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Abstract— In this article, an aggregate stochastic model
for an Air Traffic System (ATS) is developed. Specifically,
using a stochastic description of an ATS based on Poisson
processes, we construct a stochastic dynamic model for air-
craft counts in regions of an airspace. As an example, the
developed model is used to represent Center counts in the
United States ATS. We also discuss parameter determina-
tion in the model, present some analyses of the model, and
evaluate our methodology. Finally, two extensions of the
basic model —a hierarchical model that represents aircraft
counts in regions of various sizes at multiple time scales,
and a model that incorporates stochastic disturbances such
as thunderstorms —are described.

I. Introduction and Motivation

At any time, thousands of aircraft are in flight across
the world. For many reasons, including uncertain take-off
times and unpredictable weather, the locations and behav-
ior of these aircraft at a given instant in time cannot be
exactly predicted in advance. Because of this intrinsic un-
certainty in any Air Traffic System (ATS), we believe that
a stochastic approach to modeling an ATS is valuable.

In addition to uncertainty, a second hurdle in describing
and understanding an ATS is its complexity. In the U.S.
ATS, for example, as many as 5000 aircraft may be in the
air at once, flying along different routes among several hun-
dred airports. Furthermore, the dynamics of each aircraft
may be affected by numerous events, including control di-
rectives and weather. Because of the complexity of such an
ATS, it is sometimes impractical—and often not useful—
to track and predict the location of each aircraft in making
global decisions about the management of the system. An
aggregate description of the ATS may be more tractable
and effective in this situation.

Based on these general motivations, we develop an ag-
gregate dynamic stochastic model for an ATS, in which the
numbers of aircraft in regions of the airspace are tracked at
discrete time-steps. These aircraft counts change with time
in the model because of stochastic flows—in particular, the
aircraft in each region move to contiguous regions or leave
the system with some probability during each time-step.
As an example, we model the numbers of aircraft in each
Center in the U.S. ATS at discrete time-steps of one and
ten minutes.

Some aspects of the uncertainty in ATS’s have been stud-
ied in the literature. For example, the distributions of de-
parture, enroute, and arrival delays of aircraft have been
characterized [1]. Also, queueing models for the arrival of
aircraft at airports have been developed [2] [3]. In partic-

ular, the article [2] assumes a Poisson process description
for aircraft arriving at an airport, and computes the aver-
age delay incurred due to the constraints on the landing
aircraft. In [3], a more accurate description of the pro-
cess of aircraft arriving at an airport is considered, and is
used to estimate landing delays. The effects of uncertain-
ties in weather prediction on air traffic flow have also been
considered [4]. Yet another area in which uncertainty has
been considered is in the modeling of airport surface traffic
[5]. One aspect of the airport surface traffic, the depar-
ture operation of an airport, has been characterized using
a queueing model [6]. A queueing model has also been
used to study delay cost optimization at hub airports [7].
Recently, a deterministic aggregate model for an ATS has
been developed and analyzed in [8]. Detailed deterministic
models for an ATS, which track the location of each air-
craft, have been used to study optimal methods for Traffic
Flow Management (TFM) [9].

As far as the authors know, a stochastic dynamic model
for the global behavior of the ATS has not previously
been presented in the literature. As in [8], our model dy-
namically tracks the numbers of aircraft in regions of the
airspace. In contrast to [8], however, we use stochastic
models for both the flow of aircraft into the airspace, and
for the movement of these aircraft between regions. In
addition to the general motivation of exploring stochastic
and aggregate descriptions for the ATS, we believe that our
model has some specific practical uses. Potential applica-
tions of the model include the following:

• Our model may allow quantification of uncertainties in
predicted aircraft counts (such as Center or Sector counts
in the U.S. ATS). The regional aircraft counts predicted
by the model will differ from actual counts, both because
of intrinsic uncertainties in the ATS and because of the
aggregation in the modeling process. The structure of our
model allows us to explicitly compute the degree of uncer-
tainty in the predictions, and to evolve these computations
dynamically in time.
• Our model may allow rapid calculation of the behavior of
an ATS under many different circumstances (e.g., different
initial conditions or different flow patterns due to weather
events). We expect that our model can be used to rapidly
identify scenarios that may lead to violations in Sector or
Center capacities.
• The aggregate model may provide a good framework for
studying TFM. The effects over time of a TFM restriction
can be more easily determined with an aggregate dynamic



model than with a detailed model of an ATS. We are partic-
ularly interested in developing algorithms for placing Miles-
in-Trail (MIT) and Minutes-in-Trail (MINIT) restrictions
in the context of the aggregate model.
As the model is introduced and analyzed in this article, we
will occasionally discuss the possible value of the model in
achieving these three aims.

II. An Aggregate Stochastic Model for an ATS

In this section, we formulate a stochastic model for air-
craft counts in regions of an ATS. First, a Poisson process
description of the flow of aircraft in an ATS is presented.
We then discuss some difficulties in directly using this de-
tailed description of air traffic flow to analyze the dynamics
of the ATS. Motivated by these difficulties, we construct
the aggregate stochastic model and consider its relation-
ship with the detailed description.

