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Abstract: Many real-world networks are intimately organized according to a community structure. Much research effort
has been devoted to develop methods and algorithms that can efficiently highlight this hidden structure of a network, yielding
a vast literature on what is called today community detection. Since network representation can be very complex and can
contain different variants in the traditional graph model, each algorithm in the literature focuses on some of these properties
and establishes, explicitly or implicitly, its own definition of community. According to this definition, each proposed algorithm
then extracts the communities, which typically reflect only part of the features of real communities. The aim of this survey
is to provide a ‘user manual’ for the community discovery problem. Given a meta definition of what a community in a social
network is, our aim is to organize the main categories of community discovery methods based on the definition of community
they adopt. Given a desired definition of community and the features of a problem (size of network, direction of edges,
multidimensionality, and so on) this review paper is designed to provide a set of approaches that researchers could focus
on. The proposed classification of community discovery methods is also useful for putting into perspective the many open
directions for further research.  2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 512–546, 2011

Keywords: community discovery; social network; groups; complex network; graph partitioning; graph clustering; graph
mining; information propagation

1. INTRODUCTION

A complex network is a mathematical model of inter-
action phenomena that take place in the real world,
which has revealed a powerful computational basis for
the analysis of such phenomena. One critical problem,
which has been widely studied in the literature since
the early analysis of complex networks, is the identifica-
tion of communities hidden within the structure of these
networks.

A community is intuitively understood as a set of entities
where each entity is closer, in the network sense, to the
other entities within the community than to the entities
outside it. Therefore, communities are groups of entities
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that presumably share some common properties and/or
play similar roles within the interacting phenomenon that
is being represented. Community detection is important
for many reasons, including node classification which
entails homogeneous groups, group leaders or crucial
group connectors. Communities may correspond to groups
of pages of the World Wide Web dealing with related
topics [1], to functional modules such as cycles and
pathways in metabolic networks [2,3], to groups of related
individuals in social networks [4], and so on.

Community discovery has analogies to the clustering
problem, a traditional data mining task. In data mining,
clustering is an unsupervised learning task, which aims
to partition large sets of data into homogeneous groups
(clusters). In fact, community discovery can be viewed
as a data mining analysis on graphs: an unsupervised
classification of its nodes. In addition, community discovery
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is the most studied data mining application on social
networks. Other applications, such as graph mining [5],
are still in an early phase of their development. Instead
community discovery has achieved a more advanced
development with contributions from different fields, such
as statistical physics.

Nevertheless, this is only part of the community dis-
covery problem. In classical data mining clustering, we
have data that is not in a relational form. Thus, in this
general form, the fact that the entities are nodes con-
nected to each other through edges has not been thoroughly
explored. Spatial proximity needs to be mapped to net-
work proximity between entities represented as vertices in a
graph.

The most accepted definition of proximity in a network
is based on the topology of its edges. In this case, the
definition of community is formulated according to the
differences in the densities of links in different parts of
the network. Many networks have been found to be non-
homogeneous, consisting not of an undifferentiated mass
of vertices, but of distinct groups. Within these groups
there are many edges between vertices, but between groups
there are fewer edges. The aim of a community detection
algorithm is, in this case, to divide the vertices of a net-
work into some number k of groups, while maximizing the
number of edges inside these groups and minimizing the
number of edges established between vertices in different
groups. These groups are the desired communities of the
network.

This definition reveals vague and unprecise as the
complexity of network representations increases and novel
analytical settings emerge, such as information propagation
or multidimensional network analysis. For example, in a
temporal evolving setting, two entities can be considered
close to each other if they share a common action profile
even if they are not directly connected. Often times, a novel
approach to community discovery is designed to face a
specific problem and it has developed its own definition
of community.

In addition to the variety of different definitions of
community, communities have a number of interesting
features. They can exhibit a hierarchical or overlapping
configuration of the groups inside the network. Or else the
graph can include directed edges, thus giving importance
to this direction when considering the relations between
entities. The communities can be dynamic, that is, evolving
over time, or multirelational, that is, there could be multiple
relations and sets of individuals that behave as isolated
entities in each relation of the network, thus forming a dense
community when considering all the possible relations at
the same time.

As a result this extreme richness of definitions and fea-
tures has lead to the publication of an impressive number of

excellent solutions to the community discovery problem. It
is therefore not surprising that there are a number of review
papers describing all these methods, such as ref. [6].

We believe that a new point of view is needed to orga-
nize the body of knowledge about community detection,
shifting the focus from how communities are detected to
what kind of communities are we interested to detect. Exist-
ing reviews tend to analyze the different techniques from
a procedural perspective. They cluster the different algo-
rithms according to their operational method, not according
to the definition of community they adopt in the first place.
Nevertheless, there are many different ways to conceive
a community within a network, as acknowledged also by
Newman and Leicht [7], where authors maintain that ‘[all
the methods] require us to know what we are looking for
in advance before we can decide what to measure’—here
‘know what we are looking for’ clearly means to define
what a community really is. To use a metaphor, existing
reviews talk about the bricks and mortar that make up a
building with no mention about its architectural style. In
other words, the aim of the previous reviews is to talk to
people interested in building a new community detection
algorithm, rather than those who want to use the meth-
ods presented in the literature. Our aim is precisely the
latter.

We have thus chosen to cluster the community dis-
covery algorithms by considering their reference defini-
tion of what is a community, which depends on what
kinds of groups they aim to extract from the network.
For each algorithm we record the characteristics of the
output of the method, thus highlighting which sets of fea-
tures the reviewed algorithm is suitable or not suitable
for. We also consider some general frameworks that pro-
vide both a community discovery approach and a general
technique. These are applicable to other graph partition-
ing algorithms by adding new features to these other
methods.

