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ABSTRACT

Evolutionary clustering is an emerging research area essen-
tial to important applications such as clustering dynamic
Web and blog contents and clustering data streams. In evo-
lutionary clustering, a good clustering result should fit the
current data well, while simultaneously not deviate too dra-
matically from the recent history. To fulfill this dual pur-
pose, a measure of temporal smoothness is integrated in the
overall measure of clustering quality. In this paper, we pro-
pose two frameworks that incorporate temporal smoothness
in evolutionary spectral clustering. For both frameworks, we
start with intuitions gained from the well-known k-means
clustering problem, and then propose and solve correspond-
ing cost functions for the evolutionary spectral clustering
problems. Our solutions to the evolutionary spectral clus-
tering problems provide more stable and consistent cluster-
ing results that are less sensitive to short-term noises while
at the same time are adaptive to long-term cluster drifts.
Furthermore, we demonstrate that our methods provide the
optimal solutions to the relaxed versions of the correspond-
ing evolutionary k-means clustering problems. Performance
experiments over a number of real and synthetic data sets
illustrate our evolutionary spectral clustering methods pro-
vide more robust clustering results that are not sensitive to
noise and can adapt to data drifts.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
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1. INTRODUCTION
In many clustering applications, the characteristics of the

objects to be clustered change over time. Very often, such
characteristic change contains both long-term trend due to
concept drift and short-term variation due to noise. For
example, in the blogosphere where blog sites are to be clus-
tered (e.g., for community detection), the overall interests
of a blogger and the blogger’s friendship network may drift
slowly over time and simultaneously, short-term variation
may be triggered by external events. As another example,
in an ubiquitous computing environment, moving objects
equipped with GPS sensors and wireless connections are to
be clustered (e.g., for traffic jam prediction or for animal mi-
gration analysis). The coordinate of a moving object may
follow a certain route in the long-term but its estimated
coordinate at a given time may vary due to limitations on
bandwidth and sensor accuracy.

These application scenarios, where the objects to be clus-
tered evolve with time, raise new challenges to traditional
clustering algorithms. On one hand, the current clusters
should depend mainly on the current data features — ag-
gregating all historic data features makes little sense in non-
stationary scenarios. On the other hand, the current clus-
ters should not deviate too dramatically from the most re-
cent history. This is because in most dynamic applications,
we do not expect data to change too quickly and as a con-
sequence, we expect certain levels of temporal smoothness
between clusters in successive timesteps. We illustrate this
point by using the following example. Assume we want to
partition 5 blogs into 2 clusters. Figure 1 shows the rela-
tionship among the 5 blogs at time t-1 and time t, where
each node represents a blog and the numbers on the edges
represent the similarities (e.g., the number of links) between
blogs. Obviously, the blogs at time t-1 should be clustered
by Cut I. The clusters at time t are not so clear. Both Cut
II and Cut III partition the blogs equally well. However,
according to the principle of temporal smoothness, Cut III
should be preferred because it is more consistent with re-
cent history (time t-1 ). Similar ideas have long been used
in time series analysis [5] where moving averages are often
used to smooth out short-term fluctuations. Because simi-
lar short-term variances also exist in clustering applications,
either due to data noises or due to non-robust behaviors
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Figure 1: An evolutionary clustering scenario

of clustering algorithms (e.g., converging to different locally
suboptimal modes), new clustering techniques are needed to
handle evolving objects and to obtain stable and consistent
clustering results.

In this paper, we propose two evolutionary spectral clus-
tering algorithms in which the clustering cost functions con-
tain terms that regularize temporal smoothness. Evolution-
ary clustering was first formulated by Chakrabarti et al. [3]
where they proposed heuristic solutions to evolutionary hier-
archical clustering problems and evolutionary k-means clus-
tering problems. In this paper, we focus on evolutionary
spectral clustering algorithms under a more rigorous frame-
work. Spectral clustering algorithms have solid theory foun-
dation [6] and have shown very good performances. They
have been successfully applied to many areas such as doc-
ument clustering [22, 15], imagine segmentation [19, 21],
and Web/blog clustering [9, 18]. Spectral clustering algo-
rithms can be considered as solving certain graph partition
problems, where different graph-based measures are to be
optimized. Based on this observation, we define the cost
functions in our evolutionary spectral clustering algorithms
by using the graph-based measures and derive correspond-
ing (relaxed) optimal solutions. At the same time, it has
been shown that these graph partition problems have close
connections to different variation of the k-means clustering
problems. Through these connections, we demonstrate that
our evolutionary spectral clustering algorithms provide solu-
tions to the corresponding evolutionary k-means clustering
problems as special cases.

In summary, our main contributions in this paper can be
summarized as the following:

1. We propose two frameworks for evolutionary spectral
clustering in which the temporal smoothness is incor-
porated into the overall clustering quality. To the best
of our knowledge, our frameworks are the first evolu-
tionary versions of the spectral clustering algorithms.

2. We derive optimal solutions to the relaxed versions of
the proposed evolutionary spectral clustering frame-
works. Because the unrelaxed versions are shown to be
NP-hard, our solutions provide both the practical ways
of obtaining the final clusters and the upper bounds on
the performance of the algorithms.

3. We also introduce extensions to our algorithms to han-
dle the case where the number of clusters changes with
time and the case where new data points are inserted
and old ones are removed over time.

1.1 Related Work
As stated in [3], evolutionary clustering is a fairly new

topic formulated in 2006. However, it has close relationships
with other research areas such as clustering data streams,
incremental clustering, and constrained clustering.

In clustering data streams, large amount of data that ar-
rive at high rate make it impractical to store all the data in
memory or to scan them multiple times. Under such a new
data model, many researchers have investigated issues such
as how to efficiently cluster massive data set by using limited
memory and by one-pass scanning of data [12], and how to
cluster evolving data streams under multiple resolutions so
that a user can query any historic time period with guaran-
teed accuracy [1]. Clustering data stream is related to our
work in that data in data streams evolve with time. How-
ever, instead of the scalability and one-pass-access issues, we
focus on how to obtain clusters that evolve smoothly over
time, an issue that has not been studied in the above works.

