in sampling closed curves
into finite points is represented by positive diffeomorphisms of a unit circle and we derive probability models on these functions using
their square-root forms and the Fisher-Rao metric. Using a Monte Carlo approach, we simulate configurations from a joint prior on the
shape-sample space and compare them to the data using a likelihood function. Average likelihoods of simulated configurations lead to
estimates of posterior probabilities of different classes and, hence, Bayesian classification.

Index Terms —Shape classification, clutter model, Fisher-Rao metric, planar shape models, diffeomorphisms
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1 INTRODUCTION

THE classification and recognition of objects in images
is an important problem in machine vision, biometrics,

medical image analysis, and many other branches of science.
A common approach is to represent the objects of interest
with certain discriminant features, and then use some sta-
tistical models on these feature spaces for classification.An
important feature of many objects is theirshape and, as a
consequence, shape analysis has become an integral part of
object classification [1], [2]. One way to use shape analysis is
to estimate the boundaries of the objects (in images) and to
analyze the shapes of those boundaries in order to characterize
the original objects. Towards that end, there have been several
papers in the literature on analyzing the shapes of continuous,
closed, planar curves (see for example [3], [4] and others
referenced therein). While such continuous formulations are
fundamental in understanding shapes and their variability,
practical situations mostly involve heavily under-sampled,
noisy, and cluttered discrete data, often because the process of
estimating boundaries uses low-level techniques that extract a
set of primitives (points, edges, arcs, etc.) in the image plane.
(We will restrict attention to only the points in this paper—
some examples of point sets derived from real images are
shown in Figures17, 21 and22—but the method generalizes
to more complex primitives.) Therefore, an important problem
in object recognition is to (probabilistically) relate a given
set of primitives to pre-determined (continuous) shape classes
and to classify the shape of this set using afully statistical
framework.
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1.1 Problem Challenges

The biggest challenge is to select and organize a large subset
of the given primitives into shapes that resemble the shapesof
interest. The number of permutations for organizing primitives
into possible shapes is huge. For example, if we take the
primitives to be points, the number of possible polygons using
40 distinct points is of the order of1047. If we select only
20 points out of the given 40 and form a polygonal shape,
the number of possibilities is still approximately1029. To
form and evaluate all these shape permutations is impossible.
Similar to [5], our solution is to analyze these configurations
through synthesis,i.e. to synthesize high-probability configu-
rations from known shape classes and then to measure their
similarities with the data. Although this approach has far
smaller complexity than the bottom-up combinatoric approach,
the joint variability of all the unknowns is still enormous.
To go further, one must use the structure of the problem
to break down the variability into components, and then
probabilistically model the components individually. Through
an example presented in Figure1, we will try to explain these
components.
1. Clutter Rejection: It is not just the object boundary that
will generate primitives: the background and the object interior
will too. From the perspective of the shape analysis of object
boundaries, these background and interior points are labelled
as clutter. Perhaps the most difficult issue is to determine
which primitives belong to the object boundary and which
belong to the clutter. Discarding clutter takes us from (a) to
(b) in Figure1.
2. Ordering : Even if the primitives belonging to the object
boundary were known, their ordering along the boundary is
most probably unknown. Ifn primitives are used to form
a polygonal shape, there aren! orderings. Having a specific
ordering moves us from (b) to (c) in Figure1.
3. Classification: Even for an ordered set of primitives,



IEEE TRANSACTION PAMI 2

40 60 80 100 120

20

40

60

80

100

120

40 60 80 100 120

20

40

60

80

100

120

40 60 80 100 120

20

40

60

80

100

120

40 60 80 100 120

20

40

60

80

100

120

(a) Data (b) No Clutter (c) Ordering (d) Classification

Fig. 1. Problem Challenges: The point cloud in (a) con-
tains clutter as well as the shape of interest. The removal
of clutter leads to points in (b) which when ordered result
in a polygon in (c). Subsequently, this polygon can be
used for shape classification as in (d).

Fig. 2. Examples of ordered point sets to be classified
into given shape classes. The cardinality of these point
sets decreases from left to right making the classification
more challenging.

all of them belonging to the boundary, the task of shape
(class) determination, that is going from (c) to (d), is still
challenging, although not as difficult as going from (a) to
(d). Depending upon where the primitives are placed on the
curve, the resulting polygons can have very different shapes.
To reach a statistical framework for this classification, we
have to develop models for the variabilities associated with
shapes, the generation of primitives (i.e. sampling in the case
of points), and the observation noise.

Given these challenges, we will address the general problem
in two steps. First, we will study the classification problemin
the absence of clutter and assuming a known ordering. Then,
we will extend that solution to the more general case with
clutter and an unknown ordering.
Problem I—Baseline Problem: we assume that all the ob-
served points belong to the boundary of interest and that an
ordering of these points is known. Thus, the goal is to develop
a statistical framework to classifyan ordered set of primitives
into pre-determined shape classes. Some examples of ordered
point sets are shown in Figure2. Given shape classes, such
as crown, glass, bottle, carriage, etc., we seek to classifythe
observed points, or polygons, into these classes. In the figure,
the number of points is high on the left and decreases towards
the right. For any observer it will be relatively easier to classify
the polygons on the left than those on the right.
Problem II: Extension to General Problem: in this more
general case, not only do we not know the ordering of the
points generated by the object boundary, but clutter pointsare
generated by the background and the object interior are also
present. We do not know how many or which of the data points

fall on the boundary.
For the experiments described in this paper, we will utilize

one of the Kimia databases (see for example [6]) consisting
of 16 classes of shapes: bone, bird, bottle, brick, cat, carriage,
car, chopper, crown, fountain, man, rat, fork, tool, fish, and
glass, with approximately 400 total training shapes. Figure 9
shows the mean shapes from these 16 shape classes.

In the past literature, the search for parametric shape models
(lines, circles, cylinders, etc) in cluttered data has beenper-
formed using the RANSAC algorithm [7], [8]. However, the
multiplicity of shape classes and the non-parametric nature of
shape variability makes it difficult to apply RANSAC in this
context. Also, note that the goal here is different from recon-
struction of curves from point cloud data. A related problem
is the shape analysis of objects, most commonly 3D, using
discrete representations of their surfaces, for instance using
point clouds as in Memoli and Shapiro [9]. Similarly, Glaunes
et al. [10] represent curves and surfaces as measures inRn and
compare the shapes by comparing their associated measures.
Although such solutions, proposed for comparing point clouds
to point clouds can also be applied to the current problem, the
presence of clutter is a problem. Peter and Rangarajan [12]
impose a very different structure, originating from a mixture of
Gaussian, to analyze shapes of point clouds. Felzenszwalb and
Schwartz [11] propose a hierarchical, tree-like representation
of curves using a triplet of points at each node and compare the
trees by comparing shapes of the triangles formed by triplets.
The specific problem of classifying shapes of 2D contours
using cluttered points provides an additional structure, coming
from variability in shapes and their samplings into finite points,
that is not exploited by some of these general methods.