The paper is organized as follows. In Section 2 we
provide a general definition of the community discovery
problem and the meta definition of what a community is.
In Section 3, we explain the classification of algorithms
based on community definitions. Then, in Sections 4–11,
we present the main categories of approaches given our
problem definition, along with what we consider to be the
most important works in each given category. In Section
12 we provide various evaluation measurements over a
collection of reviewed methods on a benchmark graph.
Section 13 reviews some other related works, reviews
regarding community discovery in social networks, along
with the rationale behind the novel approach to these meth-
ods provided in this paper. Finally, Section 14 concludes
the survey and provides an approach to possible future
work.
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2. PROBLEM DEFINITION

2.1. Problem Representation

Let us assume that we have a graph G denoted by a
quadruple G = (V , E, L, C), where V is a set of labeled
nodes, E is a set of labeled edges, L is a set of edge labels,
and C is a set of node labels. E is a set of quadruples of
the form (u, v, l, w) where u, v ∈ V are nodes, l ∈ L is a
label, and w is an integer that represents the weight of the
relation. We assume that given a pair of nodes u, v ∈ V and
a label l ∈ L only one edge (u, v, l, w) may exist; however,
the direction of the edge is considered in the model, thus
edges (u, v, l, w) and (v, u, l, w) are considered distinct.
We also assume that each node can be labeled with one or
more category c ∈ C. In addition, we consider the temporal
evolution of the network. Thus each edge, and node, can
be labeled with an arbitrary number of timestamps that
represent the time in which the edge appears and disappears
in the network. The labels of a given node can also change
over time. Note that nodes can create/delete edges in the
network and/or change/introduce/delete one or more labels
in their category set. We call such events ‘actions’ that are
performed by the nodes.

With this complex model we can represent all possible
variants in a graph of a complex real world phenomenon.
For example, we can model multirelational networks by
considering the edge labels L as the different relations
(dimensions) of the network. We can also represent simpler
models, such as unweighted networks, by assigning the
same weight w = 1 to every edge in the network.

Hereafter we will use the notation presented in Table 1.
We introduce new symbols and notations when they are
needed for the presentation of one particular method but
not useful for the others.

2.2. Community Meta Definition

We will now present our meta definition of a community
in a complex network. With this meta definition we create
an underlying concept which is the basis behind this survey

Table 1. Resume of the main notation used in the paper.

Symbol Description

n Number of vertices of the network
m Number of edges of the network
k Number of communities of the network
K Avg degree of the network
K Max degree in the network
T Number of action in the network
A Max number of actions for a node
D Number of dimensions (if any)
c Number of vertex types (if any)
t Number of time step (if any)

and includes all the possible definition variants present in
the literature.

Meta Definition 1 (Community) A community in a com-
plex network is a set of entities that share some closely
correlated sets of actions with the other entities of the com-
munity. Here we consider direct connection as a particular,
and very important, kind of action.

The aim of a community discovery algorithm is to
identify these communities in the network. The desired
result is a list of sets of entities grouped together. Starting
from this meta definition we can model the main aspects of
discovering communities in complex networks.

Density-based definitions. In this classical setting, as we
mentioned in Section 1, the definition is entirely based
on the topology of the network edges. The community is
defined as a group in which there are many edges between
vertices, but between groups there are fewer edges. The
aim of a community detection algorithm is to divide the
vertices of a network into some number k of groups, while
maximizing the number of edges inside these groups and
minimizing the number of edges that run between vertices
in different groups. In our definition we consider the
connection between two vertices a particular kind of action.
Hence, if we group entities by maximizing their common
actions, we also group them by maximizing the edges inside
the community. Community discovery is exactly the same if
the edge creation is the only action recorded in the network
representation. In addition, by considering different kinds
of sets of action in the meta definition, we can also model
the overlapping situation: for certain sets of actions (i.e.,
connections) a node belongs to one community, for another
set of actions, it belongs to another community.

Vertex similarity-based definitions. As pointed out by
Fortunato [6], it is natural to assume that communities
are groups of vertices that are similar to each other. One
can compute the similarity between each pair of vertices
with respect to some reference property, local or global,
irrespectively of whether they are connected by an edge.
Each vertex ends up in the cluster whose vertices are the
most similar to it. By considering an evolving setting in
our problem representation, together with the presence or
absence of a particular property (i.e., a label of the vertex),
we can model the similarity measures as the similarity of
the set of actions.

Action-based definitions. In this setting, which is gaining
increasing attention in the literature, entities can be grouped
by the set of actions they perform inside the network. For
example, in ref. [8] a multimode network is considered in
which users are connected to queries and ads. Two users
are seen as being part of the same community if they are
connected to the same queries (i.e., they perform the same
actions) even if they are not directly linked to each other.

Statistical Analysis and Data Mining DOI:10.1002/sam
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The discovery of communities based on this definition can
be performed considering or not the presence of a direct
link between entities. Both cases are included in our meta
definition.

Influence Propagation-based definitions. In some works,
the concept of a ‘tribe’ has been introduced. In ref. [9], a
tribe is defined as a set of entities that are influenced by
the same leaders. A node is a leader if it has performed an
action and, within a chosen time bound after this action, a
sufficient number of other users have performed the same
action. The role of social ties in this influence spread
is considered. Thus, according to our definition, the set
of users that frequently perform the same actions due to
the influence of their leaders are considered as being a
community.

2.3. Problem Features

There are many features to be considered in the complex
task of detecting communities in graph structures. In this
section, we present some of the features an analyst may be
interested in for discovery network communities. We will
use them to evaluate the reviewed algorithms in Table 2
and also to motivate our classification in Section 3.