Incremental clustering algorithms are also related to our
work. There exists a large research literature on incremen-
tal clustering algorithms, whose main task is to efficiently
apply dynamic updates to the cluster centers [13], medoids
[12], or hierarchical trees [4] when new data points arrive.
However, in most of these studies, newly arrived data points
have no direct relationship with existing data points, other
than that they probably share similar statistical character-
istics. In comparison, our study mainly focuses on the case
when the similarity among existing data points varies with
time, although we can also handle insertion and removal of
data points over time. In [16], an algorithm is proposed to
cluster moving objects based on a novel concept of micro-
clustering. In [18], an incremental spectral clustering al-
gorithm is proposed to handles similarity changes among
objects that evolve with time. However, the focus of both
[16] and [18] is to improve computation efficiency at the cost
of lower cluster quality.

There is also a large body of work on constrained cluster-
ing. In these studies, either hard constraints such as cannot
links and must links [20] or soft constraints such as prior
preferences [15] are incorporated in the clustering task. In
comparison, in our work the constraints are not given a pri-
ori. Instead, we set our goal to optimize a cost function that
incorporates temporal smoothness. As a consequence, some
soft constraints are automatically implied when historic data
and clusters are connected with current ones.

Our work is especially inspired by the work by Chakrabarti
et al. [3], in which they propose an evolutionary hierarchical
clustering algorithm and an evolutionary k-means clustering
algorithm. We mainly discuss the latter because of its con-
nection to spectral clustering. Chakrabarti et al. proposed
to measure the temporal smoothness by a distance between
the clusters at time t and those at time t-1. Their cluster
distance is defined by (1) pairing each centroid at t to its
nearest peer at t-1 and (2) summing the distances between
all pairs of centroids. We believe that such a distance has
two weak points. First, the pairing procedure is based on
heuristics and it could be unstable (a small perturbation on
the centroids may change the pairing dramatically). Second,
because it ignores the fact that the same data points are to
be clustered in both t and t-1, this distance may be sensitive
to the movement of data points such as shifts and rotations
(e.g., consider a fleet of vehicles that move together while
the relative distances among them remain the same).



2. NOTATIONS AND BACKGROUND
First, a word about notation. Capital letters, such as

W and Z, represent matrices. Lower case letters in vector
forms, such as ~vi and ~µl, represent column vectors. Scripted
letters, such as V and Vp, represent sets. For easy presen-
tation, for a given variable, such as W and ~vi, we attach a
subscript t, i.e., Wt and ~vi,t, to represent the value of the
variable at time t. And we use Tr(W ) to represent the trace
of W where Tr(W ) =

∑

i W (i, i). In addition, for a ma-

trix X ∈ Rn×k, we use span(X) to represent the subspace
spanned by the columns of X. For vector norms we use the
Euclidian norm and for matrix norms we use the Frobenius
norm, i.e., ‖W‖2 =

∑

i,j W (i, j)2 = Tr(W T W ).

2.1 The clustering problem
We state the clustering problem in the following way.

For a set V of n nodes, a clustering result is a partition
{V1, . . . ,Vk} of the nodes in V such that V = ∪k

l=1Vl and
Vp ∩ Vq = ∅ for 1 ≤ p, q ≤ k, p 6= q. A partition (clustering
result) can be equivalently represented as an n-by-k matrix
Z whose elements are in {0, 1} where Z(i, j) = 1 if only if

node i belongs to cluster j. Obviously, Z · ~1k = ~1n, where
~1k and ~1n are k-dimensional and n-dimensional vectors of
all ones. In addition, we can see that the columns of Z are
orthogonal. Furthermore, we normalize Z in the following
way: we divide the l-th column of Z by

√

|Vl| to get Z̃,

where |Vl| is the size of Vl. Note that the columns of Z̃ are

orthonormal, i.e., Z̃T Z̃ = Ik.

2.2 K-means clustering
The k-means clustering problem is one of the most widely-

studied clustering problems. Assume the i-th node in V can
be represented by an m-dimensional feature vector ~vi ∈ Rm,
then the k-means clustering problem is to find a partition
{V1, . . . ,Vk} that minimizes the following measure

KM =

k
∑

l=1

∑

i∈Vl

‖~vi − ~µl‖
2 (1)

where ~µl is the centroid (mean) of the l-th cluster, i.e., ~µl =
∑

j∈Vl
~vj/|Vl|.

A well-known algorithm to the k-means clustering prob-
lem is the so called k-means algorithm in which after initially
randomly picking k centroids, the following procedure is re-
peated until convergence: all the data points are assigned to
the clusters whose centroids are nearest to them, and then
the cluster centroids are updated by taking the average of
the data points assigned to them.

2.3 Spectral clustering
The basic idea of spectral clustering is to cluster based on

the eigenvectors of a (possibly normalized) similarity ma-
trix W defined on the set of nodes in V. Very often W is
positive semi-definite. Commonly used similarities include
the inner product of the feature vectors, W (i, j) = ~vT

i ~vj , the
diagonally-scaled Gaussian similarity, W (i, j) = exp(−(~vi −
~vj)

T diag(~γ)(~vi − ~vj)), and the affinity matrices of graphs.
Spectral clustering algorithms usually solve graph parti-

tioning problems where different graph-based measures are
to be optimized. Two popular measures are to maximize the
average association and to minimize the normalized cut [19].
For two subsets, Vp and Vq , of the node set V (where Vp and

Vq do not have to be disjoint), we first define the association
between Vp and Vq as assoc(Vp,Vq) =

∑

i∈Vp,j∈Vq
W (i, j)

Then we can write the k-way average association as

AA =

k
∑

l=1

assoc(Vl,Vl)

|Vl|
(2)

and the k-way normalized cut as

NC =
k
∑

l=1

assoc(Vl,V\Vl)

assoc(Vl,V)
(3)

where V\Vl is the complement of V. For consistency, we
further define the negated average association as

NA = Tr(W )− AA = Tr(W )−
k
∑

l=1

assoc(Vl,Vl)

|Vl|
(4)

where, as will be shown later, NA is always non-negative if
W is positive semi-definite. In the remaining of the paper,
instead of maximizing AA, we equivalently aim to minimize
NA, and as a result, all the three objective functions, KM ,
NA and NC are to be minimized.