1.2 Problem formulation and overview

The classification problem is described by the probability
P(C|y), whereC ∈ C is the class of the object represented by
the data set, andy ⊂ Y is the data,i.e.a finite set of primitives.
(Because we are restricting attention to primitives that are
simply points inR2, we haveY = R2m for m primitives.)
We fix an arbitrary enumeration of these points for conve-
nience. Classification can then be performed by maximizing
the probability:Ĉ = argmaxC P(C|y). The construction of
P(C|y) is most easily performed by first rewriting it using
Bayes’ theorem:P(C|y) ∝ P(y|C)P(C).

In what follows, we will take the prior probability over
classes to be uniform, but including a non-uniform prior is
trivial. The difficulty of the problem is contained inP(y|C),
which describes the formation of the data starting from the ob-
ject class. To make any further progress, this probability must
be broken down into components corresponding to simpler
stages in the data formation process. Here we will provide
a schematic overview of these stages, and the algorithm to
which they give rise. The various quantities used below willbe
defined precisely in the following sections. First, we introduce
some variables:

• Let g ∈ G, whereG ≡ (SO(2)⋉R2)×R+, be a similarity
transformation that includes rotation, translation, and
scale. The symbol⋉ denotes the semi-direct product.
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• Let q ∈ Q be a shape,i.e. an object boundary modulo
similarity transformations and reparametrizations. Thus,
a specific boundary is given bygq.

• Let s ∈ S represent the generation ofn point-primitives
on the shape boundary; among other variabless contains
n. We will call this a “sampling”. Thenqs will be a set
of n point primitives modulo a similarity transformation,
while a specific set of point primitives is given byx =
gqs.

• Let I ∋ ι : [0, . . . n] → [0, . . .m] be a one-to-one map,
i.e. an injection, for relating each element ofx to a unique
element ofy.

Then we can write (making certain independence assumptions,
to be discussed later)

P(y|C) =
∑

ι∈I

∫∫∫

g∈G
s∈S
q∈Q

P(y|ι, gqs) P(ι|s) P(g|q, C) ×

P(s|q, C) P(q|C)dg ds dq . (1)

In this paper, we will takeP(ι|s) andP(g|q, C) to be uniform,
a point we discuss in Section3.3. With these assumptions,
g and ι appear solely in the first factor in the integrand,
P(y|ι, gqs).

The difficulties of the problem can now be seen in math-
ematical terms. In order to compute the posterior probability
of a class, one must in some way (at least approximately)
sum over all possible injectionsι, corresponding to the first
and second challenges; and integrate over all possible trans-
formationsg, samplingss, and shapesq, corresponding to the
third challenge. The simplified baseline problem, Problem I,
corresponds to knowingι (P(ι) = δ(ι, ι0)), so that the sum
over it trivializes. Note, however, thatP(y|ι0, gqs) still must
model observation noise.

Our algorithmic strategy for dealing with this great com-
plexity is based on two approximate methods for evaluating
the integrals and sums: Monte Carlo integration and the saddle
point approximation (also called the Laplace’s method). We
use the first for the integrals overq and s, generating real-
izations from their probability distributions and then summing
the values of the integrand evaluated at these realizations. We
use the second for the integral overg and the sum overι.
For Problem I, the latter is trivial, and so the maximization
problem reduces to a Procrustes alignment of two 2D point sets
under the likelihoodP(y|ι0, gqs) describing the observation
noise, which we take to be white and Gaussian. For Problem
II, we have also to find the best injectionι in addition to the
best transformationg. Using a combination of the Hungarian
algorithm and the Procrustes alignment, we solve the joint
registration-transformation problem.The cost function for this
optimization is the likelihoodP(y|ι, gqs), which must now
include a stochastic model of the clutter points. The resultof
these procedures is an approximation to the value ofP(y|C)
for each value ofC, i.e. each class, and thus, after a trivial
normalization, to the value ofP(C|y). Classification is then
immediate.

To construct a fully statistical framework, then, we have
to develop probability models and computational methods for

Fig. 3. Illustration of sampling variability for a curve.

the variability in shape(P(q|C)), sampling(P(s|q, C)), and
observation noiseand clutter(P(y|ι, gqs)). We now discuss
each of these in more detail, beginning with sampling, since
our approach here is novel.

2 MODELING SAMPLING VARIABILITY

By a sampling of a continuous curve, we mean selecting an
ordered finite number of points on that curve. (We underline
the distinction between our use of “sampling a continuous
curve” and the phrase “sampling from a probability”. To avoid
this confusion, we will use “simulating from a probability”for
the latter.) The sampling step results in a significant loss of
information about the original shape. Figure3 shows some
examples of samplings of a single shape. Since the sampled
points are ordered, we can draw a polygon for improving the
visualization of the sampled points.

A sampling is intended to represent the generation of
primitives by particular types of sensor, or, more commonly,
by simple image processing techniques such as edge detection.
As such, it is heavily dependent on the procedure used to
generate the primitives. To avoid a presumption on the image
processing technique, we must treat the generation of these
primitives in a generic probabilistic way. Before we can go
on to describe the probability distributionP(s|q, C), however,
we have to specify on what space it will be defined.

2.1 Representation

How can we mathematically represent a sampling? The pro-
cess of sampling, by itself, is seldom studied in the literature,
although the related problem of matching sampled shapes
has received a lot of attention, see e.g. [6]. A sampling
involves two elements: a certain number of points,n, and
their placement on the curve. The latter can be expressed by
parameterizing the curve in terms of its arc length, and then
selectingn values in the interval[0, L], whereL is the length
of the curve. Since we will be sampling the points from shapes,
we can assume thatL = 1. Note that this assumes that the
probability of a sampling does not depend on the position,
orientation, and scale of a curve, which was implicitly written
into Eqn.1.

If we known, then sampling a curve amounts to partitioning
a circle inton subintervals. This process simplifies if we place
the origin on the curve at the position of the first sample, and
thereby consider the sampling problem as that of partitioning
the unit interval[0, 1] into n subintervals. The position of the
origin now becomes an element of the representation: we will
denote it byτ . Any partition of [0, 1] by n points can be
identified with a probability mass function withn elements.
Therefore, ifn is fixed, one can represent a sampling as a
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point in the(n− 1)-simplex∆(n−1). However, for unknown
n, one would like to allow all possibilities in a model and this
motivates a broader representation. In particular, one would
like there to be some consistency between the probabilitiesof
samplings with different numbers of points, which suggests
separating the choice of number of points and their placement.
This can be achieved as follows.

Let Γ be the set of increasing, differentiable functions from
[0, 1] to itself, such that for allγ ∈ Γ, γ(0) = 0 andγ(1) = 1,
or, in other words, the groupΓ of positive diffeomorphisms
of the unit interval. Now letU = [0 . . . n]/n be a uniform
partition of the interval[0, 1] into n sub-intervals. Then any
element of∆(n−1) can be represented byγ(U), for someγ ∈
Γ. In fact, there are an infinity of elementsγ all of which
give rise to the same point in∆(n−1). A samplings will thus
be represented by an equivalence class of triples〈n, τ, γ〉 ∈
N × S1 × Γ. The advantage of this representation is that we
can changen without changingγ, and vice-versa.