Table 2 records the main properties of a community
discovery algorithm. These properties can be grouped into
two classes. The first class considers the features of the
problem representation, the second the characteristics of
the approach.

Within the first class of features we group together all
the possible variants in the representation of the original
real world phenomenon. The most important features we
consider are:

• Overlapping. In some real world networks, commu-
nities can share one or more common nodes. For
example, in social networks actors may be part of dif-
ferent communities: work, family, friends, and so on.
All these communities will share a common member,
and usually more since a work colleague can also be a
friend outside the working environment. Figure 1(a)
shows an example of possible overlapping commu-
nity partitions: the central node is shared by the two
communities. Table 2 indicates if an algorithm con-
siders this feature in the ‘Overlap’ column.

• Directed. Some phenomena in the real world must
be represented with edges and links that are not
reciprocal. This, for example, is the case of the
web graph: a hyperlink from one page to another is
directed and the other page may not have another
hyperlink pointing in the other direction. Figure 1(b)
shows an example in which the direction of the edges

should be considered. The leftmost node is connected
to the community, but only in one direction. If
reciprocity is an important feature, the leftmost node
should be considered outside the depicted community.
See ‘Dir’ column in Table 2.

• Weighted. A group of connected vertices can be
considered as a community only if the weights of
their connections are strong enough, i.e. over a given
threshold. In the case of Figure 1(c), the left group
might not be strong enough to form a community.
See ‘Weight’ column in Table 2.

• Dynamic. Following our problem representation in
Section 2.1, in our setting we have a set of edges that
can appear and disappear. Thus, communities might
also evolve over time. See ‘Dyn’ column in Table 2.

The second class of features collects various desired
properties that an approach might have. These features can
specify constraints for input data, improve the expressive
power of the results or facilitate the community discovery
task.

• Parameter free. A desired feature of an algorithm,
especially in data mining research, is the absence
of parameters. In other words, an algorithm should
be able to make explicit the knowledge that is
hidden inside the data without needing any further
information from the analyst regarding the data or the
problem (for instance, the number of communities).
See ‘NoPar’ column in Table 2.

• Multidimensional input. Multidimensionality in net-
works is an emerging topic [45–47]. A network is
said to be multidimensional if it contains a num-
ber of different kinds of relations that are estab-
lished between the nodes of the network. Thus,
when dealing with multiple dimensions, the notion of
community changes. Our proposed Meta Definition 1
captures this complex environment by representing
the creation or the absence of a particular edge in
a particular dimension with an action. This con-
cept of multidimensionality is used (with various
names: multirelational, multiplex, and so on) by some
approaches as a feature of the input considered by the
approach. See ‘MDim’ column in Table 2.

• Incremental. Another desired feature of an algo-
rithm is its ability to provide an output without an
exhaustive search of the entire input. An incremental
approach to the community discovery is to classify
a node in one community by looking only at its
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(a) Overlapping Communities (b) Directed Community

1

2

1 4
3

7

(c) Weighted Communities

Fig. 1 Different community features.

neighborhood, or the set of nodes two hops away.
Alternatively newcomers are put in one of the previ-
ously defined communities without starting the com-
munity detection process from the beginning. See
‘Incr’ column in Table 2.

• Multipartite input. Many community discovery
approaches work even if the network has the par-
ticular form of a multipartite graph. The multipartite
graph, however, is not entirely a feature of the input
that we might want to consider for the output. Many
algorithms often use a (usually) bipartite projection
of a classical graph in order to apply efficient com-
putations. As in the case of multidimensionality, this
is the reason for including the multipartite input as
a feature of the approach and not of the output. See
‘Multip’ column in Table 2.

There is one more ‘meta feature’ that we consider. This
is the possibility of applying the considered approach to
another community discovery technique by adding new
features to the ‘guest method’. This meta feature will be
highlighted with an asterisk next to the algorithm’s name.

Table 2 also has a ‘Complexity’ column that gives the
time complexity of the methods presented. The two ‘BES’
columns give the Biggest Experiment Size, in terms of
nodes (‘BESn’) and edges (‘BESm’), that are included in
the original paper reviewed. Note that the Complexity and
BES columns often offer an evaluation of the actual values,
as the original work did not provide an explicit and clear
analysis of the complexity or their experimental setting. A
question mark indicates where evaluating the complexity
would not be straightforward, or where no experimental
details are provided.

3. THE DEFINITION-BASED CLASSIFICATION

We now review community detection approaches. In each
section we group together all the algorithms that share the

same definition of what a community is, that is, the same
conditions satisfied by a group of entities that allow them
to be clustered together in a community.

This classification is the main contribution of the paper
and it should help to get a higher level view of the universe
of graph clustering algorithms, by uncovering a practical
and reasoned point of view for those analysts seeking to
obtain precise results in their analytical problems.

The proposed categories are the following:

• Feature Distance (Section 4). Here we collect all
the community discovery approaches that start from
the assumption that a community is composed of
entities which ubiquitously share a very precise set of
features, with similar values (i.e., defining a distance
measure on their features, the entities are all close
to each other). A common feature can be an edge
or any attribute linked to the entity (in our problem
definition: the action). Usually, these approaches
propose this community definition in order to apply
classical data mining clustering techniques, such as
the Minimum Description Length principle [48,49].

• Internal Density (Section 5). In this group we
consider the most important articles that define
community discovery as a process driven by directly
detecting the denser areas of the network.

• Bridge Detection (Section 6). This section includes
the community discovery approaches based on the
concept that communities are dense parts of the graph
among which there are very few edges that can break
the network down into pieces if they are removed.
These edges are ‘bridges’ and the components of the
network resulting from their removal are the desired
communities.