Finding the optimal partition Z for either the negated
average association or the normalized cut is NP-hard [19].
Therefore, in spectral clustering algorithms, usually a re-
laxed version of the optimization problem is solved by (1)
computing eigenvectors X of some variations of the simi-
larity matrix W , (2) projecting all data points to span(X),
and (3) applying the k-means algorithm to the projected
data points to obtain the clustering result. While it may
seem nonintuitive to apply spectral analysis and then again
use the k-means algorithm, it has been shown that such
procedures have many advantages such as they work well
in the cases when the data points are not linearly separable
[17]. The focus of our paper is in step (1). For steps (2) and
(3) we follow the standard procedures in traditional spectral
clustering and thus will not give more details on them.

3. EVOLUTIONARY SPECTRAL

CLUSTERING—TWO FRAMEWORKS
In this section we propose two frameworks for evolution-

ary spectral clustering. We first describe the basic idea.

3.1 Basic Idea
We define a general cost function to measure the quality

of a clustering result on evolving data points. The function
contains two costs. The first cost, snapshot cost (CS), only
measures the snapshot quality of the current clustering re-
sult with respect to the current data features, where a higher
snapshot cost means worse snapshot quality. The second
cost, temporal cost (CT ), measures the temporal smooth-
ness in terms of the goodness-of-fit of the current clustering
result with respect to either historic data features or his-
toric clustering results, where a higher temporal cost means
worse temporal smoothness. The overall cost function1 is
defined as a linear combination of these two costs:

Cost = α · CS + β · CT (5)

1Our general cost function is equivalent to the one defined
in [3], differing only by a constant factor and a negative sign.



where 0 ≤ α ≤ 1 is a parameter assigned by the user and
together with β(= 1 − α), they reflect the user’s emphasis
on the snapshot cost and temporal cost, respectively.

In both frameworks that we propose, for a current par-
tition (clustering result), the snapshot cost CS is measured
by the clustering quality when the partition is applied to
the current data. The two frameworks are different in how
the temporal cost CT is defined. In the first framework,
which we name PCQ for preserving cluster quality, the cur-
rent partition is applied to historic data and the resulting
cluster quality determines the temporal cost. In the sec-
ond framework, which we name PCM for preserving cluster
membership, the current partition is directly compared with
the historic partition and the resulting difference determines
the temporal cost.

In the discussion of both frameworks, we first use the k-
means clustering problem, Equation (1), as a motivational
example and then formulate the corresponding evolution-
ary spectral clustering problems (both NA and NC). We
also provide the optimal solutions to the relaxed versions
of the evolutionary spectral clustering problems and show
how they relate back to the evolutionary k-means clustering
problem. In addition, in this section, we focus on a special
case where the number of clusters does not change with time
and neither does the number of nodes to be clustered. We
will discuss the more general cases in the next section.

3.2 Preserving Cluster Quality (PCQ)
In the first framework, PCQ, the temporal cost is ex-

pressed as how well the current partition clusters historic
data. We illustrate this through an example. Assume that
two partitions, Zt and Z′

t, cluster the current data at time
t equally well. However, to cluster historic data at time t-1,
the clustering performance using partition Zt is better than
using partition Z′

t. In such a case, Zt is preferred over Z′
t

because Zt is more consistent with historic data. We formal-
ize this idea for the k-means clustering problem using the
following overall cost function

CostKM = α · CSKM + β · CTKM (6)

= α · KM t

∣

∣

Zt
+ β · KMt−1

∣

∣

Zt

= α ·
k
∑

l=1

∑

i∈Vl,t

‖~vi,t − ~µl,t‖
2

+ β ·
k
∑

l=1

∑

i∈Vl,t

‖~vi,t−1 − ~µl,t−1‖
2

where
∣

∣

Zt
means “evaluated by the partition Zt, where Zt

is computed at time t” and ~µl,t−1 =
∑

j∈Vl,t
~vj,t−1/|Vl,t| .

Note that in the formula of CTKM , the inner summation is
over all data points in Vl,t, the clusters at time t. That
is, although the feature values used in the summation are
those at time t-1 (i.e., ~vi,t−1’s), the partition used is that at
time t (i.e., Zt). As a result, this cost CTKM = KMt−1

∣

∣

Zt

penalizes those clustering results (at t) that do not fit well
with recent historic data (at t-1 ) and therefore promotes
temporal smoothness of clusters.

3.2.1 Negated Average Association

We now formulate the PCQ framework for evolutionary
spectral clustering. We start with the case of negated aver-

age association. Following the idea of Equation (6), at time
t, for a given partition Zt, a natural definition of the overall
cost is

CostNA = α · CSNA + β · CTNA (7)

= α · NAt

∣

∣

Zt
+ β · NAt−1

∣

∣

Zt

The above cost function is almost identical to Equation (6),
except that the cluster quality is measured by the negated
average association NA rather than the k-means KM .

Next, we derive a solution to minimizing CostNA. First,
it can be easily shown that the negated average association
defined in Equation (4) can be equivalently written as

NA = Tr(W )− Tr(Z̃T WZ̃) (8)

Therefore2 we write the overall cost (7) as

CostNA = α · [Tr(Wt) − Tr(Z̃T
t WtZ̃t)] (9)

+ β · [Tr(Wt−1) − Tr(Z̃T
t Wt−1Z̃t)]

= Tr(αWt + βWt−1) − Tr
[

Z̃T
t (αWt + βWt−1)Z̃t

]

Notice that the first term Tr(αWt + βWt−1) is a constant
independent of the clustering partitions and as a result,
minimizing CostNA is equivalent to maximizing the trace
Tr[Z̃T

t (αWt + βWt−1)Z̃t], subject to Z̃t being a normalized
indicator matrix (cf Sec 2.1). Because maximizing the av-
erage association is an NP-hard problem, finding the so-
lution Z̃t that minimizes CostNA is also NP-hard. So fol-
lowing most spectral clustering algorithms, we relax Z̃t to
Xt ∈ Rn×k with XT

t Xt = Ik. It is well-known [11] that one
solution to this relaxed optimization problem is the matrix
Xt whose columns are the k eigenvectors associated with the
top-k eigenvalues of matrix αWt + βWt−1. Therefore, after
computing the solution Xt we can project the data points
into span(Xt) and then apply k-means to obtain a solution
to the evolutionary spectral clustering problem under the
measure of negated average association. In addition, the
value Tr(αWt + βWt−1) − Tr

[

XT
t (αWt + βWt−1)Xt

]

pro-
vides a lower bound on the performance of the evolutionary
clustering problem.