We still have to decide, however, how to representγ. The
functions in Γ can be thought of as cumulative distribution
functions for probability densities on[0, 1], with which they
are in bijective correspondence, and this gives rise to a number
of possibilities for representing such functions:
Diffeomorphism: An element ofΓ is represented as itself,
i.e. as an increasing function from[0, 1] to itself, such that
γ(0) = 0 andγ(1) = 1. The advantage of this representation
is that the action of the group of diffeomorphisms on itself is
particularly simple, by composition.
Probability density: An element ofΓ is represented by its
derivative, denotedP ∋ p = γ̇, which is an everywhere
positive probability density on[0, 1], i.e. a positive function
that integrates to1.
Log probability : An element of Γ is represented by the
logarithm of a probability density,N ∋ ν = ln(p). It is
an arbitrary function whose exponential integrates to1. The
advantage of this representation is that the values of the
function ν are unconstrained apart from the normalization.
Square-Root Form: An element ofΓ is represented by the
square root of a probability density,Ψ ∋ ψ = p

1
2 . This is a

positive function whose square integrates to1, i.e. its L
2 norm

is 1. The set of these functions thus forms the positive orthant
of the unit sphere in the spaceL2([0, 1]). The advantage of
this representation is that it greatly simplifies the form ofthe
most natural Riemannian metric one can place onΓ, as we
will now discuss.

2.2 Riemannian Structure on Γ

We wish to construct probability distributions onΓ, perform
inferences, compute statistics, and so on. The difficulty is
in performing calculus on this space while maintaining the
underlying nonlinear constraints on the functions involved. A
natural solution is to work on the nonlinear manifold formed
by these functions and to utilize the intrinsic geometry of
this manifold to perform statistics. This requires computing
geodesic paths between points on the manifold, which in turn
requires a Riemannian structure. We must thus make a choice
of Riemannian metric, as well as a choice of one of the above
representations in which to express it.

Fortunately, while there are clearly a large number of Rie-
mannian metrics one could place onΓ, one is selected uniquely
by invariance requirements, as follows. It is a remarkable
fact, proved byČencov [13], that on spaces of probability
distributions on finite sets, there is a unique Riemannian
metric on the space of probability distributions that is invariant
to probabilistic mappings. This Riemannian metric is the so
called Fisher-Rao(F-R) metric. (In finite dimensions, it has
been used previously in computer vision [12], [14].) The F-R
metric extends naturally to the space of probability measures
on continuous spaces such as[0, 1], where it is invariant to
the (re-parameterization) action of the diffeomorphism group.
SinceΓ is isomorphic toP , we can view the F-R metric as
a metric onΓ too. Because of its invariance properties, this
is the metric we choose to use. In terms of the probability
density representation, it takes the following form: the inner
product between tangent vectorsδp and δ′p to the space
of probability distributions on[0, 1] (here tangent vectors
are functions that integrate to zero) at the pointp ∈ P is
〈δp, δ′p〉p =

∫ 1

0 δp(s)δ
′p(s) 1

p(s) ds. It turns out, however, that
the F-R metric simplifies greatly under the half-density repre-
sentation. Indeed, it becomesL2, becauseψ2 = p means that
2ψδψ = δp, and thus that〈δψ, δ′ψ〉ψ =

∫ 1

0 δψ(s) δ′ψ(s) ds.
We have already seen thatΨ is the positive orthant of the
unit sphere inL2([0, 1]), and now we see that the F-R metric
is simply theL2 Riemannian metric onL2([0, 1]) restricted
to Ψ. The spaceΨ endowed with the F-R metric is thus
the positive orthant of the unit sphere inL2([0, 1]) with the
induced Riemannian metric.

As a consequence of this analysis, geodesics under the F-
R metric are nothing but great circles on this sphere, while
geodesic lengths are simply the lengths of shortest arcs on the
sphere. Arc-length distance on a unit sphere has been used to
measure divergences between probability density functions for
a long time [15]. This metric also plays an important role in
information geometry as developed by Amari [16].

We now prove the invariance property of the F-R metric.
This is important because using this metric, the probability
model that we construct on the space of sampling functions
will be invariant to reparameterizations of curves in a shape
class.

Theorem. The Fisher-Rao metric is invariant to the action of
Γ.

Proof: We show this using the square-root form but the
proof is similar for the other representations. The action of Γ
on Ψ is easily deduced from its action onΓ by composition:
(γ∗ψ)(s) = γ̇

1
2 (s)ψ(γ(s)). This is linear, and so the action

on tangent vectors is analogous:(γ∗δψ)(s) = γ̇
1
2 (s)δψ(γ(s)).

Therefore, the inner product〈γ∗δψ, γ∗δ′ψ〉γ∗ψ becomes

∫ 1

0

(γ∗δψ)(s) (γ∗δ′ψ)(s) ds =

∫ 1

0

γ̇(s)δψ(γ(s)) δ′ψ(γ(s)) ds

=

∫ 1

0

δψ(t) δ′ψ(t) dt = 〈δψ, δ′ψ〉ψ .�
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2.2.1 Geodesic, exponential maps, etc

In this section we list some analytical expressions that are
useful in a statistical analysis onΨ and, thus onΓ. As Ψ
is an infinite-dimensional sphere insideL2([0, 1]) (see e.g.
Lang [17]), the length of the geodesic inΓ between any
two functionsγ1 and γ2 under the F-R metric is given by

d(γ1, γ2) = cos−1(
〈

γ̇
1
2
1 , γ̇

1
2
2

〉

), where the inner product is

L2. The geodesic between two pointsγ1 and γ2 of Γ is

similarly derived. Forψi = γ̇
1
2

i , the corresponding geodesic
in Ψ is given byψ(t) = 1

sin(θ)

[

sin((1 − t)θ)ψ1 + sin(tθ)ψ2

]

,
wherecos(θ) = 〈ψ1, ψ2〉. The desired geodesic inΓ is then
given by γ(t), whereγ(t)(s) =

∫ s

0 ψ(t)(τ)2 dτ . Due to this
additional integration step, it is sometimes easier to perform
the Riemannian analysis inΨ and to map the final result back
to Γ. This is especially true for computing means and variances
of sampling functions, for constructing probability densities on
Γ, and for simulating from these probability densities.