• Diffusion (Section 7). Here we include all the
approaches to the community discovery task that rely
on the idea that communities are groups of nodes that
can be influenced by the diffusion of a certain prop-
erty or information inside the network. In addition,
the community definition can be narrowed down to
the groups that are only influenced by the very same
set of diffusion sources.

• Closeness (Section 8). A community can also be
defined as a group of entities that can reach each of
its own community companions with very few hops
on the edges of the graph, while the entities outside
the community are significantly farther apart.

• Structure (Section 9). Another approach to commu-
nity discovery is to define the community exactly as a

Statistical Analysis and Data Mining DOI:10.1002/sam
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very precise and almost immutable structure of edges.
Often these structures are defined as a combination of
smaller network motifs. The algorithms following this
approach define some kinds of structures and then try
to find them efficiently inside the graph.

• Link Clustering (Section 10). This class can be
viewed as a projection of the community discovery
problem. Instead of clustering the nodes of a network,
these approaches state that it is the relation that
belongs to a community, not the node. Therefore they
cluster the edges of the network and thus the nodes
belong to the set of communities of their edges.

• Meta Clustering (Section 11). There are a number
of community discovery frameworks which do not
have a basic definition of the characteristic of the
community they want to explore. Instead they define
various operations and algorithms to combine the
results of various community discovery approaches
and then use the target method community definition
for their results. Alternatively, they let the analyst
define his/her own notion of community and search
for it in the graph.

In each section we clarify which features in a particular
community discovery category of the ones presented in
the previous section are derived naturally, and which
features are naturally difficult to achieve. We are not
formally building an axiomatic approach, such as the one
built in ref. [50] for spatial clustering. Instead, we are
using the features presented and an experimental setting
to make the rationale and the properties of each category
in this classification more explicit. The experiments made
to support this point are presented in Section 12.

Where possible, we also provide a simple graphical
example of the definition considered. This graphical
example will provide the main properties of the given
classification, in terms of the strong and weak points, in
particular community features.

The aim of this survey is to focus on the most recent and
significant approaches and on the more general definitions
of community. We will not focus on historical approaches.
Some examples of classical clustering algorithms that have
not been extensively reviewed are the Kernighan–Lin algo-
rithm [51] or the classical spectral bisection approach [52].
A particularly popular historic approach to the commu-
nity discovery is the blockmodeling. Aim of blockmodeling
is to create a reduced model of the network by identify-
ing ‘blocks’ (communities) inside the structure that can be
condensed in a single, homogeneous, functional module.
In some cases in this article, this family of approaches is
briefly presented (such as the stochastic blockmodeling [32]

in Section 7 as a diffusion process and the structural equiv-
alence [53,54] in Section 9 as a structure definition). For
the cases not covered by this article, we refer to the book
by Doreian et al. [55].

3.1. The Classification Overlap

There is a sort of overlap for some community defini-
tions. For example, a definition of internal density may
also include communities with sparse external links, that
is, bridges. We will see in Section 5 that in this definition
a key concept is modularity [20]. Modularity is a quality
function which considers both the internal density of a com-
munity and the absence of edges between communities.
Thus methods based on modularity could be clustered in
both categories. However, the underlying definition of mod-
ularity focuses on the internal density, which is the reason
for the proposed classification. To give another example, a
diffusion approach may detect the same communities whose
members can reach each other with just a few hops. How-
ever, this is not always the case: the diffusion approach may
also find communities with an arbitrary distance between
its members.

Many approaches in the literature do not explicitly
define the communities they want to detect or, worse, they
generically claim that their aim is to find dense mod-
ules of the network. This is not a problem for us, as
the underlying community definition can be inferred from
a high-level understanding of the approach described in
the original paper. One cannot expect researchers to be
able to categorize their method before an established cat-
egorization has been accepted. To instigate a discussion
regarding this issue is one of the aims of this paper.
Once further knowledge regarding the field has been estab-
lished, authors will be able to correctly categorize their
approach.

In order to gain stronger evidence of the differences
between the proposed categories, consider Figs 2, 4, 7, 9,
12, and 13. These figures depict the simplest typical com-
munities that have been identified from the definitions of
feature distance, internal density, bride detection, diffu-
sion, closeness, and structure definition, respectively. As
can be seen, there are a number of differences between
these examples. The bridge detection example (Figure 7) is
a random graph, thus with no community structure defined
for the algorithms in the internal density category. The dif-
fusion example (Fig. 9) is also a random graph, however
although the diffusion process identifies two communities,
no clear bridges can be detected.

The overlap is because of the fact that many algorithms
work with some general ‘background’ meta definitions of
community. The categories proposed here can be clustered
together into a hierarchy with the four main categories
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Fig. 2 An example of a graph that can be partitioned with a
notion of ‘distance’ between its nodes.

described in Section 2.2. Further, many algorithms may
present common strategies in the exploration of the search
space or in evaluating the quality of their partition in order
to refine it. Consider, for example, refs [56,57]. In these
two papers there is a thorough theoretical study concern-
ing modularity and its most general form. In ref. [56],
for example, the authors were able to derive modularity
as a random walk exploration strategy, thus highlight-
ing its overlap with the algorithms clustered here in the
‘Closeness’ category.

Evaluating the overlap and the relationships between
the most important community discovery approaches is
not simple, and is outside the scope of this survey. Here
we focus on the connection between an algorithm and its
particular definition of community. Thus we can create
our useful high-level classification to connect the needs
of particular analyses (i.e., the community definitions) to
the tools available in the literature. To study how to
derive one algorithm in terms of another, thus creating
a graph of algorithms and not a classification, is an
interesting open issue which we will leave for future
research.

4. FEATURE DISTANCE

In this section we review the community discovery
methods that define a community according to this meta
definition:

Meta Definition 2 (Feature Community) A feature com-
munity in a complex network is a set of entities that share
a precise set of features (including the edge as a feature).
Defining a distance measure based on the values of the fea-
tures, the entities inside a community are very close to each
other, more than the entities outside the community.