Moreover, Zha et al. [22] have shown a close connection
between the k-means clustering problem and spectral clus-
tering algorithms — they proved that if we put the m-
dimensional feature vectors of the n data points in V into
an m-by-n matrix A = (~v1, . . . , ~vn), then

KM = Tr(AT A) − Tr(Z̃T AT AZ̃) (10)

Comparing Equations (10) and (8), we can see that the k-
means clustering problem is a special case of the negated av-
erage association spectral clustering problem, where the sim-
ilarity matrix W is defined by the inner product AT A. As
a consequence, our solution to the NA evolutionary spectral
clustering problem can also be applied to solve the k-means
evolutionary clustering problem in the PCQ framework, i.e.,
under the cost function defined in Equation (6).

2Here we can show that NA is positive semi-definite:
We have Z̃T Z̃ = Ik and Tr(W ) =

∑n
i=1

λi where λi’s
are the eigenvalues of W ordered by decreasing magni-
tude. Therefore, by Fan’s theorem [10], which says that

maxX∈Rn×k,XT X=Ik
Tr(XT WX) =

∑k
j=1

λk, we can de-

rive from (8) that NA ≥
∑n

j=k+1
λj ≥ 0 if W is positive

semi-definite.



3.2.2 Normalized Cut

For the normalized cut, we extend the idea of Equation (6)
similarly. By replacing the KM Equation (6) with NC, we
define the overall cost for evolutionary normalized cut to be

CostNC = α · CSNC + β · CTNC (11)

= α · NCt

∣

∣

Zt
+ β · NCt−1

∣

∣

Zt

Shi et al. [19] have proved that computing the optimal solu-
tion to minimize the normalized cut is NP-hard. As a result,
finding an indicator matrix Zt that minimizes CostNC is also
NP-hard. We now provide an optimal solution to a relaxed
version of the problem. Bach et al. [2] proved that for a
given partition Z, the normalized cut can be equivalently
written as

NC = k − Tr
[

Y T
(

D− 1

2 WD− 1

2

)

Y
]

(12)

where D is a diagonal matrix with D(i, i) =
∑n

j=1
W (i, j)

and Y is any matrix in Rn×k that satisfies two conditions:
(a) the columns of D−1/2Y are piecewise constant with re-
spect to Z and (b) Y T Y = Ik. We remove the constraint
(a) to get a relaxed version for the optimization problem

CostNC ≈ α · k − α · Tr

[

XT
t

(

D
− 1

2

t WtD
− 1

2

t

)

Xt

]

(13)

+ β · k − β · Tr

[

XT
t

(

D
− 1

2

t−1Wt−1D
− 1

2

t−1

)

Xt

]

= k − Tr

[

XT
t

(

αD
− 1

2

t WtD
− 1

2

t + βD
− 1

2

t−1Wt−1D
− 1

2

t−1

)

Xt

]

for some Xt ∈ Rn×k such that XT
t Xt = Ik. Again we

have a trace maximization problem and a solution is the
matrix Xt whose columns are the k eigenvectors associ-

ated with the top-k eigenvalues of matrix αD
− 1

2

t WtD
− 1

2

t +

βD
− 1

2

t−1Wt−1D
− 1

2

t−1. And again, after obtaining Xt, we can
further project data points into span(Xt) and then apply
the k-means algorithm to obtain the final clusters.

Moreover, Dhillon et al. [8] have proved that the normal-
ized cut approach can be used to minimize the cost function
of a weighted kernel k-means problem. As a consequence,
our evolutionary spectral clustering algorithm can also be
applied to solve the evolutionary version of the weighted
kernel k-means clustering problem.

3.2.3 Discussion on the PCQ Framework

The PCQ evolutionary clustering framework provides a
data clustering technique similar to the moving average frame-
work in time series analysis, in which the short-term fluctu-
ation is expected to be smoothed out. The solutions to the
PCQ framework turn out to be very intuitive — the historic
similarity matrix is scaled and combined with current simi-
larity matrix and the new combined similarity matrix is fed
to traditional spectral clustering algorithms.

Notice that one assumption we have used in the above
derivation is that the temporal cost is determined by data
at time t-1 only. However, the PCQ framework can be eas-
ily extended to cover longer historic data by including sim-
ilarity matrices W ’s at older time, probably with different
weights (e.g., scaled by an exponentially decaying factor to
emphasize more recent history).

3.3 Preserving Cluster Membership (PCM)
The second framework of evolutionary spectral clustering,

PCM, is different from the first framework, PCQ, in how the
temporal cost is measured. In this second framework, the
temporal cost is expressed as the difference between the cur-
rent partition and the historic partition. We again illustrate
this by an example. Assume that two partitions, Zt and Z′

t,
cluster current data at time t equally well. However, when
compared to the historic partition Zt−1, Zt is much more
similar to Zt−1 than Z′

t is. In such a case, Zt is preferred
over Z′

t because Zt is more consistent with historic partition.
We first formalize this idea for the evolutionary k-means

problem. For convenience of discussion, we write the current
partition as Zt = {V1,t, . . . ,Vk,t} and the historic partition
as Zt−1 = {V1,t−1, . . . ,Vk,t−1}. Now we want to define a
measure for the difference between Zt and Zt−1. Comparing
two partitions has long been studied in the literatures of
classification and clustering. Here we use the traditional
chi-square statistics [14] to represent the distance between
two partitions