In Ψ, the geodesic starting from a pointψ, in the direction
v ∈ Tψ(Ψ), can be written as:cos(t)ψ+sin(t) v

‖v‖ (with theL2

norm). As a result, the exponential map,exp : Tψ(Ψ) → Ψ,
has a very simple expression:expψ(v) = cos(‖v‖)ψ +
sin(‖v‖) v

‖v‖ . The exponential map is a bijection between a
tangent space and the unit sphere if we restrict‖v‖ so that
‖v‖ ∈ [0, π), but for large enough‖v‖, expψ(v) will lie
outsideΨ, i.e.ψ may take on negative values. We will discuss
this further when we define prior probabilities onΓ. For
any ψ1, ψ2 ∈ Ψ, we definev ∈ Tψ1(Ψ) to be the inverse
exponential ofψ2 if expψ1

(v) = ψ2; we will use the notation
exp−1

ψ1
(ψ2) = v. This can be computed using the following

steps:u = ψ2−〈ψ2, ψ1〉ψ1, v = u cos−1(〈ψ1, ψ2〉)/〈u, u〉
1
2 .

2.3 Statistics on Γ

Consider the task of computing the statistical mean of
a set of sampling functions{γ1, γ2, . . . , γk} intrinsically
in Γ. As mentioned earlier, we will use the square-root
forms of these functions to perform such calculations. Let
the corresponding set of square-root forms be given by

{ψ1, ψ2, . . . , ψk}, ψi = γ̇
1
2

i . We define their Karcher mean
as:µ = argminψ∈Ψ

∑k
i=1 d(ψ, ψi)

2, whered is the geodesic
distance onΨ. The minimum value

∑k
i=1 d(µ, ψi)

2 is called
the Karcher variance of that set. The search forµ is performed
using a gradient approach where an estimate is iteratively up-
dated according to:µ → expµ(ǫv), v = 1

k

∑k
i=1 exp−1

µ (ψi).
Here,exp andexp−1 are as given in the previous section, and
ǫ > 0 is a small number. The gradient process is initialized to

ψ̄/
√

〈

ψ̄, ψ̄
〉

, whereψ̄ = 1
k

∑

i ψi.

In Figure4, we show two examples of computing Karcher
mean. The column (a) shows examples of sampling functions
γ1, γ2, . . . , γ10, and the column (b) shows their Karcher means
µγ (the sampling function obtained by squared integration of
µ ∈ Ψ). We remark that one can extend this framework to
define a full covariance structure on the tangent spaceTµ(Ψ)
(or equivalentlyTµγ

(Γ)) by mapping the observed sampling
functions to that tangent space [18].
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Fig. 4. Examples of Karcher mean in Γ: In each case, (a)
shows ten γi, (b) shows their Karcher mean µγ , and (c)
shows the cost functions vs. iterations.

2.4 Probability distributions & Simulations

Having established a representation and a Riemannian metric
on the spaceΓ of sampling functions, we now turn to the
question of constructing a probability distribution. Recall that
a samplings is a triple 〈n, τ, γ〉 ∈ N × S1 × Γ, and we
have deliberately chosen our representation so that we can
write the probability fors asP(s|C) = P(n)P(τ |C)P(γ|C, τ)
i.e. P(n) does not depend on the shape; we will use a
geometric distribution forn. The most interesting part of the
distribution is the factorP(γ|C, τ). Clearly the possibilities
here are enormous. We will restrict ourselves to “Gaussian”
distributions of the form

P(γ|C, τ) = Z−1e
− 1

2σ2
s
d2(γ̇

1
2 ,ψ0)

, (2)

whered is the geodesic distance under our chosen Riemannian

metric, and whereψ0 = γ̇
1
2
0 is, in consequence, the mode of

the distribution. We discuss two possibilities forγ0 andσs.
The simplest possibility is to emphasize the samplings

of a curve that are uniform with respect to its arc-length
parametrization, independently ofC, by choosingγ0(s) = s,
or equivalentlyψ0 ≡ 1. This case is simple. Alternatively,γ0

may depend on local geometrical properties. e.g. have sam-
plings whose density increases with increasing curvature of the
underlying curve. One could defineγ0 in a way that depends
on the shapes inC. LetE(s) =

∫ s

0
exp(−|κ(s′)|/ρ)ds′, where

κ(s) is the curvature ofq at arc-length parameter points and
ρ ∈ R+ is a constant. (Note that to defineE, an originτ must
be chosen and the resulting distribution will be dependent on
this choice.) Then defineγq(s) = E(s)/E(1).
We wish to define a singleγ0 for each classC based on theγq
values for that class. We do this based on training curves from
that class, as follows. First we computeγq for each training
curve, and then, using the techniques presented in Section2.3,
we compute the Karcher mean, which we use asγ0, andσ2

s

the Karcher variance for that class. For this computation, the
placement of the origin is aligned for all curves in a class,
so that the observedγq all use the sameτ . (This alignment
is performed during the computation of geodesics between
shapes of curves; this shape analysis is summarized in the next
section.) We now illustrate these ideas with some examples.
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Fig. 5. Curvature-driven sampling: (a) a curve; (b) a
smoothed version, with e−|κ(s)/ρ| displayed as a normal
vector field; (c) γκ.
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Fig. 6. Each row shows two examples of training curves in
a class, the sampling functions γκ for that class, and their
Karcher mean.

Shown in Figure5, column (a) are two shapesq. We smooth
these curves using Gaussian filters: their smoothed versions are
shown in column (b). For these smoothed curves, we compute
κ and thenE(s). This function is displayed as a normal vector
field on the smoothed curve in (b). Finally,γq is computed;
it is shown in column (c). Figure6 shows some examples of
class-specific means of theγq for two classes. By using these
means asγ0 for each class, we can form class-specific priors
of the form given in Eqn.2.

To simulate from probability densities of the form in Eqn.2,
we first randomly generate a functionf ∈ Tψ0(Ψ) such that

|f | = 1, where, as before,ψ0 = γ̇
1
2
0 . Then, we generate a

normal random variablex ∼ N(0, σ2
s), and compute a point

ψ = cos(x)ψ0 +sin(x)f/‖f‖. The random sampling function
is then given byγ(s) =

∫ s

0 ψ(s′)2 ds′. Figure7 shows some
examples of random simulations from such a class-specific
prior density for increasing values ofσ2

s . If σs is too large,
then many of the sampled points will lie outsideΨ, i.e.ψ will
take on negative values. Including such samples still defines a
probability density onΓ, but its interpretation is complex due
to the “folding back” effect of taking the square ofψ. Such
points may, however, simply be rejected from the samples, thus
preserving the form of the density given above. For efficiency’s
sake, though, the proportion of such points should not be too
large, and this implies a constraint onσs.
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Fig. 7. Random samples from P(γ|C) with σ2
s increasing

from left to right.

. . .

. . .

. . .

Fig. 8. Each row shows examples of the training shapes
with their Karcher means shown in the rightmost panels.

3 SHAPE AND SHAPE VARIABILITY

We now turn to the construction of the shape model,P(q|C).
While objects of a given class are similar in their shapes,
there is naturally also variability within each class. It is
this commonality and variability thatP(q|C) must describe.
Figure 8 illustrates shape variability for three classes in the
Kimia database.