A. Poisson Process Description of an ATS
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Fig. 1. A network representation of the 20 Centers in the United
States. Two Centers are connected in this plot if they are con-
tiguous in the U.S. ATS. Also, the major airports in each Center
are listed in smaller font. If an airport is close to the boundary
of two Centers, it is listed in both Centers.

The airspace of an ATS is typically subdivided into re-
gions, to facilitate the control and management of aircraft
in the airspace. For example, the U.S. airspace is com-
posed of 20 Centers, as shown in Figure 1. Aircraft depart
from airports distributed among the various Centers, follow
routes through the airspace, and arrive at other airports.
Consider an ATS with n Centers. (Although Centers in

the U.S. ATS are specific regions of the U.S. airspace, we
use the word Center more generally to denote a region of
interest in the airspace.) In our stochastic description for
the ATS, we assume that the departures of aircraft from
each airport are governed by an independent Poisson pro-
cess with a (possibly) time-varying rate. Later in the arti-
cle, we will verify from historical data that such a Poisson
process description for departures is reasonable.
We also assume that the routes taken by, and the des-

tinations of, the departing aircraft are stochastically inde-
pendent. This assumption means that the route and des-
tination of a particular departing aircraft does not provide

information about the routes and destinations of other de-
parting aircraft. This assumption constitutes an oversim-
plified representation for the actual flows in the ATS: for
example, we might expect that the departing aircraft that
are destined for a particular airport roughly follow a pe-
riodic schedule, so that the departure of one such aircraft
does provide some information about routes and destina-
tions of other aircraft. However, we use the assumption be-
cause it allows us to tractably represent flows in the ATS,
without worrying about the particular details of departure
schedules for aircraft. We also assume that the cruising
speed of each aircraft is constant, and that the cruising
speed of different departing aircraft are independent.

Now consider the flows of aircraft among Centers in this
Poisson process description of an ATS. For notational con-
venience in this analysis, we introduce a fictitious Center
labeled “0”. Aircraft which depart from airports in a Cen-
ter are said to flow from Center 0 into that Center, while
aircraft arriving at an airport in a Center are said to flow
from that Center into Center 0. The aircraft flows among
Centers in this description can be characterized:

• The aggregate departures of aircraft from all airports in
a Center (and their consequent injections into the airspace)
are governed by a Poisson process. To see why, note that
the aggregate departures in a Center comprise a merging
of the departures from each airport in the Center, which
are each governed by an independent Poisson process. The
result of such a merging is well-known to be governed by
a Poisson process [10]. We denote the (in general time-
varying) rate of the Poisson process governing departures
in Center i (or equivalently, flows from Center 0 to Center
i) by λ0i(t).
• Aggregate boundary crossings, or movements of aircraft
across a particular boundary from one Center to another
one, are also governed by a Poisson process. To see why,
first consider the aircraft that depart from a particular air-
port, fly along a particular route to a destination airport,
and have a certain cruising speed. The departures of these
aircraft are governed by a Poisson process, since these de-
partures are a splitting of all the departures from the air-
port of interest [10]. Now consider any boundary between
two Centers along the route taken by these aircraft. The
boundary crossings of these aircraft are also governed by
a Poisson process, since each aircraft crosses the bound-
ary after a fixed delay following departure. Finally, the
aggregate boundary crossings are the merging of boundary
crossings along several routes at several different cruising
speeds, each of which are governed by a Poisson process.
Thus, the aggregate boundary crossings are governed by a
Poisson process. We denote the rate at which aircraft cross
a boundary from Center i to Center j at time t by λij(t).
• Using the same reasoning as for boundary crossings, we
find that the aggregate arrivals of aircraft in a Center (i.e.,
the arrivals of aircraft at all airports in a Center) are gov-
erned by a Poisson process. The rate of the aggregate ar-
rivals in Center i (or equivalently, flows from Center i to
Center 0) at time t is denoted λi0(t).
• The number of aircraft si(t) in Center i at time t is a



Poisson random variable. To see why, again consider the
aircraft that depart from a particular airport, fly along a
particular route to a destination airport, and have a cer-
tain cruising speed, and consider a particular Center along
the route traveled by these aircraft. The number of these
aircraft that are in the Center of interest at time t is equal
to the number that entered the Center between times t− t̂
and t, where t̂ is the (fixed) amount of time needed for the
aircraft to pass through the Center. Thus, this number
equals the number of boundary crossings into the Center
over a time interval t̂. Since these boundary crossings are
governed by a Poisson process, the number of these air-
craft in the Center is known to be a Poisson random vari-
able. Finally, the total number of aircraft si(t) is found by
summing Poisson random variables of this sort, and so is
Poisson.