This meta definition operates according to the following
meta procedure:

Meta Procedure 1 Given a set of entities and their
attributes (which may be relations, actions or properties),
represent them as a vector of values according to these
attributes and thus operate a matrix/spatial clustering on
the resulting structure.

Using this definition the task of finding communities is
very similar to the classical clustering problem in data
mining. In data mining, clustering is an unsupervised
learning task. The aim of a clustering algorithm is to assign
a large set of data into groups (clusters) so that the data
in the same clusters are more similar to each other than
any other data in any other cluster. Similarity is defined
through a distance measure, usually based on the number
of common features of the entities, or on similar values of
these attributes.

An example of the clustering technique is K-means [58].
One natural clustering approach to the community dis-
covery is some evolutions of coclustering [59,60] and/or
some spectral approaches to the clustering problem [61].
In ref. [62] there is a survey on coclustering algorithms,
while in ref. [50] there is an interesting axiomatic frame-
work for spatial clustering. Given the rich literature and
methods to cluster matrices, in this category community
discovery approaches may find clusters with virtually any
feature we presented. Table 2 illustrates this by looking how
the feature set for all methods present in this category lacks
any regularity: any feature can be obtained in this category
of approaches. Given the fact that each node and edge is
represented by a set of attributes, it is very easy to obtain
multidimensional and multipartite results by simply clus-
tering it in a complex multidimensional space.

In order to understand the downsides of this category,
consider Figure 2, which depicts a network whose nodes are
positioned according to a distance measure. This measure
could consider the direct edge connection; however, it is
not mandatory. The nodes are then grouped into the same
community if they are close in this space (which may be
highly dimensional depending on the number of features
considered). Figure 2 shows that, depending on the number
of node/edge attributes, the underlying graph structure may
lose importance. This may lead to counter-intuitive results
if the analyst tries to display the clusters by only looking at
the graph structure, thus resulting in a lot of intercommunity
edges. We will discuss this point further in Section 12.

Here we focus on some clustering techniques with
some very interesting features: the evolutionary cluster-
ing [10]; RSN-BD [11], a k-partite graph based approach;
MRGC [14], that is a clustering technique working with
tensors; two approaches that use modularity for the detec-
tion of latent dimensions for a multidimensional community
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discovery with a machine learning classifier that maxi-
mizes the number of common features [12,13]; a Bayesian
approach to clustering based on the predictability of the
features for nodes belonging to the same group [15];
and an analysis of the shared attribute connections in a
bipartite graph entity-attribute [16]. There are also popu-
lar approaches in statistics, such as mixture modeling [63],
that fall in this category, in which the authors infer with a
log-likelihood approach the position of the nodes in a high
dimensional Euclidean space based on the values of their
features. Then the division in cluster is statistically inferred.

An interesting clustering principle is the Minimum
Description Length principle [48,49]. In MDL the main
concept is that any regularity in the data (i.e., common
features) can be used to compress it, that is, to describe it
using fewer symbols than the number of symbols needed
to describe the data literally (see also [64,65]). The more
regularities there are, the more the data can be compressed.
This is a very interesting approach since, in some imple-
mentations, it enables the community discovery to be per-
formed without setting any parameters. After considering
the classical clustering approaches, in this section we also
present three main algorithms that implement a MDL com-
munity discovery approach: Autopart [17] (i.e., to the best
of our knowledge, the first popular community discovery
that formulates the ground theory for the MDL commu-
nity detection), the context-specific cluster tree [19], and
Timefall [18].

4.1. Evolutionary* [10]

In ref. [10] the authors tackle the classical clustering
problem by adding a temporal dimension. This novel
situation includes several constraints:

• Consistency. Any insights derived from a study of
previous clusters are more likely to apply to future
clusters.

• Noise Removal. Historically consistent clustering
provides greater robustness against noise by taking
previous data points into effect.

• Smoothing. The true clusters shift over time.

• Cluster correspondence. It is generally possible to
place today’s clusters in relation to yesterday’s
clusters, so the user will still be situated within the
historical context.

In order to consider these constraints, two clustering
division measures are defined: snapshot quality and history
cost. The snapshot quality of Ct , a proposed cluster

division, measures how well Ct represents the data at time-
step t . The history cost of the clustering is a measure of the
distance between Ct and Ct−1, the clustering used during
the previous time-step.

This setting is similar to incremental clustering, but with
some differences, [66]. There are two main differences.
First, the focus is on optimizing a new quality measure
which incorporates a deviation from history. Secondly, it
works on-line (i.e., it must cluster the data during time-step
t before seeing any data for time-step t + 1), while other
frameworks work on data streams [67].

This framework can be added to any clustering algorithm.
The time complexity will be O(n2), particularly on the
agglomerative hierarchical clustering, used for the examples
in the original paper, although some authors claim that
a quasilinear implementation [68] is possible. However,
the framework is presented here because it is possible to
apply its principles to all the other community discovery
algorithms presented in this survey.

There are two framework applications worth noting. The
first is FacetNet [69], in which a framework to evaluate the
evolution of the communities is developed. The second one
is l-KK [70], in which the concepts of nanocommunities
and k -clique-by-clique are introduced. These concepts are
useful for assessing the snapshots and historical quality of
the communities identified in various snapshots with any
given method.

4.2. Relation Summary Network with Bregman
Divergence [11]

Relation summary network with bregman divergence
(RSN-BD) is a community discovery approach focused
on examples of real-world data that involve multiple
types of objects that are related to each other. A natural
representation of this setting is a k -partite graph of
heterogeneous types of nodes. This method is suitable for
general k -partite graphs and not only for special cases such
as ref. [71]. The latter has the restriction that the numbers of
clusters for different types of nodes must be equal, and the
clusters for different types of objects must have one-to-one
associations.