There have been several recent papers that develop tools
for analyzing the shapes of planar closed curves [3], [4] and
others. The main differences amongst these articles lie in
the choice of representation for the curves and of the metric
used to compare shapes. An emerging choice of metric for
comparing the shapes of curves is theelastic metric [19],
under which curves are allowed to stretch, compress, and bend
in order to reach an optimal matching. Although this metric
has been studied in several forms, two recent papers [20],
[21] present an efficient representation under which the elastic
metric becomes a simpleL2 metric, with the result that
shape analysis simplifies considerably. This has been called
the square-root elastic framework, and we describe it in the
next section.

3.1 Representation

Consider a closed, parameterized curve: a differentiable map-
ping β from S1 to R2, and we want to analyze its shape.
There are two invariances we have to include in our analysis.
One is that the notion of “shape” is independent of the size,
orientation, and position of the curve. Secondly, it is invariant
to the reparameterizations of the curve. The variability gener-
ated by changing these variables can be written as actions of
appropriate groups on the spaces of closed curves and, thus,
can be “removed” from the representation using quotients.
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Before we present shape analysis in more details, we
consider an important question: Why do we use parameterized
curves to represent boundaries or regions? It is possible to
analyze the shapes of regions using representations that do
not involve explicit parameterizations. For instance, onecan
use a level set of a function to represent a region [22],
[23], or one can view a region as a subset ofR2 and use
set-theoretic metrics,e.g. the Hausdorff metric, to compare
shapes [24]. Since there is no parametrization involved in these
representations, one does not have to “remove” it in shape
analysis. However, this becomes a disadvantage when the goal
is to associate arbitrarily sampled points to given shape classes:
it is simply more difficult to associate sampled points in these
representations than by using an explicit parameterization.
On the other hand, approaches that represent shapes by a
small subset of points on the boundary selecteda priori, e.g.
active shape models [1], cannot introduce arbitrary samplings.
Hence, the choice of parameterized curves for shape analysis
of boundaries is important.

As described in [20], [21], we will represent a curveβ
by its square-root velocity function:q : S1 → R2, where
q(t) = β̇(t)

|β̇(t)|
1
2

, | · | is the Euclidean norm inR2, and

t is an arbitrary coordinate onS1. Note that the use of
the derivative already eliminates translations. To eliminate
scalings, we restrict ourselves to the space of unit length
closed curves. The resulting space is a unit sphereB =
{q|
∫

S1(q(t) · q(t)) dt = 1}, where(·) is the Euclidean inner
product inR2. The transformations that remain are rotations
SO(2) and reparameterizationsDiff(S1). Since the actions of
these two groups onB are isometric, with respect to theL2

metric, we can define the shape space to be the quotient space
Q = B/(SO(2) × Diff(S1)) and inherit theL2 metric from
B. In other words, for a pointq ∈ Q the Riemannian metric
takes the form〈δq1, δq2〉q =

∫

S1 δq1(t) · δq2(t)dt. To perform
statistical analysis inQ, however, which is our goal, one
needs to construct geodesics inQ. Joshiet al. [21] describe a
gradient-based technique for computing geodesics inQ. The
technique uses path-straightening flows: a given pair of shapes
is first connected by an initial, arbitrary path that is then
iteratively “straightened” so as to minimize its length [20].
The length of the resulting path is then the geodesic distance
between the shapes. Since one of the effects ofDiff(S1) is
different placements of the origin on closed curves, its removal
results in an alignment of shapes in that regard.

3.2 Statistics and Probabilities on Q

One can define and compute the mean of a collection of shapes
using the Karcher mean, now based on the geodesic distance
defined in the previous section [18]. Three sets of examples
of shapes and their Karcher means are shown in Figure8,
while the Karcher means for all the 16 classes used in this
paper are displayed in Figure9. Figure10shows a dendrogram
clustering of these mean shapes using the geodesic distance.
We make two observations from this clustering. Firstly, this
clustering agrees with our human inference in that similar
shapes have been clustered together. Secondly, later on when
we study classification of shapes, we anticipate that the

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 16

Fig. 9. Karcher means of the 16 shape classes used.
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Fig. 10. A dendrogram plot of the Karcher means in
Figure 9 using geodesic distances.

algorithms will have more difficulty separating similar classes.
For example, classes 1 and 15 — bones and tools – will be
harder to distinguish than say bones and glasses.

The next step is to impose a probability model onQ.
Perhaps the simplest model is the one used forΓ, Eqn. 2.
As was suggested in [18], it is much easier to express this
distribution using the tangent spaceTq0Q to Q at the mean
shapeq0 than usingQ itself, because the former is a vector
space. In that space, one can use the principal component
analysis (PCA) and impose a standard Gaussian distributionon
the PCA coefficients, and use the exponential map to “push
forward” these tangent vectors toQ itself. Empirical study
shows, however, that the histograms of these tangent principal
coefficients are often far from Gaussian. We therefore use
kernel estimates of the underlying densities to capture this
more complex behavior. This is illustrated in Figure11. The
essential methodology is unaltered, and indeed applies to any
distribution onQ that we can simulate. For the purpose of
simulating from this model, we treat the tangent principal
coefficients as independent random variables. In practice we
use approximately 10 tangent principal coefficients per shape
class.

To simulate fromP (q|C) described above, we first simulate
from the estimated density of the tangent principal coefficients,
and then use the exponential map to generate corresponding
elements ofQ. Figure12shows some examples of simulations
from one such non-parameteric model.
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Fig. 12. Some randomly generated shapes from a TPCA
model on a shape class.

3.3 Probability distribution for G

We have described a representation for shapesq ∈ Q, and
some possible modelsP(q|C). In order to describe a set
of points with a particular position, orientation, and scale,
however, we have to transform theq using a similarity
transformationg ∈ G and then sample it.P(g|q, C) is the
corresponding probability distribution. In this paper, wewill
assume a uniform prior onG, suitably truncated for large
enough scales or translations to allow normalization.

4 OBSERVATION MODEL

Depending upon the technique used to extract primitives from
the image data, the actual observations will often differ from
the corresponding points on the curves. This may be due to
low quality, coarse resolution, and quantization of images.
A standard way to treat this variability is to introduce an
independent observation noise that perturbs the sampled points
according to some probability model. In this paper, we take
this noise to be additive, white, and Gaussian, but the use of
Gaussian noise is purely for convenience; more sophisticated
noise models can similarly be included in the solution. The
deterioration of data due to obscuration of shapes is not
included in the observation noise.