Even though we can compute Center count and
boundary-crossing statistics using the Poisson process de-
scription for the ATS, this description is difficult to use di-
rectly for many computations of interest, because aircraft
statistics along each particular route must be computed
and stored separately. For example, if the total departure
rate in a Center is changed in the model (perhaps to re-
flect the occurrence of inclement weather in that Center),
the flows along all routes leaving from each airport in the
Center must be recomputed. For similar reasons, the dy-
namics of Center statistics are difficult to determine. For
example, let’s say that we wish to determine the distribu-
tion for the number of aircraft in a Center at some time
in the future, given information about the current state of
the ATS. The Poisson process description can be used to
compute this distribution only if the exact locations of ev-
ery aircraft in the airspace and the statistics of the possible
departures along each route from each airport are explicitly
modeled. For applications in which dynamics potentially
need to be recomputed for many sets of model parameters,
such as control or optimal design applications, such compu-
tationally intensive calculations may be infeasible. Thus,
we are motivated to develop a simpler aggregate stochastic
model for the ATS.

B. An Aggregate Dynamic Model for Center Counts

The state variables in our aggregate model are the num-
bers of aircraft in each Center, tracked at discrete times.
Let ∆T be the time-interval of the model. Thus, the num-
ber of aircraft in each Center is tracked at the times k∆T ,
k = 0, 1, 2, . . . We denote the number of aircraft in Center
i at time k∆T as si[k]. Our goal is to develop a model that
describes the time-evolution of the state variables si[k].
First, between time-steps k and k + 1, the state vari-

ables can change because of aircraft entering each Center
upon departure from airports. In our aggregate model, the
number of aircraft that depart from airports in Center i,
1 ≤ i ≤ n, between times k∆T and (k + 1)∆T is modeled
as a Poisson random variable U0i[k], with mean denoted
by λ0i[k]. In addition to the flows into the ATS due to de-
partures at airports, aircraft may change Centers, or leave
a Center through arrival at an airport. In our aggregate

model, we envision each aircraft in a Center as moving to
another Center or arriving at an airport with some prob-
ability during a time-step. In particular, we assume that
each aircraft in Center i independently travels to Center j
(or leaves the airspace for j = 0) between time-steps k and
k + 1 with probability pij [k]. We denote the total num-
ber of aircraft that flow from Center i to Center j between
times k and k + 1 by Uij [k]. For small enough ∆T , it
can be shown that the conditional distribution for the flow
Uij [k] given the Center count si[k] is well-approximated by
a Poisson random variable, with mean pij [k]si[k] [11]. (If
∆T is larger, the Uij [k] must be represented using depen-
dent binomial random variables; the same analyses of the
model can be completed in this case, albeit with a little
extra computation.) Thus, we have modeled the flows of
aircraft among Centers in the airspace, as well as the flows
of aircraft arriving at airports.
Now that we have characterized the flows of aircraft in

our model, the state variable update can be specified by
accounting for the number of aircraft entering and leaving
each Center i between times k and k + 1:

si[k + 1] = si[k]−
n∑

j=0,j �=i

Uij [k] +

n∑
j=0,j �=i

Uji[k], (1)

This update rule defines the temporal evolution of our ag-
gregate stochastic model. The dynamics of the model are
depicted pictorially in Figure 2.
In our application of the aggregate model, it is not Equa-

tion 1 that we propagate forwards in time. Instead, we
propagate expectations and variances of the si[k], using
equations that are derived from Equation 1, and that have
a very simple structure. The details are given in Section
3.2.
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An Aggregate Model for the Air Traffic System
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Fig. 2. This figure describes the dynamics of our aggregate stochastic
model for the ATS. Aircraft enter Centers according to Poisson
processes. Also, during an interval of time, each aircraft in a
Center may move to another Center or leave the system, with
some probability. We are interested in tracking the number of
aircraft in each Center in this model.

Our aggregate model is closely related to the detailed
Poisson process description of the ATS discussed in Section
2.1. In the detailed description, the departures of aircraft



in each Center i are governed by a Poisson process with rate
λ0i(t). Thus, between times k∆T and (k+1)∆T , the num-
ber of departing aircraft in Center i is a Poisson random

variable, with mean
∫ (k+1)∆T
k∆T

λ0i(t)dt ≈ λ0i(k∆T )∆T . If
the mean of U0i[k] in the aggregate model is chosen to be
λ0i[k] = λ0i(k∆T )∆T , the statistics of the departures in
each time-interval in the aggregate model and detailed de-
scription are essentially identical. Unlike departures, the
flows among Centers in this aggregate model cannot be
made identical to the flows in the detailed description of
the ATS (e.g., an aircraft in the aggregate model can flow
from Center i to Center j and then return to Center i with
some small probability in the aggregate model, while an
aircraft in the detailed description follows a route and so
would not revisit a Center). However, the probabilities
pij [k] in the aggregate model can be set so that the flows
in the aggregate model match the flows in the detailed de-
scription in an average sense.
To do so, consider the number of aircraft si[k] in Cen-

ter i at some time-step k in the detailed description of the
ATS. It is reasonable to expect that, on average, a certain
fraction (possibly 0) of these aircraft will travel to each
other Center, or will exit the ATS, during a time inter-
val ∆T . At time-step k (time k∆T ), there are on average
λij(k∆T )∆T , 0 ≤ j ≤ n, aircraft that flow to Center j
during the next time interval (this includes aircraft exiting
the system through arrival at airports, which corresponds
to j = 0). Furthermore, there are on average s̄i(k∆T )
aircraft in Center i. Thus, we might expect that a frac-

tion
λij(k∆T )
s̄i(k∆T )

∆T , 0 ≤ j ≤ n, of the aircraft in Center i

will travel to j between time k∆T and (k + 1)∆T . By
setting probability pij [k] in the aggregate model equal to
λij(k∆T )
s̄i(k∆T )

∆T , we obtain the same average fraction of air-

craft traveling from Center i to Center j as in the detailed
model. We can also show (with a little algebra) that the
average number of aircraft in Center i, as well as the av-
erage number of aircraft that flow from Center i to Center
j, are essentially the same for the aggregate and detailed
descriptions at each time-step if the pij [k] are chosen in
this way.