The key idea is that in a sparse k -partite graph, two nodes
are similar when they are connected to similar nodes even
though they are not connected to the same nodes. In order to
spot this similarity, authors produce a derived structure (i.e.,
a projection) to make these two node closely connected. In
order to do this, the authors of ref. [11] add a small number
of hidden nodes. This derived structure is called a Relation
Summary Network and must be as close as possible to
the original graph. They can evaluate the distance between
the two structures by linking every original node with one
hidden node and every hidden node couple if both hidden
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nodes are linked by the same original node. The distance
function then sums up all the Euclidean distances between
the weights of the edges in the original graph and in
the transformed graph (any Bregman divergence distance
function can be used). A Bregman divergence defines a
class of distance measures for which neither the triangle
inequality, nor symmetry, is respected, and these measures
are defined for matrices, functions and distributions [72].
The total complexity of the algorithm, as discussed by the
authors, is O(n2ck).

4.3. MRGC [14]

In this model, each relation between a given set of entity
classes is represented as a multidimensional tensor (or data
cube) over an appropriate domain, with the dimensions
associated with the various entity classes. In addition, each
cell in the tensor encodes the relation between a particu-
lar set of entities and can either take real values, that is,
the relation has a single attribute, or itself is a vector of
attributes.

The general idea is that each node and each relation is a
collection of attributes. All these attributes are a dimension
of the relational space. Multiway relation graphs clustering
(MRGC) basically tries to find a solution on one dimension
at a time. It finds the optimal clustering with respect to each
dimension by keeping every other intermediate result on the
other dimensions fixed (thus its time complexity is given
by the number of relations times the number of dimensions,
that is, O(mD)). It then evaluates the solutions and
keeps recalculating over all dimensions until it converges.
Although defined for relation graphs, this model can be also
used for identify community structures in social networks.

MRGC operates in a multiway clustering setting where
the objective is to map the set of entities in a (smaller)
set of clusters by using a set of clustering functions (i.e.,
it is a general framework in which previous coclustering
approaches, such as ref. [73], can be viewed as special
cases). The crucial mechanism in this problem is how to
evaluate the quality of the multiway clustering in order to
get to the convergence. In this case, the authors propose
to measure it in terms of the approximation error or
the expected Bregman distortion [74] between the original
tensor and the approximate tensor built after applying the
clustering function.

4.4. SocDim [12]

One basic (Markov) assumption in community discovery
is frequently that the label of a node is only dependent on
the labels of all its neighbors. SocDim tries to go beyond
this assumption by building a classifier which not only
considers the connectivity of a node, but assigns additional

information to its connection, that is, a description of a
likely affiliation between social actors. This information is
called latent social dimensions and the resulting framework
is based on relational learning.

In order to do this, two steps are performed by SocDim.
Firstly, it extracts latent social dimensions based on network
connectivity. It uses modularity (Section 5) in order to
find in the structure of the network the dimensions in
which the nodes are placed (following the homophily
theory which states that actors sharing certain properties
tend to form groups [75]). This can usually be done
in O(n2 log n). This step may be replaced if there is
already knowledge of the social dimensions. Secondly, it
constructs a discriminative classifier (one-vs-rest linear [76]
or structural [77] SVM): the extracted social dimensions
are considered as normal features (including other possible
sources) in the classical supervised learning task. It is
then possible to use the predicted labels of the classifier
to reconstruct the community organization of the entities.
This is a multidimensional community discovery because
the classifier will determine which dimensions are relevant
to a class label.

This work is the basis of a further evolution [78] that
has an edge-centric view of communities (similar to the
methods classified in Section 10)

4.5. PMM [13]

This work was originally presented in ref. [79] and then
evolved in ref. [13]. It presents a variation of the modu-
larity approach on a multidimensional setting. The goal of
the principal modularity maximization (PMM) algorithm
is: given a lot of different dimensions, find a concise rep-
resentation of them (the authors call this step ‘Structural
Feature Extraction’, computing modularity with the Lanc-
zos method. The latter is an algorithm to find eigenvalues
and eigenvectors of a square matrix [80], of complexity
O(mn2)) and then detect the correlations between these rep-
resentations (in the ‘Cross-Dimension Integration’, using a
generalized canonical correlation analysis [81]).

After this step, the authors obtain lower-dimensional
embedding, which captures the principal pattern across all
the dimensions of the network. They can then perform
k -means [58] on this embedding to find out the discrete
community assignment.

4.6. Infinite Relational [15]

Suppose there are one or more relations (i.e., edges)
involving one or more types (i.e., nodes). The goal of
the Infinite Relational Model is to partition each type into
clusters (i.e., communities), where a good set of partitions
allows relationships between entities to be predicted by their
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cluster assignments. The authors’ goal is to organize the
entities into clusters that relate to each other in predictable
ways, by simultaneously clustering the entities and the
relations.

Formally, suppose that the observed data are m relations
involving n types. Let Ri be the ith relation, T j be the j th
type, and zj be a vector of cluster assignments for T j . The
task is to infer the cluster assignments, and the ultimate
interest lies in the posterior distribution P (z1, . . . , zn |
R1, . . . , Rm).

To enable the IRM to discover the number of clusters
in type T , the authors use a prior [82] that assigns
some probability mass to all possible partitions of the
type. Inferences can be made using Markov chain Monte
Carlo methods to sample from the posterior on cluster
assignments. This method has a very high time complexity
(O(n2cD)).