χ2(Zt, Zt−1) = n

(

k
∑

i=1

k
∑

j=1

|Vij |
2

|Vi,t| · |Vj,t−1|
− 1

)

where |Vij | is the number of nodes that are both in Vi,t (at
time t) and in Vj,t−1 (at time t-1 ). Actually, in the above
definition, the number of clusters k does not have to be the
same at time t and t-1, and we will come back to this point
in the next section. By ignoring the constant shift of -1 and
the constant scaling n, we define the temporal cost for the
k-means clustering problem as

CTKM = −
k
∑

i=1

k
∑

j=1

|Vij |
2

|Vi,t| · |Vj,t−1|
(14)

where the negative sign is because we want to minimize
CTKM . The overall cost can be written as

CostKM = α · CSKM + β · CTKM (15)

= α ·
k
∑

l=1

∑

i∈Vl,t

‖~vi,t − ~µl,t‖
2 − β ·

k
∑

i=1

k
∑

j=1

|Vij |
2

|Vi,t| · |Vj,t−1|

3.3.1 Negated Average Association

Recall that in the case of negated average association,
we want to maximize NA = Tr(Z̃T WZ̃) where Z̃ is fur-
ther relaxed to continuous-valued X, whose columns are
the k eigenvectors associated with the top-k eigenvalues of
W . So in the PCM framework, we shall define a distance
dist(Xt, Xt−1) between Xt, a set of eigenvectors at time t,
and Xt−1, a set of eigenvectors at time t-1. However, there
is a subtle point — for a solution X ∈ Rn×k that maxi-
mizes Tr(XT WX), any X ′ = XQ is also a solution, where
Q ∈ Rk×k is an arbitrary orthogonal matrix. This is because
Tr(XT WX) = Tr(XT WXQQT ) = Tr((XQ)T WXQ) =

Tr(X ′T WX ′). Therefore we want a distance dist(Xt, Xt−1)
that is invariant with respect to the rotation Q. One such
solution, according to [11], is the norm of the difference be-
tween two projection matrices, i.e.,

dist(Xt, Xt−1) =
1

2
‖XtX

T
t − Xt−1X

T
t−1‖

2 (16)

which essentially measures the distance between span(Xt)
and span(Xt−1). Furthermore in Equation (16), the number



of columns in Xt does not have to be the same as that in
Xt−1 and we will discuss this in the next section.

By using this distance to quantify the temporal cost, we
derive the total cost for the negated average association as

CostNA = α · CSNA + β · CTNA (17)

=α ·
[

Tr(Wt) − Tr(XT
t WtXt)

]

+
β

2
· ‖XtX

T
t − Xt−1X

T
t−1‖

2

=α ·
[

Tr(Wt) − Tr(XT
t WtXt)

]

+

β

2
Tr
(

XtX
T
t − Xt−1X

T
t−1

)T (

XtX
T
t − Xt−1X

T
t−1

)

=α ·
[

Tr(Wt) − Tr(XT
t WtXt)

]

+

β

2
Tr(XtX

T
t XtX

T
t − 2XtX

T
t Xt−1X

T
t−1 + Xt−1X

T
t−1Xt−1X

T
t−1)

=α ·
[

Tr(Wt) − Tr(XT
t WtXt)

]

+ βk − βTr
(

XT
t Xt−1X

T
t−1Xt

)

=α · Tr(Wt) + β · k − Tr
[

XT
t (αWt + βXt−1X

T
t−1)Xt

]

Therefore, an optimal solution that minimizes CostNA is the
matrix Xt whose columns are the k eigenvectors associated
with the top-k eigenvalues of the matrix αWt +βXt−1X

T
t−1.

After getting Xt, the following steps are the same as before.
Furthermore, it can be shown that the un-relaxed version

of the distance defined in Equation (16) for spectral clus-
tering is equal to that defined in Equation (15) for k-means
clustering by a constant shift. That is, it can be shown (cf.
Bach et al. [2]) that

1

2
‖Z̃tZ̃

T
t − Z̃t−1Z̃

T
t−1‖

2 = k −
k
∑

i=1

k
∑

j=1

|Vij |
2

|Vi,t| · |Vj,t−1|
(18)

As a result, the evolutionary spectral clustering based on
negated average association in the PCM framework provides
a relaxed solution to the evolutionary k-means clustering
problem defined in the PCM framework, i.e., Equation (15).

3.3.2 Normalized Cut

It is straightforward to extend the PCM framework from
the negated average association to normalized cut as

CostNC = α · CSNC + β · CTNC (19)

= α · k − α · Tr

[

XT
t

(

D
− 1

2

t WtD
− 1

2

t

)

Xt

]

+
β

2
· ‖XtX

T
t − Xt−1X

T
t−1‖

2

= k − Tr

[

XT
t

(

αD
− 1

2

t WtD
− 1

2

t + βXt−1X
T
t−1

)

Xt

]

Therefore, an optimal solution that minimizes CostNC is the
matrix Xt whose columns are the k eigenvectors associated

with the top-k eigenvalues of the matrix αD
− 1

2

t WtD
− 1

2

t +
βXt−1X

T
t−1. After obtaining Xt, the subsequent steps are

the same as before.
It is worth mentioning that in the PCM framework, CostNC

has an advantage over CostNA in terms of the ease of se-
lecting an appropriate α. In CostNA, the two terms CSNA

and CTNA are of different scales — CSNA measures a sum of
variances and CTNA measures some probability distribution.
Consequently, this difference needs to be considered when
choosing α. In contrast, for CostNC , because the CSNC is

normalized, both D
− 1

2

t WtD
− 1

2

t and Xt−1X
T
t−1 have the same

2-norms scale, for both matrices have λmax = 1. Therefore,
the two terms CSNC and CTNC are comparable and α can
be selected in a straightforward way.