III. Parameter Determination, Analysis, and

Verification

In this section, we pursue three important questions re-
garding the stochastic model developed for an ATS:

1. How can the parameters of the model be determined
from data?
2. How can the model be analyzed, and why is this analysis
useful?
3. Does the model accurately represent some aspects of the
behavior of ATS?

Throughout the discussion in this section, examples from
the U.S. ATS are used to illustrate our methodology.

A. Parameter Determination

Our aggregate model for Center counts requires three
sets of parameters: the time-interval ∆T , the average num-

ber of departures λ0i[k] in each Center i at time-step k, and
the probabilities that aircraft in Center i, 1 ≤ i ≤ n, go
to Center j, 0 ≤ j ≤ n, during time-step k. Because the
detailed Poisson process description of an ATS represents
the movement of actual aircraft more precisely than the
aggregate model, it is more natural for us to estimate pa-
rameters of the detailed description from historical data
first, and subsequently infer the parameters of the aggre-
gate model. Thus, we focus on estimating the parameters
of the detailed description— namely, the mean number of
aircraft in each Center (s̄i(t)); and the average departure
flow rates, arrival flow rates, and flow rates between Cen-
ters (λij(t)). Assuming that the ATS is operating under
typical conditions, these parameters can be estimated from
historical data. Once these parameters have been found, we
can choose a time interval ∆T and approximate the aggre-
gate model’s parameters as described in the Section 2, i.e.,

by setting λ0i[k] = λ0i(k∆T )∆T and pij [k] =
λij(k∆T )
s̄i(k∆T )

∆T .

First, consider the mean number of aircraft s̄i(t) in Cen-
ter i at time t. In general, we allow this expectation to
vary with time in our framework; realistically, we might
expect that the mean number of aircraft in each Center
would change slowly throughout a single day under typical
operating conditions, but would be nearly identical when
compared at a certain time over several days. As a simple
first attempt at modeling the U.S. ATS, we use a constant
value for mean number of aircraft in each Center. These av-
erage numbers of aircraft are estimated from actual Center
counts during 500 minutes in the afternoon and evening of
a particular day, September 6, 2000. For example, we find
that, on average, 127.6 aircraft are present in the Seattle
Center during this time interval.
The second set of parameters that are necessary for the

analysis of the model are the rates λij(t) of aircraft flow
from Center i to Center j (or, for i = 0 or j = 0, the
flow rates into or out of the Center due to departures and
arrivals). Like the mean parameters, the rate parameters
λij(t) can be computed by using historical data on the
numbers of aircraft that cross each boundary, and that en-
ter into and depart from the system at airports. As with
Center count averages, the flow rates across boundaries are
expected to vary slowly throughout the course of a day. In
our simulations, we have used a crude model in which a
single flow rate is estimated based on historical data from
September 6th, 2000. For simplicity’s sake, these flow rates
have been computed assuming that each aircraft flies along
the shortest path from its origin to its destination. A more
accurate model would require careful measurement of flow
rates; here, we are interested in the modeling methodol-
ogy rather than the accuracy of the specific model, so a
more careful computation of the flow rates is not pursued.
The average flow rates computed from data and used to
construct the model are shown in Figure 3.
Under normal operating circumstances, it is reasonable

that mean numbers of aircraft and expected flow rates can
be computed from data. Thus, the model can employ these
average statistics, combined with actual information on the
state of the ATS, to simulate and analyze the future be-
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Fig. 3. The expected flow rates between Centers (in aircraft per hour)
are shown for five of the Centers in U.S. ATS. These average flow
rates were computed using data from September 6, 2000. The
top number on each branch show the average number of aircraft
moving from the lower-numbered Center to the higher-numbered
Center, while the bottom number on each branch shows the av-
erage flow in the reverse direction.

havior of the network. However, under unusual conditions
(due to bad weather or other disturbances, for example),
average behavior most likely cannot be deduced from his-
torical data. In fact, in these aberrant situations, we would
hope to compute these averages through the modeling pro-
cess rather than using them as parameters in the model! In
particular, we expect that information about a disturbance
can be used to change certain model parameters locally (i.e,
near the affected Center), and in turn the model analysis
can be used to quantify the behavior of the disturbed ATS.