In addition to the perturbation of the primitives generated
by the object boundary, we expect to have primitives from
the background and the object interior, creating “clutter”. Our
likelihood term needs to model these points as well. So, given
n unperturbed pointsx = gqs generated by the curve, what
is the probability of a given dataset ofm pointsy (m ≥ n)?
If we know the injectionι relating x to n unique elements
of y, then we can dividey in two sets: a set ofn points,
namedys, related tox and the remainingm − n points,
namedyc, attributed to clutter. The first set is modeled using
additive, white-Gaussian noise and the second is modeled
using a homogeneous Poisson process with intensityλb. The
likelihood function for the complete data is given by:

P(y|ι, gqs) = P(ys|gqs) P(yc)

=
1

Z
e

−1

2σ2
y

Pn
k=1 ‖yι(k)−xk‖

2 λm−n
b

(m− n)!
. (3)

The probabilityP(yc) thus depends solely on(m− n). Note
this likelihood also applies Problem I, except therey = ys

and the likelihood consists only of the first termP(ys|gqs).

5 PROBLEM I SOLUTION

For Problem I,n is fixed to be the number of points iny, and
s is reduced to the pair(τ, γ). In terms of Figure1, our task is
to go from (c) to (d). So we take up the problem of evaluating
the posteriorP (Ci|y) and note that the Bayes’ integral in
Eqn.1 is too complicated to solve analytically. It is therefore
approximated using numerical techniques. There are several
ways of approximating such an integral.

One possibility is to use the Laplace’s
approximation by maximizing the integrand
over the variables of integration: P (Ci|y) ≈
P0(Ci)
P (y) P (y|ι0, g∗i q

∗
i s

∗
i )P (q∗i |Ci)P (g∗i |Ci)P (s∗i |Ci),

where (g∗i , q
∗
i , s

∗
i ) are the maximizers of the function

P (y|ι0, gqs)P (q|Ci)P (g|Ci)P (s|Ci). Such an approximation
is reasonable when the integrand has a single mode with a
support that remains similar from class to class.

A more classical approximation is the Monte Carlo ap-
proach where one independently simulates values from the
prior probabilities, evaluates the likelihood function and av-
erages the likelihoods to estimate the required posterior.That
is, generateqj ∼ P (q|Ci), gj ∼ P (g|Ci) and sj ∼ P (s|Ci),
for j = 1, 2, . . . , J independently and form the Monte Carlo

estimate:P (Ci|y) ≈
P0(Ci)

PJ
j=1 P (y|ι0,gjqjsj)

P

i
P0(Ci)(

P

J
j=1 P (y|ι0,gjqjsj))

.

Sometimes it is more efficient to use a combination of
these two ideas. For instance, since the use of white Gaussian
observation noise leads to a quadratic likelihood energy, the
optimal value ofg for matching ay to an x = gqs can be
found easily using the standard point registration. Similarly,
of the two variables making ups – ( τ andγ) – one can also
optimize overτ while randomly simulatingγ from the prior
P (γ|Ci). Sinceτ decides which element of the circular setx

is the starting point, there are onlyn possibilities and they can
be searched exhaustively. Thus, it is easier to removeg andτ
from the integration using optimization. Letqj andγj be the
simulated values fromP (q|Ci) andP (γ|Ci), and let

(g∗j , τ
∗
j ) = argmax

g,τ
P (y|ι0, gqjsj), sj = (τ, γj) . (4)

Define a point setx∗
j,i to be the one resulting from taking

the shapeqj , sampling functionγj , registrationτ∗j , and the
alignmentg∗j , all generated from models for classCi. Then,
an estimate of the posterior is given by

P (Ci|y) ≈
P0(Ci)

∑J
j=1 P (y|x∗

j,i)
∑

i P0(Ci)(
∑J

j=1 P (y|x∗
j,i))

. (5)

Here, the likelihood is given by the first term in Eqn.3.

5.1 Joint Registration And Alignment

The subproblem we address here is given in Eqn.4: Given
two sets of ordered points inR2, call themx, y ∈ Rn×2, we
want to rotate, scale, translate, and circularly shiftx so as to
minimize its Euclidean distance squared fromy. Definex

τ to
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Fig. 13. Examples of several x∗ (broken line), correspond-
ing to different shape classes, for the same y(solid line).

be a circular shift of the elements ofx such thatτ th element
becomes the first element now,τ ∈ {1, 2, . . . , n}.

If τ is fixed, then the two sets of points are completely
registered and their alignment is performed using the Pro-
crustes method as follows. Compute the2 × 2 matrix A =
(y − ȳ)T (xτ − x̄

τ )T , where ȳ and x̄
τ are means ofy and

x
τ , respectively. LetA = UΣV T , the SVD ofA. The optimal

rotation, scaling, and translation ofx
τ are given by:

O∗ =











UV T if det(A) > 0

U

[

1 0

0 −1

]

V T otherwise.

ρ∗ =
Tr((y − ȳ)T (xτ − x̄

τ ))

Tr((xτ − x̄τ )T (xτ − x̄τ ))
, T ∗ = ȳ − x̄

τ .

The search for optimalτ is exhaustive. That is, for each
possible shift, and there aren such possibilities, we compute
the best alignment of the resultingx to y and keep the closest
one. This is the optimalx∗ for the given pair(x,y). Some
examples of this registration/alignment process are displayed
in Figure13.

Here is a summary of steps needed to approximate the
posteriorP (Ci|y) for a giveny.

Algorithm 1. For j = 1, 2, . . . , J :

1) Randomly generate a shape classCi and simulate a
shapeqj ∼ P (q|Ci).

2) Generate a sampling functionγj ∼ P (γ|Ci).
3) Solve for g∗j , τ∗j , and thenx

∗
j using the Procrustes

method.
4) Evaluate the likelihood functionP (y|x∗

j,i) using Eqn.3.

Approximate the posteriorP (Ci|y) using Eqn.5.

The noise varianceσ2
y is a free parameter here. Its value

affects the shape of the posterior histogram but not the
posterior mode.

5.2 Experimental Results

We now describe some experimental results on estimating
P (Ci|y). In this experiment, we simulate the datay according
to the data model and apply Algorithm1. Figure14 presents

six examples of computing posterior using simulated data
under Problem I. In each block, the left panel shows the
true underlying curve and the points sampled on it to form
y (elements ofy are joined to form a polygon). The middle
panel shows a bar chart of the estimated posterior probability
P (Ci|y) for each of the 16 classes. The last panel shows
the simulated configurationx∗ (dotted line) that results in
the maximum likelihood, along with the hypothesized curveq
and the datay (solid lines). As these examples demonstrate,
the algorithm is quite successful in generating high-likelihood
candidates from the correct shape classes, even wheny is
generated for a relatively small value ofn. Of all these nine
cases, only the top row has the highest posterior for the
incorrect classes. This is expected asn = 3 is clearly too
small to distinguish shape classes.