3.3.3 Discussion on the PCM Framework

In the PCM evolutionary clustering framework, all his-
toric data are taken into consideration (with different weights)
— Xt partly depends on Xt−1, which in turn partly depends
on Xt−2 and so on. Let us look at two extreme cases. When
α approaches 1, the temporal cost will become unimportant
and as a result, the clusters are computed at each time win-
dow independent of other time windows. On the other hand,
when α approaches 0, the eigenvectors in all time windows
are required to be identical. Then the problem becomes a
special case of the higher-order singular value decomposi-
tion problem [7], in which singular vectors are computed for
the three modes (the rows of W , the columns of W , and
the timeline) of a data tensor W where W is constructed by
concatenating Wt’s along the timeline.

In addition, if the similarity matrix Wt is positive semi-

definite, then αD
− 1

2

t WtD
− 1

2

t + βXt−1X
T
t−1 is also positive

semi-definite because both D
− 1

2

t WtD
− 1

2

t and Xt−1X
T
t−1 are

positive semi-definite.

3.4 Comparing Frameworks PCQ and PCM
Now we compare the PCQ and PCM frameworks. For

simplicity of discussion, we only consider time slots t and
t-1 and ignore older history.

In terms of the temporal cost, PCQ aims to maximize
Tr(XT

t Wt−1Xt) while for PCM, Tr(XT
t Xt−1X

T
t−1Xt) is to

be maximized. However, these two are closely connected.
By applying the eigen-decomposition on Wt−1, we have

XT
t Wt−1Xt = XT

t (Xt−1, X
⊥
t−1)Λt−1(Xt−1, X

⊥
t−1)

T Xt

where Λt−1 is a diagonal matrix whose diagonal elements are
the eigenvalues of Wt−1 ordered by decreasing magnitude,
and Xt−1 and X⊥

t−1 are the eigenvectors associated with the
first k and the residual n − k eigenvectors of Wt−1, respec-
tively. It can be easily verified that both Tr(XT

t Wt−1Xt)
and Tr(XT

t Xt−1X
T
t−1Xt) are maximized when Xt = Xt−1

(or more rigorously, when span(Xt) = span(Xt−1)). The
differences between PCQ and PCM are (a) if the eigen-
vectors associated with the smaller eigenvalues (other than
the top k) are considered and (b) the level of penalty when
Xt deviates from Xt−1. For PCQ, all the eigenvectors are
considered and their deviations between time t and t-1 are
penalized according to the corresponding eigenvalues. For
PCM, rather than all eigenvectors, only the first k eigenvec-
tors are considered and they are treated equally. In other
words, in the PCM framework, other than the historic clus-
ter membership, all details about historic data are ignored.

Although by keeping only historic cluster membership,
PCM introduces more information loss, there may be bene-
fits in other aspects. For example, the CT part in the PCM
framework does not necessarily have to be temporal cost —
it can represent any prior knowledge about cluster member-
ship. For example, we can cluster blogs purely based on
interlinks. However, other information such as the content
of the blogs and the demographic data about the bloggers
may provide valuable prior knowledge about cluster mem-
bership that can be incorporated into the clustering. The
PCM framework can handle such information fusion easily.



4. GENERALIZATION
There are two assumptions in the PCQ and the PCM

framework proposed in the last section. First, we assumed
that the number of clusters remains the same over all time.
Second, we assumed that the same set of nodes is to be clus-
tered in all timesteps. Both assumptions are too restrictive
in many applications. In this section, we extend our frame-
works to handle the issues of variation in cluster numbers
and insertion/removal of nodes over time.

4.1 Variation in Cluster Numbers
In our discussions so far, we have assumed that the num-

ber of clusters k does not change with time. However, keep-
ing a fixed k over all time windows is a very strong restric-
tion. Determining the number of clusters is an important
research problem in clustering and there are many effec-
tive methods for selecting appropriate cluster numbers (e.g.,
by thresholding the gaps between consecutive eigenvalues).
Here we assume that the number of cluster k at time t has
been determined by one of these methods and we investi-
gate what will happen if the cluster number k at time t is
different from the cluster number k′ at time t-1.

It turns out that both the PCQ and the PCM frameworks
can handle variations in cluster number already. In the PCQ
framework, the temporal cost is expressed by historic data
themselves, not by historic clusters and therefore the com-
putation at time t is independent of the cluster number k′

at time t-1. In the PCM framework, as we have mentioned,
the partition distance (Equation 14) and the subspace dis-
tance (Equation 16) can both be used without change when
the two partitions have different numbers of clusters. As a
result, both of our PCQ and PCM frameworks can handle
variations in the cluster numbers.

4.2 Insertion and Removal of Nodes
Another assumption that we have been using is that the

number of nodes in V does not change with time. However,
in many applications the data points to be clustered may
vary with time. In the blog example, very often there are
old bloggers who stop blogging and new bloggers who just
start. Here we propose some heuristic solutions to handle
this issue.

4.2.1 Node Insertion and Removal in PCQ

For the PCQ framework, the key is αWt + βWt−1. When
old nodes are removed, we can simply remove the corre-
sponding rows and columns from Wt−1 to get W̃t−1 (assum-

ing W̃t−1 is n1×n1). However, when new nodes are inserted

at time t, we need to add entries to W̃t−1 and to extended it
to Ŵt−1, which has the same dimension as Wt (assuming Wt

is n2 × n2). Without lost of generality, we assume that the
first n1 rows and columns of Wt correspond to those nodes
in W̃t−1. We propose to achieve this by defining

Ŵt−1=

[

W̃t−1 Et−1

ET
t−1 Ft−1

]

for

{

Et−1 = 1

n1

W̃t−1
~1n1

~1T
n2−n1

Ft−1 = 1

n2

1

~1T
n1

W̃t−1
~1n1

~1n2−n1
~1T

n2−n1

Such a heuristic has the following good properties, whose
proofs are skipped due to the space limitation.

Property 1. (1) Ŵt−1 is positive semi-definite if Wt−1

is. (2) In Ŵt−1, for each existing node vold, each newly
inserted node vnew looks like an average node in that the

similarity between vnew and vold is the same as the average
similarity between any existing node and vold. (3) In Ŵt−1,
the similarity between any pair of newly inserted nodes is the
same as the average similarity among all pairs of existing
nodes.