The final parameter of the model, the time-interval ∆T ,
should be chosen small enough to capture the fluctuations
of interest in the dynamics of the ATS. However, if ∆T is
chosen to be too small, unnecessary computation is intro-
duced in the analysis of the model; if ∆T is chosen to be
too large, some dynamics of interest may not be modeled,
and also the use of a discrete model for the dynamics may
introduce significant error. To choose a time-step ∆T for
our model for the U.S. ATS, we looked at plots of the av-
erage numbers of aircraft in Centers during time intervals
of various durations (Figure 4). Based on these plots, we
believe that a time-step of less than or equal to 10 minutes
is sufficient to capture the dynamics of interest in the ATS.

Once the mean Center counts, expect flow rates, and
time-step have been determined, the probability pij [k] that
a randomly chosen aircraft in Center i goes to Center j
between k∆T and (k + 1)∆T can be computed for each i
and j. Some of these probabilities are shown in Figure 5.

B. Analysis

Once the parameters of our model have been determined
from historical data, the model can be analyzed to gain in-
sight into the behavior of the ATS. In particular, given
the numbers of aircraft in each Center at the initial time,
moments and cross-moments of the numbers of aircraft in
each Center at future times can be computed. Thus, we
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Fig. 4. The time-evolution of the number of aircraft in the Seat-
tle Center (ZSE) during the afternoon and evening of September
6th, 2000, is shown, plotted at four different time scales. In par-
ticular, the top plot shows the number of aircraft that were actu-
ally present in ZSE, measured at one-minute intervals. The sec-
ond, third, and fourth plots show the average numbers of aircraft
present in ZSE during each ten-minute interval, thirty-minute in-
terval, and one-hour interval, respectively. Ten-minute averages
of Center counts accurately approximate the actual Center counts
(almost always to within 5 aircraft), suggesting that 10 minutes
is a fine enough resolution to capture dynamics of interest in the
U.S. ATS.

can predict expected future Center counts and the pos-
sible variability in these Center counts using the model.
In turn, the expected response and variability in Center
counts can be used to identify regions of the airspace that
may be prone to excessive traffic. These regions could then
be studied more carefully to determine whether or not ca-
pacity excesses would actually occur.

To compute the expected numbers of aircraft in each
Center at each time-step, given initial conditions, it is help-
ful to redefine the model specified by Equation 1 in vector
notation. Consider the following definitions:

• Define the state vector at time-step k to be

s[k] =



s1[k]
...
sn[k]




.
• Define the elements of the n × n transition matrix P [k]
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Fig. 5. This plot shows the probability that an aircraft in the aggre-
gate model moves from one Center to another during one time-
interval. The upper probability on each branch is the probability
that an aircraft from the lower-numbered Center moves to the
higher-numbered Center. (In our example, the probabilities do
not change with time, since the mean numbers of aircraft and
flow rates do not change with time. More generally, however,
these probabilities may depend on the time-step k.)

as follows:

for 1 ≤ i ≤ n, Pii[k] = (1−
n∑

j=0,j �=i

pij [k])

for 1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j, Pij [k] = pji[k].

• Define the transition vector to be

β[k] =



λ0,1[k]
...

λ0,n[k]


 .

Our goal is to determine the conditional expectation for
the state vector s[k] given the initial state vector s[0], or
E(s[k]|s[0]). In fact, these conditional expectations can be
found through the following linear recursion:

E(s[1]|s[0]) = P [0]s[0] + β[0]

and

E(s[k + 1]|s[0]) = P [k]E(s[k]|s[0]) + β[k], k ≥ 1. (2)

An outline for the derivation of Equation 2 is given in the
Appendix. A simulation of the number of aircraft in the
Seattle Center ZSE is compared with the expected num-
ber (conditioned on the initial Center counts) of aircraft
in ZSE in Figure 6. The conditional expected number of
aircraft in ZSE depends upon the initial Center counts at
the beginning of the simulation, but eventually approaches
the steady-state expected number (which is a parameter of
the model).
In addition to providing a prediction for the behavior of

the ATS, we believe that the recursion for mean Center
counts is valuable because it allows us to determine the
sensitivity of Center counts to various parameters in the

model, including initial conditions and steady-state aver-
age flow rates. The sensitivity analysis of the model is not
presented in any further detail here, but we note that sen-
sitivities of the expected state vector to parameter changes
can be deduced from Equation 2.
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Fig. 6. This plot shows a simulation of a flow model for the U.S.
ATS. In particular, the number of aircraft in ZSE is simulated at
one-minute intervals, over a duration of 760 minutes. In addition
to the flow model simulation of the number of aircraft in ZSE,
the expected number of aircraft in ZSE, conditioned on the ini-
tial counts of all Centers, and 2-standard deviation bands around
this expected number are plotted. The initial Center counts in
this simulation are based on actual data of Center counts at ap-
proximately 5:00 AM PDT on September 6th, 2000. We have
assumed that there are no departures from airports in ZSE until
6:00 AM, and then departures commence at a nominal daytime
rate, explaining the sudden jump in the aircraft count at 6:00
AM.

In addition to the conditional mean of each Center count,
higher moments and cross moments of the numbers of air-
craft in each Center (conditioned on an initial state) can be
computed through a linear recursive procedure. We have
developed the recursion for the second-order moments and
cross-moments. The analysis of the second-order moments
is straightforward, but the resulting expression for the mo-
ments at each time-step is not very illustrative. Thus, we
only briefly describe the analysis in the Appendix. In Fig-
ure 6, the computation of the second moments is used to
develop 2σ bounds on the number of aircraft in ZSE.