Once the posteriorP (Ci|y) is approximated, it can be used
for classifyingy into a shape class. Since the datay here has
been simulated with known shape classes, we can evaluate
the algorithm’s performance by comparing the estimated class
with the true class. To estimate the posterior for eachy, we
have usedJ = 300 realizations from the posterior, and to
estimate probability of correct classification, we have used 150
runs (simulations ofy) for each value ofn andσy. For these
simulations, the underlying shape class is picked randomly
with equal probability. The results are shown in the left panel
of Figure15 where the probability of correct classification is
plotted versusn, for three different observation noise levels.
The noise levels are:σy = 0.01, σy = 0.025, and σy =
0.05, expressed in terms of the arc-lengths of the curve. For
example,σy = 0.01 implies thaty was simulated by adding
noise at standard deviation0.01 times the length of the true
curve to each component ofy. This plot suggests that, in case
of low noise, the sampling of shapes byn = 6 points results
in approximately 50% classification rate. To reach over 90%,
one will need more than20 points in this setting. Even at a
very high noise levelσy = 0.05, the algorithm can classify
more than 45% of observations with only 15 points. If we use
a k-nearest neighborhood classifier (kNN), with increasingk,
we get the result shown in the middle panel of Figure15. The
right panel shows the classification performance for each class
individually, for the casen = 12 andσy = 0.01. In this plot
the classification performance was estimated by averaging over
100 simulations ofy generated from only one class at a time.
As the dendrogram in Figure10 shows, shapes in classes 1, 3,
and 15, and 4, 16, and 7 are quite similar, respectively, and this
naturally affects the classification rate for these classes. Their
classification rates increase drastically when we go from 1-NN
to 3-NN classifier. For example, the classification rate for class
3 jumps from 0.64 to 0.97 and for class 15 from 0.62 to 1.0.
This supports the argument that the classification is closely tied
to distinctiveness of shapes across classes. Another interesting
point is the low classification rate of classes in which shapes
are more complicated – cat (6) and mouse (13). We believe
this is because the shape variability within the class is more
complex and the shape model used here does not completely
capture this variability.

In terms of the computational cost, the time taken to
estimateP (Ci|y) for eachy using Algorithm 1 is approx-
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Fig. 14. Each block shows — Left panel: the data y (solid polygon) superimposed on the underlying true curve (broken
line); Middle panel: the posterior P (Ci|y); Right panel: highest likelihood sample x

∗ (broken polygon) drawn over the
hypothesized curve β (solid line). Data polygon y is drawn in solid lines for comparison here. The top row has n = 3,
the middle n = 5, and the bottom row n = 20. The numbering of classes in the bar chart is same as the order in Figure
9 and the correct classes (from top left to bottom right) are 8, 1, 14, 5, 11, and 3.
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Fig. 15. Classification performance versus n. Left: Shape classification performance of nearest neighbor classifier for
four different noise levels. Middle: Classification performances of one-, two-, and three-nearest neighbors classifiers,
versus n, when σy = 0. Right: Classification performance by the class for n = 12 and σy = 0.

imately 20 seconds in MATLAB whenJ = 300. Since we
estimate the probability of correct classification using 150 such
evaluations of the classifier, for each value ofσy and n, it
takes approximately 50 minutes to estimate each point on the
performance curves shown in Figure15.

6 PROBLEM II SOLUTION

Now we return to the more general problem of finding shape
classes in given point clouds, where the given points are: (i)
unordered and (ii) may or may not lie on the object boundary.
In terms of the problem description in Figure1, our goal in
this section is to go from the data (a) to the inference (d). Two
sets of results are presented: one from the simulated data and
one from primitives extracted from real images.

We start by describing the formation of the simulated data.
As shown in Figure16, we start by picking a classCi,
generating a shapeq ∼ P (q|Ci) and sampling it according
to a randomly generated sampling functions = 〈n, τ, γ〉.
Heren ∼ Geometric(n0), τ is random in{1, 2, . . . , n}, and
γ ∼ P (γ|Ci). Next, we introduce additive, Gaussian noise

to these sampled points. So far, the data formation is similar
to the baseline problem studied earlier. Then we introduce
background clutter by simulating from a homogeneous Poisson
process with meanλb. The result is shown in panel (b) of this
figure. Finally, we take all the points: sampled with noise from
q and simulated from Poisson, and randomly permute them to
result in the sety of observed data points, as shown in panel
(c).
The second set of experiments in this section involves prim-
itives derived from the image data using a simple processing
step demonstrated in Figure17. For an imageI (left panel), we
have usedIw ≡ | ∂I∂x |+ | ∂I∂y | to isolate (vertical and horizontal)
edges inI (second panel). Then, we thresholdIw using three
standard deviations from the mean value inIw, to obtain
a binary edge map (third panel). To obtain point primitives
from the binary map, we randomly select a predetermined
number, saym0, from the points with value 1 (also shown
in the third panel). Finally, we use a thinning procedure to
discard(m0−m) points to results in a sety of m points (last
panel). This thinning basically computes all pairwise distances
between points and iteratively discards those points that are
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Fig. 16. Simulated data. (a) The original curve β and its
sampling gqs, (b) with Poisson clutter, (c) the resulting y.

(a) (b) (c) (d)

Fig. 17. Examples of pre-prcessing of images: (a) I, (b)
Iw, (c) a random selection from binary image (d) thinning
step to result in y drawn over I.

associated with the smallest distances. In the experimental
results presented here we usedm0 = 70 andm = 40.

6.1 Registration Problem

The key step to handle Problem II is to solve aregistration
problem: given two sets of pointsx ∈ Rn×2 andy ∈ Rm×2,
n ≤ m, associate to each element ofx a unique element
of y so as to minimize a certain cost function. Using an
injection ι : {1 . . . n} 7→ {1 . . .m} each hypothesis point
xk has to be associated with a data pointyι(k). This results
in a subsetys of points that are assigned to the shape and
a subsetyc of remaining points assigned to the background
clutter. The likelihood energy function for this model is given
by: − log(P (y|ι, gqs)), whereP (y|ι, gqs) is given in Eqn.3.
Similar to the hybrid approach taken in Problem I, we would
like to solve for the pair(g, ι) explicitly using:

(g∗, ι∗) = argmin
g∈G,ι∈I

(

n
∑

k=1

‖yι(k) − xk‖
2

)

, for x = gqs .

(7)
The minimization problem overι, for a fixedg, is one version
of the famous optimal assignment problem. The solution is
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Fig. 18. Association Problem: For the data set y shown in
top left, we show four examples of: x (thicker points), the
selected ys, and an estimated ordering of ys (solid lines)
inherited from corresponding ordering in x (broken lines).

given by the Kuhn-Munkres or the Hungarian algorithm and
their MATLAB implementations are readily available. Hence,
we do not reproduce that algorithm here but directly present
our experimental results. Once the optimal mappingι∗ is
found, it solves the two original issues: background rejection
and point ordering. Note that the ordering of points inx = gqs
is known and this ordering, in turn, imposes an ordering on the
corresponding elements ofy. Shown in Figure18 are some
examples of registering a giveny, top-left panel, with several
hypothesis ofx, shown in the remaining panels. For each
hypothesis, we use the Hungarian algorithm to find optimal
ι∗ (for m = 40, n = 20) and an ordering onautomatically
selectedelements ofy (solid polygon) inherited from the
corresponding elements ofx (broken line polygon).