We can see that these properties are appealing when no
prior knowledge is given about the newly inserted nodes.

4.2.2 Node Insertion and Removal in PCM

For the PCM framework, when old nodes are removed,
we remove the corresponding rows from Xt−1 to get X̃t−1

(assuming X̃t−1 is n1 × k). When new nodes are inserted

at time t, we extend X̃t−1 to X̂t−1, which has the same
dimension as Xt (assuming Xt is n2 × k) as follows

X̂t−1 =

[

X̃t−1

Gt−1

]

for Gt−1 =
1

n1

~1n2−n1
~1T

n1
X̃t−1 (20)

That is, we insert new rows as the row average of X̃t−1.
After obtaining X̂t−1, we replace the term βXt−1X

T
t−1 with

βX̂t−1(X̂
T
t−1X̂t−1)

−1X̂T
t−1 in Equations (17) and (19).

Such a heuristic has the following good property, whose
proof is skipped due to the space limit.

Property 2. Equation (20) corresponds to for each newly
inserted nodes, assigning to it a prior clustering membership
that is approximately proportional to the size of the clusters
at time t-1.

5. EXPERIMENTAL STUDIES
In this section, we report experimental studies based on

both synthetic data sets and a real blog data set.

5.1 Synthetic Data
First, we use several experiments on synthetic data sets

to illustrate the good properties of our algorithms.

5.1.1 NA-based Evolutionary Spectral Clustering

In this subsection, we show three experimental studies
based on synthetic data. In the first experiment, we demon-
strate a stationary case where data variation is due to a
zero-mean noise. In the second experiment, we show a non-
stationary case where there are concept drifts. In the third
experiment, we show a case where there is a large difference
between the PCQ and PCM frameworks.

By using the k-means algorithm, we design two baselines.
The first baseline, which we call ACC, accumulates all his-
toric data before the current timestep t and applies the k-
means algorithm on the aggregated data. The second base-
line, which we call IND, independently applies the k-means
algorithm on the data in only timestep t and ignore all his-
toric data before t.

For our algorithms, we use the NA-based PCQ and PCM
algorithms, because of the equivalence between the NA-
based spectral clustering problem and the k-means cluster-
ing problem (Equation (10)). We choose to use W = AT A in
the NA-based evolutionary spectral clustering and compare
its results with that of the k-means baseline algorithms. For
a fair comparison, we use the KM defined for the k-means
clustering problem (i.e., Equation (1)) as the measure for
performance, where a smaller KM value is better.

The data points to be clustered are generated in the fol-
lowing way. 800 two-dimensional data points are initially



positioned as described in Figure 2(a) at timestep 1. As
can be seen, there are roughly four clusters (the data were
actually generated by using four Gaussian distributions cen-
tered in the four quadrants). Then in timesteps 2 to 10, we
perturb the initial positions of the data points by adding
different noises according to the experimental setup. Un-
less stated otherwise, all experiments are repeated 50 times
with different random seeds and the average performances
are reported.
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Figure 2: (a) The initial data point positions and
(b) A typical position in the non-stationary case

In the first experiment, for timesteps 2 through 10, we add
an i.i.d. Gaussian noise following N(0, 0.5) to the initial po-
sitions of the data points. We use this data to simulation
a stationary situation where the concept is relatively stable
but there exist short-term noises. In Figures 3(a) and 3(b),
we report the snapshot cost CSKM and the temporal cost
CTKM for the two baselines and for our algorithms (with
α = 0.9 for both PCQ and PCM) from timesteps 1 to 10.
For both costs, a lower value is better. As can be seen from
the figure, the ACC baseline has low temporal smoothness
but very high snapshot cost, whereas the IND baseline has
the low snapshot cost but very high temporal cost. In com-
parison, our two algorithms show low temporal cost at the
price of a little increase in snapshot cost. The overall cost
α · CSKM + β · CTKM is given in Figure 3(c). As can be
seen, the ACC baseline has the worst overall performance
and our algorithms improve a little over the IND baseline.
In addition, Figure 3(d) shows the degree of cluster change
over time as defined in Equation (18). We can see that as
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Figure 3: The performance for the stationary syn-
thetic data set, which shows that PCQ and PCM
result in low temporal cost at a price of a small in-
crease in snapshot cost

expected, the cluster membership change using our frame-
works is less dramatic than that of the IND baseline, which
takes no historic information into account.

Next, for the same data set, we let α increase from 0.2 to 1
with a step of 0.1. Figure 4 shows the average snapshot cost
and the temporal cost over all 10 timesteps under different
settings of α. As we expected, when α increases, to em-
phasize more on the snapshot cost, we get better snapshot
quality at the price of worse temporal smoothness. This re-
sult demonstrates that our frameworks are able to control
the tradeoff between the snapshot quality and the temporal
smoothness.
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Figure 4: The tradeoff between snapshot cost and
temporal cost, which can be controlled by α

In the second experiment, we simulate a non-stationary
situation. At timesteps 2 through 10, before adding random
noises, we first rotate all data points by a small random
angle (with zero mean and a variance of π/4). Figure 2(b)
shows the positions of data points in a typical timestep.
Figure 5 gives the performance of the four algorithms. As
can be seen, while the performance of our algorithms and
the IND baseline has little change, the performance of the
ACC baseline becomes very poor. This result shows that
if an aggregation approach is used, we should not aggregate
the data features in a non-stationary scenario — instead, we
should aggregate the similarities among data points.
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Figure 5: Performance for a non-stationary syn-
thetic data set, which shows that aggregating data
features does not work