C. Verification of the Model

First, we would like to show that a Poisson process de-
scription for the ATS is adequate. Our methodology is
founded on the assumption that departures from airports
are described accurately by Poisson processes. At the time
scales of interest to us (on the order of a few minutes to a
few hours), the data that we have explored suggests that
departures from large airports are indeed essentially Pois-
son in nature. For example, we plot a histogram of the
number of daytime departures during one-minute intervals
at Chicago O’Hare Airport (ORD) in Figure 7, and find
that the departures in a minute are well modeled by a
Poisson random variable. Also, we find that the number
of aircraft departing in any given minute is independent
of the number of aircraft departing at other times. Both



these properties suggest that the departure process is well
represented as Poisson, at a one-minute granularity. We
have found similar behavior at other airports, and for time-
scales of greater than one minute. At smaller airports, a
Poisson process description with a fixed mean is not ac-
curate, but we believe that a time-varying Poisson process
description could be reasonable; alternately, the aggregate
departure process from several small airports can perhaps
be modeled as a Poisson process. At any rate, the depar-
tures from large airports contribute most significantly to air
traffic, so we believe that a Poisson process description for
departures is justified. To further investigate our Poisson
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Fig. 7. An empirical distribution (histogram) of the number of air-
craft departing from an airport (ORD) during minute intervals
is shown. The empirical distribution is based on data from ORD
over 600 consecutive minutes; over this time interval, the aver-
age departure rate from the airport remained approximately con-
stant. Also, the empirical distribution is compared with a Poisson
distribution with the same mean. The comparison suggests that
the number of aircraft departing from ORD in minute intervals
are indeed well-represented by a Poisson random variable.

process framework, the distribution of the number of air-
craft in a Center is also studied. For example, an empirical
distribution of the number of aircraft in the Seattle Center
(ZSE) is compared with a Poisson distribution of the same
mean in Figure 8. The variances of the empirical and fit
distributions are close (117.6 and 127.6, respectively), and
the two distributions are similar in shape. The statistics
of other Centers are similar. Thus, we believe that a Pois-
son random variable model is a good description for the
number of aircraft in a Center.
Second, we explore whether our model, which is moti-

vated by the Poisson process description of an ATS but is
not identical to it, can accurately represent the dynamics
of the U.S. ATS. We can check whether or not our model is
consistent with a Poisson process description of the ATS.
For example, the standard deviation in the steady-state
aircraft count predicted by the model can be compared
with the standard deviation if the count were modeled by
a Poisson random variable of the same mean (in accordance
with the Poisson process description of the ATS). In our
example, the standard deviation for the number of aircraft
in ZSE predicted by our model is 9.7, while the standard
deviation predicted by a Poisson random variable repre-
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Fig. 8. An empirical distribution for the number of aircraft in ZSE
is shown, and is compared with a Poisson random variable of
the same mean. The empirical distribution is generated based
on 500 observations at one-minute intervals. The sample vari-
ance of the empirical distribution and the variance of the Poisson
approximation are similar.

sentation is 11.3. In general, we find that the standard
deviations for Center counts predicted by our model are
slightly smaller than, but close to, the standard deviations
predicted by the Poisson process description of an ATS.
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Fig. 9. The actual number of aircraft in ZSE at 760 consecutive
one-minute time steps is compared with the mean number of air-
craft predicted by our model, using the actual Center counts at
all Centers at the time of the first data point (5:00 AM PDT,
September 6th, 2000) as the initial conditions for the model. In
our model, we have assumed that aircraft departures in ZSE be-
gin at 6:00 AM. This plot also includes the 2σ bounds on the
aircraft count in ZSE predicted by our model. The actual data
is largely contained within two standard deviations of the pre-
dicted mean, suggesting that the model predictions for the mean
and standard deviation are both reasonable. The one noticeable
difference between the actual data and the model prediction is the
sluggishness in the model’s transient as compared to the data.

Another approach for verifying the model is to check
whether or not the behavior of the model matches actual
Center count data. In Figure 9, the number of aircraft in
ZSE during a 12-hour period on September 6th, 2000 is
traced. Furthermore, the model prediction for mean and
standard deviation for the number of aircraft in ZSE, given
the initial numbers of aircraft in all Centers, is plotted



for comparison; these are the same as in Figure 6. The
actual data largely falls within two standard deviations of
the predicted mean, suggesting that the model provides a
good description of the dynamics of the ATS. The most
noticeable difference between the model prediction and the
actual data is the slower settling time to the steady-state
of the prediction. Based on our explorations, we believe
that this sluggishness in the model comes about because
aircraft in the model do not spend fixed amounts of time
in Centers, and instead may be delayed for lengthy time
periods with some (small) probability.
In our comparison of the model prediction with histor-

ical data, we chose to track the Center counts beginning
early in the morning of September 6th, even though the
parameters of the model are based only on afternoon and
evening Center counts. It is reassuring that the model can
predict the Center counts from this initial condition, albeit
imperfectly. After all, the primary goal of our methodol-
ogy is to develop a dynamic model—one which can track
the transient behavior of the ATS (such as the increase in
traffic in the airspace in the morning), as well as the spatial
and temporal correlations in Center counts.