6.2 Joint Registration and Alignment

In addition to the registrationι∗, we also need to solve for
the optimal transformationsg∗ in Eqn. 7. The transformation
g consists of a rotationO ∈ SO(2), scaleρ ∈ R+ and a
translationT ∈ R2, as was the case in Problem I. For a fixed
ι, we have a registration between elements ofx andys and
we can solve for the optimal transformationg∗ directly (using
Eqns. in Section5.1).

Now we have a situation that is familiar to problems in
registration/alignment of point clouds. For a given registration
ι, we can solve for the optimal transformation and for a given
transformationg we can solve for the optimal registration.
However, we need a joint solution. This we accomplish by
initializing a transformation ofg and iterating back and forth
between the two conditional optimizations. The result is a
local solution to the joint optimization problem; we will label
the final values ofg and ι as g∗ and ι∗, respectively. The
initial value of T is taken to beȳ − x̄ while the initial
rotations ofy andx are obtained using the SVD of matrices
∑

k(yk − ȳ)(yk − ȳ)T and
∑

k(xk− x̄)(xk − x̄)T . The scale
ρ is initialized by scalingx and y in such a way that the
Frobenious norm ofy is

√

m/n times the Frobenious norm
of x. The logic for this choice is that a subset of sizen from
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Fig. 19. Left panels show y (points) , x before (broken
line) and x after (solid line) the joint registration and
alignment. Right panels show the cost function in Eqn. 7.

y, although we don’t yet know which particular subset, has
to be matched tox. Two examples in Figure19 illustrate
this iterative optimization. Once the optimal associationand
transformation ofx are found, we have the optimal version
of the hypothesized configurationx∗. Using a large number
of simulated hypothesis, we can estimate the posterior using
Eqn. 5.

Here is a summary of steps for approximating the posterior
distribution in Problem II for a giveny.

Algorithm 2. Same as Algorithm1 except these two steps:

2) Generate a sampling functionγj ∼ P (γ|Ci) and a
sample sizen ∼ min(Geometric(n0),m).

3) Solve forg∗j , and ι∗j using Section6.2. This gives rise
to an optimal version of the hypothesis,x

∗
j,i.

The parametersλb, σy andn0 are free parameters here.

6.3 Experimental Results

Two sets of results, corresponding to the simulated data and
the real image-based data, are presented here.

Shown in top three rows of Figure20 are experimental
results on the simulated data withm = 40 and n0 = 20.
In each case, the left panel shows the true underlying curve
which was sampled to generate the data sety which are
also shown there. The next panel displays a bar chart of
estimatedP (Ci|y) for this y, i = 1, 2, . . . , 16 usingJ = 300
samples. The last figure shows a high probability polygon
formed using the subsetsys using Algorithm2. In each of the
three cases, the amount of clutter is quite high – the number
of points on the curve equals the number of clutter points.
Still, the algorithm puts the highest probability on the correct
class for all cases. The bottom left chart is the estimated
average performance of Algorithm2 plotted against the ratio

ν, whereν =
number of points on curve
total number of points iny . Low values ofν

denote a larger amount of clutter and the related classification

performance is expectedly low. It is interesting to note that the
performance of the nearest-neighbor classifier is more than
50% even whenν < .5. As these experiments suggest, the
algorithm is able to put high probability on the correct shape
class despite the presence of clutter.

As a comparison, we have studied the performance of
classification using the Hausdorff metric and the Iterated
Closest Point (ICP) algorithm. In both cases hypothesis
x are generated as earlier but the likelihood is computed
differently. In the case of Hausdorff metric it is com-
puted usinge−dh(y,x̂)2 , where dh is the classifical Haus-
dorff distance,dh(y,x) = maxi(minj ‖xi − yj‖) and x̂ =
argminOx|O∈SO(2) dh(y, Ox). The scale and the translation of
x is initialized as previously and kept fixed. The classification
performance for this metric, for different levels of clutter,
is shown in the right panel of Figure20. Similarly, ICP
algorithm is another commonly used procedure for registering
and aligning arbitrary point clouds. The basic idea is to
iterate between the Procrustes alignment and nearest-neighbor
registration until convergence. We have used ICP to register
elements ofx to the elements ofy, resulting in x̃, and use
the resulting squared distancedicp =

∑

i(minj ‖x̃i − yj‖)2)

to compute the likelihoode−d
2
icp . The results for recognition

based on this likelihood are also shown in the right panel.
These general-purpose methods do not account for the clutter
model and do not ensure that a unique element ofy is
assigned to each element ofx. Consequently, their recognition
performance is lower than the structured approach proposed
in this paper.
Figures21-22 show several examples of inferences on shape
classes in real images. In each row, the left panel shows the
original image and the datay drawn over it. The next panel
shows the posterior probability estimated using Algorithm2,
and the remaining two panels show examples of high probabil-
ity ys drawn over the image. In this experiment, we have used
m = 40 andn0 = 20. The examples ofys can viewed as most
likely polygons that can be constructed using the primitives
present in the correspondingy. Several observations can be
made from these results. Firstly, the algorithm finds it easy
to detect distinct, elongated objects (bottle, tools, bone, etc)
but not so easy to distinguish between them. The first and the
last examples in Figure21 all show high posterior probability
on those three related classes (1,3 and 15). Secondly, the
algorithm is sensitive to the difference between training shapes
and the test shapes. The test glass in Figure21 is quite different
in height from the glasses used in training shape priors for
class 5. Similarly, the helicopter in Figure22 is different
from the training helicopters in class 9. This adversely affects
Algorithm 2’s ability to discriminate between classes. Lastly,
the clutter present in this data is much more structured that
in the simulated data (where clutter came from the Poisson
model). Therefore, the algorithm is not as immune to clutteras
it was in the simulated case. In the third example of Figure22,
where we get points from both the fishes, the algorithm tries
to fit shapes using points from both the fishes. In the last panel
of this row, the algorithm does succeed in ignoring clutter and
finding the fish contour.

In terms of the computational cost, the time taken to
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Fig. 22. Same as Figure 21. The correct classes in these examples are: 12, 9, 16, 14, and 14.

estimateP (Ci|y) for eachy (Algorithm 2) is approximately
60 seconds in MATLAB whenJ = 300. The corresponding
time for estimatingP (Ci|y) in Problem I was 20 seconds.
This increase in computational cost is attributed to the need
to solve a more general registration problem in Problem II.

7 CONCLUSION

We have presented a Bayesian approach for finding shape
classes in a given configuration of points that is characterized
by under sampling of curves, observation noise, and back-
ground clutter. Rather than trying all possible permutations
of points, we take a synthesis approach and simulate con-
figurations using prior models on shape and sampling. The
class posterior is estimated using a Monte Carlo approach.
The strengths and the limitations of this framework depend
squarely on the strengths and the limitations of the models
used, especiallyP (q|Ci) andP (γ|Ci). In this paper, we have
restricted to points, but additional primitives, including lines
(first order) and arcs (second order) can be also be used.
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