In the third experiment, we show a case where the PCQ
and PCM frameworks behave differently. We first generate
data points using the procedure described in the first ex-
periment (the stationary scenario), except that this time we
generate 60 timesteps for a better view. This time, instead
of 4 clusters, we let the algorithms partition the data into
2 clusters. From Figure 2(a) we can see that there are ob-
viously two possible partitions, a horizonal cut or a vertical
cut at the center, that will give similar performance where
the performance difference will mainly be due to short-term
noises. Figure 6 shows the degree of cluster membership
change over the 60 timesteps in one run (for obvious rea-
sons, no averaging is taken in this experiment). As can



be seen, the cluster memberships of the two baselines jump
around, which shows that they are not robust to noise in
this case. Also can be seen, the cluster membership of the
PCM algorithm varies much lesser than that of the PCQ
algorithm. The reason for this difference is that switching
the partition from the horizontal cut to the vertical cut will
introduce much higher penalty to PCM than to PCQ —
PCM is directly penalized by the change of eigenvectors,
which corresponds to the change of cluster membership; for
PCQ, the penalty is indirectly acquired from historic data,
not historic cluster membership.
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Figure 6: A case where PCM is more robust vs PCQ

5.1.2 NC-based Evolutionary Spectral Clustering

It is difficult to compare the NC-based evolutionary spec-
tral clustering with the k-means clustering algorithm. In-
stead, in this experiment, we use a toy example in the 2-
dimensional Euclidean space with only 4 timesteps (as shown
in Figure 7) to compare the non-evolutionary version (up-
per panels, with α = 1) and the evolutionary version (lower
panels, with α = 0.9) of the NC-based evolutionary spectral
clustering algorithms. Figure 7 gives the clustering results
with the correct cluster numbers provided to the algorithm.
As can be seen, for the non-evolutionary version, at timestep
2, the two letters “D”’s are confused because they move too
near to each other. At timestep 4, due to the change of
cluster number, part of the newly introduced letter “0” is
confused with the second “D”. Neither happens to the evolu-
tionary version, in which the temporal smoothness is taken
into account.
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Figure 7: A toy example that demonstrates our evo-
lutionary spectral clustering is more robust and can
handle changes of cluster number

As a conclusion, these experiments based on synthetic
data sets demonstrate that compared to traditional cluster-
ing methods, our evolutionary spectral clustering algorithms
can provide clustering results that are more stable and con-
sistent, less sensitive to short-term noise, and adaptive to
long-term trends.

5.2 Real Blog Data
The real blog data was collected by an NEC in-house blog

crawler. Due to space limit, we will not describe how the
data was collected and refer interested readers to [18] for
details. This NEC blog data set contains 148,681 entry-to-
entry links among 407 blogs crawled during 63 consecutive
weeks, between July 10th in 2005 and September 23rd in
2006. By looking at the contents of the blogs, we discovered
two main groups: a set of 314 blogs with technology focus
and a set of 93 blogs with politics focus. Figure 8 shows
the blog graph for this NEC data set, where the nodes are
blogs (with different labels depending on their group mem-
ber) and the edges are interlinks among blogs (obtained by
aggregating all entry-to-entry links).

Figure 8: The blog graph for the NEC data set

One application of clustering blogs is to discover commu-
nities. Since we already have the ground truth of the two
communities based on content analysis, we start by running
the clustering algorithms with k = 2. The data is prepared
in this way: each week corresponds to a timestep; all the
entry-to-entry links in a week are used to construct an affin-
ity matrix for the blogs of that week (i.e., those blogs that
are relevant to at least one entry-to-entry link in that week);
and the affinity matrix is used as the similarity matrix W
in the clustering algorithms. For baselines, we again use
ACC and IND, except that this time the normalized cut al-
gorithm is used. For our algorithms, we use the NC-based
PCQ and PCM. Figures 9(a),(b), and (c) give the CSNC ,
CTNC , and CostNC for the two baseline algorithms and the
PCM algorithm (to make the figures readable, we did not
plot the results for PCQ, which are similar to those of PCM,
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Figure 9: The performance on the NEC data, which
shows that evolutionary spectral clustering clearly
outperforms non-evolutionary ones



as shown in Table 1). In Figure 9(d), we show the error
between the cluster results and the ground truth obtained
from content analysis, where the error is the distance be-
tween partitions defined in Equation (18). As can be seen
from these figures, the evolutionary spectral clustering has
the best performance in all four measures. The high snap-
shot cost of IND was surprising to us. We believe this could
be due to the non-robustness of the normalized cut package
(which we obtained from the homepage of the first author
of [19]). In addition, note that CTNC is usually smaller than
CSNC because CTNC is computed over those nodes that are
active in both t and t-1 and such nodes are usually less than
those that are active at t. This is also one of the reasons for
the high variation of the curves.

Table 1: Performance under Different Cluster Num-
bers for the Blog Data Set

ACC IND NC PCQ NC PCM

CS 0.76 0.79 0.68 0.46

k=2 CT 0.59 0.20 0.10 0.06

Total Cost 0.74 0.73 0.63 0.42

CS 1.22 1.53 1.12 1.07

k=3 CT 0.98 0.22 0.24 0.02

Total Cost 1.21 1.43 1.06 0.98

CS 1.71 2.05 1.70 1.71
k=4 CT 1.40 0.18 0.39 0.03

Total Cost 1.69 1.89 1.59 1.57

In addition, we run the algorithms under different cluster
numbers and report the performance in Table 1, where the
best results among the same category are in bold face. Our
evolutionary clustering algorithms always give more stable
and consistent cluster results than the baselines where the
historic data is totally ignored or totally aggregated.

6. CONCLUSION
There are new challenges when traditional clustering tech-

niques are applied to new data types, such as streaming
data and Web/blog data, where the relationship among data
evolves with time. On one hand, because of long-term con-
cept drifts, a naive approach based on aggregation will not
give satisfactory cluster results. On the other hand, short-
term variations occur very often due to noise. Preferably
the cluster results should not change dramatically over short
time and should exhibit temporal smoothness. In this paper,
we propose two frameworks to incorporate temporal smooth-
ness in evolutionary spectral clustering. In both frameworks,
a cost function is defined where in addition to the traditional
cluster quality cost, a second cost is introduced to regular-
ize the temporal smoothness. We then derive the (relaxed)
optimal solutions for solving the cost functions. The solu-
tions turn out to have very intuitive interpretation and have
forms analogous to traditional techniques used in time series
analysis. Experimental studies demonstrate that these new
frameworks provide cluster results that are both stable and
consistent in the short-term and adaptive in the long run.
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