IV. Extensions of the Basic Model

A. Extension 1: A Hierarchical Model

Real ATS naturally have a hierarchical structure: for ex-
ample, Centers in the U.S. ATS are further subdivided into
smaller regions, called Sectors. Modeling of parts of the
U.S. ATS at a Sector level is often valuable, both because
many air traffic control and flow management decisions are
made at the Sector level, and because a model with a finer
spatial granularity can predict the future behavior of the
system more accurately. A model for Sector counts also
may require a finer time-sampling, because of the occur-
rence of significant dynamics over shorter time intervals.
On the other hand, parts of the ATS can sometimes be
aggregated in a model, reducing the computational com-
plexity of the analysis while still correctly representing the
parts of the system of interest.
Our modeling methodology is well-suited for describing

a system at various spatial and temporal granularities. For
example, consider an ATS with three levels of representa-
tion (again, we adopt the terminology for the U.S. ATS in
our model):
1. Some regions in the airspace are modeled at a Sector
level. Thus, the number of aircraft in each Sector in these
regions is represented. These Sector counts are tracked at
intervals of ∆T .
2. Some regions in the airspace are modeled at a Center
level. The Center counts in these regions are tracked less
often, at intervals of f∆T , for some positive integer f .
3. Some regions of the airspace are not modeled at all, and
aircraft counts in these regions are not tracked (though air-
craft flows to and from these regions are still incorporated
in the model).
Figure 10 shows such a hierarchical model for the ATS.
A system with these three levels of representation can be

modeled in our framework, as follows:
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Fig. 10. This figure shows a hierarchical model for the ATS which
incorporates dynamics at various levels of aggregation and time-
scales. The upper portion of the figure is a drawing of the
airspace, while the lower portion describes the equivalent model.

• First consider the update of Sector counts, in regions
where Sector-level dynamics are represented. Sector counts
are updated at intervals of ∆T . Each of these Sectors has
flows into and out of other parts of the airspace. In gen-
eral, a Sector may have flows to and from other modeled
Sectors, regions modeled at the Center level, unmodeled
regions of the airspace, and the exterior of the system (i.e.,
flows to and from airports within the Sector). The flows
out of a Sector in an interval ∆T are computed based on
probabilities that aircraft flow to each other region, and
out of the airspace (which can be found by deducing the
rates of traffic flow among the appropriate regions of the
airspace using historical data). Meanwhile, flows into a
Sector are generated in different ways in the simulation.
Flows from the exterior of the system, and from unmod-
eled regions, are modeled as Poisson processes. Flows from
regions modeled at a Center level are determined based on
the most recently updated counts in these Centers (along
with flow probabilities), and flows from other modeled Sec-
tors are determined based on these Sector’s counts at the
previous time-step along with flow probabilities.
• Aircraft counts in regions modeled at the Center level are
updated at intervals of f∆T . The flows out of each Center
to other Centers, unmodeled regions of the airspace, and
the exterior of the system, are determined based on the
current count of the Center and probabilities of aircraft
going to other regions of the airspace. The flows out of a
Center to modeled Sectors are found by summing the ap-
propriate flows into the Sector (which have already been



generated) over f intervals of duration ∆T . Next, con-
sider flows into these Centers. Flows from the exterior of
the airspace and from unmodeled regions are generated as
Poisson processes. Flows from other Centers are generated
as in the basic model, using flow probabilities and counts
in these Centers. Finally, the flows from modeled Sectors
to Centers are found by summing the appropriate flows out
of these Sectors over f time-steps.

B. Extension 2: A Model with Stochastic, Flow-Altering
Disturbances

The U.S. ATS is subject to disturbances that change
rates of aircraft flow in parts of the network. Many of
these flow-altering disturbances, which are often inclement
weather events in parts of the airspace, cannot accurately
be predicted in advance. Furthermore, although the dis-
turbance event may directly affect only a small part of the
airspace, the resulting changes in flows and Sector/Center
counts may propagate throughout the network. Since our
model for the U.S. ATS is stochastic, we can naturally in-
corporate stochastic disturbances that alter flows in the
model. By computing the expected behavior and variabil-
ity of Center counts and flows in the model, regions of the
airspace that may be prone to capacity excesses due to the
weather events can be identified. In turn, the model may
suggest improved methods for managing traffic flow in re-
sponse to weather disturbances.
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Fig. 11. Local perturbation of flows due to a weather event is de-
picted. In this case, the flow of interested is rerouted in two
different directions, leading to different flow rates across each
boundary.