4.7. Find-Tribes [16]

Find-Tribes was not explicitly developed for community
discovery purposes. However, the technique can still be
used to identify some kind of community. It is very close
to our ‘action’ definition of a community: the entities in a
group tend to behave in the same way.

As input, the authors require a bipartite graph G = (R ∪
A, E) of entities R and attributes A. The entities should
connect to several attributes. The aim of the algorithm is
to return those groups sharing ‘unusual’ combinations of
attributes. This restriction can be easily generalized in order
to also obtain the ‘usual’ groups as outputs.

The strategy for the desired task revolves around the
development of a good definition of ‘unusual’. For an entity
group to be considered anomalous, the shared attributes
themselves need not be unusual, but their particular
configuration should be. A projected nonbipartite graph
H ′(R, F ) is built, then for each edge a score cij (the number
of attributes in the shared sequence, the number of time
steps of overlap, a probabilistic Markov chain of attributes
and so on) is computed, measuring how significant or
unusual its sequence of shared attributes is. In the end a
threshold d is chosen and all edges fij removed for which
cij < d are removed. The connected components of H ′ are
the desired tribes and the overall complexity is O(mnK2).

4.8. Autopart [17]

Autopart is the basic formulation of the MDL approach
to the community discovery problem. There is a binary
matrix that represents associations between the n nodes of
the graph (and their attributes). An example of a possible
adjacency matrix is shown in Fig. 3(a).

(a) The original matrix (b) Reordered matrix

Fig. 3 An example of the MDL principle for matrices: the matrix
on the left is exactly the same matrix as the one on the right, but
reordered in order to describe it simply.

The main idea is to reorder the adjacency matrix so
that similar nodes, that is, nodes that are connected to
the same set of nodes, are grouped with each other. The
adjacency matrix should then consist of homogeneous rect-
angular/square blocks of a high (low) density, representing
the fact that certain node groups have more (less) connec-
tions with other groups (right hand side of Fig. 3(b)), which
can be encoded with a great compression of the data. The
aim of the algorithm is to identify the best grouping that
minimizes the cost (compression) function [83].

A trade-off point must therefore be identified that
indicates the best number of groups k. The authors solved
this problem using a two-step iterative process: first, they
find a good node grouping G for a given number of node
groups k that minimize entropy; and second, they search
for the number of node groups k by splitting the previously
identified groups and verifying if there is a possible gain in
the total encoding cost function, at a total time complexity
of O(mk2).

4.9. Context-specific Cluster Tree [19]

In this variant of the MDL approach, a binary ns × nd

matrix represents a bipartite graph with ns source nodes
and nd destination nodes. The aim is to automatically
construct a recursive community structure of a large
bipartite graph at multiple levels, namely, a context-specific
cluster tree (CCT). The resulting CCT can identify relevant
context-specific clusters. The main idea is to subdivide the
adjacency matrix into tiles, or ‘contexts’, with a possible
reordering of rows and columns, and to compress them,
either as-is (if they are homogeneous enough) or by further
subdividing.

The entire graph is considered as a whole community.
If the best representation of the considered (sub)graph is
the random graph, by testing its possible compression with
a total encoding cost function, then the community cannot
be split into two subcommunities. In fact, by definition the
random graph has no community structure at all. Otherwise,
the graph is split and the algorithm is reapplied recursively.
Each edge is visited once for each subdivision (thus the
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complexity is O(mk)). The result is a tree of communities
in which the bottom levels are a context specialization of
the generic communities at the top of the tree.

This idea of recursive clustering is also applied to
streaming setting [84,85], although with a number of
parameters. This is a hierarchical evolution of the existing
flat method described in ref. [60].

4.10. Timefall [18]

Timefall is an MDL approach that can be described
as a parameter-free network evolution tracking. Given n

time-stamped events each related to several of m items,
it simultaneously finds (a) the communities, that is, item-
groups (e.g., research topics and/or research communities)
and (b) a description of how the communities evolve
over time (e.g., appear, disappear, split, merge), and (c) a
selection of the appropriate cut-points in time when existing
community structures change abruptly.

The adjacency matrix representing the graph is split
according to the row timestamps. Columns are then
clustered with a Cross Association algorithm [60], which
is the basis of the MDL community discovery algorithms.
The MDL principle is used again to connect the column
clusters of the matrices across the split rows: if two column
clusters can be encoded together with a low encoding cost
then they are connected, ignoring time points with little or
no changes. The time complexity is equal to O(mk).

5. INTERNAL DENSITY

For this group of approaches, the underlying meta
definition is:

Meta Definition 3 (Dense Community) A dense commu-
nity in a complex network is a set of entities that are densely
connected. In order to be densely connected, a group of ver-
tices must have a number of edges significantly higher than
the expected number of edges in a random graph (which has
no community structure).

The following meta procedure is generally shared by the
algorithms in this category:

Meta Procedure 2 Given a graph, try to expand or col-
lapse the node partitions in order to optimize a given density
function, stopping when no increment is possible.

Figure 4 shows a network in which the identified
communities are significantly denser than a random graph
with the same degree distribution.

A key concept for satisfying this meta definition is mod-
ularity [86]. Briefly, consider dividing the graph into c

Fig. 4 An example of a graph which can be partitioned with a
notion of internal density between its nodes.

nonoverlapping communities. Let ci denote the commu-
nity membership of vertex vi , ki represents the degree of
vertex i. Modularity is a measure of deviation from an
expected value, that is, the community structure of a uni-
form random graph model with the same expected degree
sequence of the original network. In this model one entity
connects to others with uniform probability. For two nodes
with degree ki and kj respectively, the expected number of
edges between the two in a uniform random graph model
is

kikj

2m
, where m is the number of edges in the graph. Mod-

ularity measures how far the interaction deviates from a
uniform random graph with the same degree distribution.
It is defined as:

Q = 1

2m

∑
ij

[
Aij − kikj

2m

]
δ(ci, cj ),

where δ(ci, cj ) = 1 if ci = cj (i.e., the two nodes are in
the same community), and 0 otherwise, and Aij is the num-
ber of edges between nodes i and j . A larger modularity
indicates a denser within-group interaction. Note that Q

could be negative if the vertices are split into bad clusters,
or simply if the network has a disassortative or multipar-
tite structure. Q > 0 indicates that the clustering captures
some degree of community structure. Essentially, the aim
is to find a community structure such that Q is maximized.