We model local perturbations as changes to the nomi-
nal parameters, as shown in Figure 11. In our approach,

multiple disturbances, each of which occur independently
with some probability, can affect flows in a ATS. Given
that a particular set of disturbances has occurred, we can
calculate statistics of Center counts with our basic model,
using the appropriate set of model parameters (which are
modified from their nominal values based on the partic-
ular disturbances that have occurred). In turn, we can
calculate statistics of Center counts without prior knowl-
edge of the disturbances, by scaling the predicted statistics
for each set of disturbances with the probability that these
disturbances occur, and then summing these scaled statis-
tics. In this way, the dynamics of an ATS that is subject
to stochastic disturbances can be modeled and analyzed.
One possible shortcoming of this approach for modeling

stochastic disturbances is the computational complexity re-
sulting from the large number of disturbances that may
need to be considered. (For example, if there are 10 differ-
ent weather events that may or may not be present on a
given day, we must consider 210 = 1024 possible combina-
tions of disturbances.) Given certain special conditions on
the location of disturbances, the computational complexity
can sometimes be reduced by considering the change in the
system’s dynamics due to each disturbance separately, and
then combining these individual responses.

V. Conclusions and Future Work

In this article, we have proposed an aggregate stochastic
model for an ATS. Some analyses of the model that may
eventually prove useful for predicting and controlling flows
in an ATS have been discussed. Also, some verification
of our modeling framework has been attempted, and two
extensions of the basic model have been outlined.
We believe that aggregate stochastic models provide a

promising description of the ATS, but more study is re-
quired to gauge the value of these models in improving un-
derstanding and operation of the ATS. To better undertand
the benefits and drawbacks of using aggregate and stochas-
tic models, we plan to compare our model with other de-
terministic and detailed stochastic models for the ATS. We
are also interested in using the model as a framework for
developing Traffic Flow Management (TFM) algorithms.

Appendix

Equation 2 shows how the expected numbers of aircraft
in each Center at each time-step can be calculated recur-
sively, given the initial numbers of aircraft in all Centers.
A detailed proof for Equation 2 will be given elsewhere
[12]. In this appendix, we explain how the recursion in
Equation 2 comes about, without concerning ourselves with
the vector notation of the recursion. To do so, consider
E(si[k+1] | s[k], the expected number of aircraft in a Cen-
ter i at time k+1, given all Center counts at time k. This
expectation can be found by adding and subtracting the
expected flows into and out of Center i, respectively, from
si[k]. Note that the expected number of aircraft that flow
from Center i to a Center j (or out of the system for j = 0)
is given by si[k]pij [k], the number that flow from a Center
j to Center i is sj [k]pji[k], and the number that depart



from airports in Center i is λ0i[k]. Thus, the conditional
expectation for the number of aircraft in Center i is

E(si[k + 1] | s[k]) (3)

= si[k]−
n∑
j=0

j �=i

si[k]pij [k] + (

n∑
j=1

j �=i

sj [k]pji[k] + λi[k]),

which is a linear function of the time-k Center counts. Fi-
nally, by taking the expectation of Equation 3 with respect
to the time-k Center counts s[k], given the initial Center
counts s[0], we find that

E(si[k + 1] | s[0]) (4)

= E(si[k] |s[0])−
n∑
j=0

j �=i

E(si[k] | s[0])pij [k]

+(

n∑
j=1

j �=i

E(sj [k] | s[0])pji[k] + λi[k]).

Thus, we see that the expected number of aircraft in Center
i at time k+1 given s[0] can be written as a linear function
of the expected Center counts at time k given s[0].
In this appendix, we also briefly discuss why second mo-

ments and cross-moments of state variables can be found
using linear recursions given the initial state s[0]. A de-
tailed exposition of the second, and higher, moment cal-
culations is given in [12]. The recursion for the second
moments and cross-moments is derived analogously to the
recursion for the expectations of state variables. For exam-
ple, consider E(s2i [k + 1] | s[k]), the expected value of the
square of the number of aircraft in a Center i at time k+1
given the Center counts at time k. Substituting the expres-
sion for si[k + 1] given in Equation 1 into this expectation
gives

E(s2i [k + 1] | s[k]) (5)

= E((si[k]−
n∑
j=0

j �=i

Uij [k] +

n∑
j=0

j �=i

Uji[k])
2 | s[k])

To continue the analysis, note that
∑n

j=0

j �=i
Uij [k] and∑n

j=0

j �=i
Uji[k] are two independent Poisson random vari-

ables given the time-k Center counts s[k], with means∑n
j=0

j �=i
si[k]pij [k] and

∑n
j=1

j �=i
sj [k]pji[k] + λi[k], respectively.

Since the second moment of a Poisson random variable is a
quadratic function of its mean, we find after some algebra
that the expectation E(s2i [k+ 1] | s[k]) is a quadratic func-
tion of the state variables at time k (i.e., the expectation
can be written as a sum of second- and lower-order powers
of the state variables, such as s2i [k], si[k]sj [k], si[k], etc.).
Taking the expectation of Equation 5 with respect to s[k],
we find that the second moment of si[k + 1] (given s[0]) is
a linear function of second and lower moments and cross-
moments of the time-k state variables (also given s[0]).

In fact, it turns out that all second moments and cross-
moments of time-(k + 1) state variables can be written as
linear functions of second and lower moments and cross-
moments of time-k state variables. Thus, the second-order
statistics of the model can be found using linear recursions.
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