Modularity is involved in the community discovery prob-
lem on two levels. First, it can quantify how good a given
network partition is. It gives a result of the quality of the
partition even without any knowledge of the actual commu-
nities of the network. This is especially suitable for very
large networks. On the other hand, modularity is not the
perfect solution for evaluating a proposed community par-
tition. It suffers from well known problems, in particular
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the resolution problem. Modularity fails to identify com-
munities smaller than a scale that depends on the total
size of the network and on the degree of interconnected-
ness of the communities, even in cases where modules are
unambiguously defined. Furthermore, with modularity only
communities extracted according to the meta definition pro-
posed in this section can be evaluated. Any other kind of
definition of communities will result in a not so meaningful
evaluation by applying modularity. For an extensive review
of the known problems of modularity see refs [6,87].

The second level of the modularity usage in the graph
partitioning task is represented by community discovery
algorithms that are based on modularity maximization.
These algorithms suffer from the aforementioned problems
of the usage of modularity as quality measures. However,
modularity maximization is a very prolific field of research,
and there are many algorithms relying on heuristics and
strategies for finding the best network partition.

We will present the main example of a modularity-
based approach, providing references for minor modularity
maximization algorithms. A good review of the eigenvector
modularity-based work is in ref. [88].

Modularity is not the only cost function that is able
to quantify whether a set of entities is more related than
expected and thus can be considered as a community. The
other reviewed methods that rely on different techniques,
but share the same meta definition of community proposed
in this section, are: MetaFac [21], a hypergraph factor-
ization technique; a physical–chemical algorithm using a
Bayesian approach [22]; a local density-based approach
called LA → IS2 [23]; and another proposed function used
to measure the internal local density of a cluster [24].

Optimizing a density function is suitable for many
graph representations such as directed graphs and weighted
graphs. However, in addition to modularity problems, there
are other weak points. For example, more complex struc-
tures are not tractable in this approach such as multidimen-
sional networks. If multiple different qualitative relations
are present in a network, how should a consistent value
of ‘multirelational density’ be computed? A variant of the
modularity for multislice networks [89] is able to do so.
However, recent works posed some questions about the
ambiguity of density in multidimensional networks [90,91],
and these concerns are not addressed in ref. [89]. Therefore,
given the current situation it is not possible to have a clear
solution to the multidimensional density and the approaches
present in this category are flawed in this scenario.

5.1. Modularity [20]

To find a partition that provides the maximum value
of modularity is an NP-complete problem. Many greedy
heuristics have therefore been proposed. After a pioneering
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Fig. 5 A dendrogram result for the modularity maximization
algorithm, with a plot of resulting modularity values given the
partition.

work proposing modularity [92], Newman presented an
efficient strategy for modularity maximization, namely
repeatedly merging the two communities whose amalga-
mation produces the largest increase in Q. This produces a
dendrogram representing the hierarchical decomposition of
the network into communities at all levels, which must be
cut in the modularity peak in order to obtain the commu-
nities, as depicted in Fig. 5.

Figure 5 also shows another problem of modularity max-
imization heuristics. It has been discovered that modularity
does not have a single peak given all the possible partitions,
but there are several local optima. Moreover, real networks
have many near-global-optima at various places [87] (the
rightmost peak in Fig. 5) and we cannot know where the
algorithm locates its solution.

The optimization proposed by Clauset et al. [20] is to
store a matrix containing only the values of the commu-
nities, i.e. the modularity changes when joining the com-
munities i and j . The algorithm can now be defined as
follows. Calculate the initial values of �Qi,j and keep
track of the largest element of each row of the matrix
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�Q. Select the largest �Qi,j among these largest elements,
join the corresponding communities, update the matrix �Q

and the collection of the largest elements and increment Q

by �Qi,j . Repeat this last step until the dendrogram is
complete. In [93] the modularity maximization approach is
adapted to the case of a directed network. We therefore
have a matrix representation of the graph, but the matrix is
not symmetric. The algorithm is based on ref. [94].

More recent works point to also applying the modularity
approach to overlapping communities [95]. A local eval-
uation of modularity has also been proposed, by dividing
the graph into known, boundary and unexplored sets. Two
more implementations of modularity-based algorithms can
be found in ref. [96].

Another optimization of modularity-based approaches is
presented in ref. [97]. This is basically a divisive algorithm
that optimizes the modularity Q using a heuristic search.
This search is based on a measure (λ) that depends on
the node degree, and its normalization involves all the
links in the network after summation. The node selected, in
an original external optimization algorithm [98] is always
the node with the worst λi-value. There is a τ -EO
version [99] that is less sensitive to different initializations
and allows escape from local maxima. A number of
other optimization strategies have been proposed (size
reduction [100], simulated annealing [101]).

Finally, we present the last greedy approach working
with the classical definition of modularity [102]. The
previous largest graph used for modularity testing was 5.5
million nodes [103], with this improvement it is possible
to scale up to 100 million nodes. The algorithm is divided
into two phases that are repeated iteratively. For each node
i the authors consider the neighbors J of i and evaluate
the gain in modularity that would take place by removing i

from its community and by placing it in the community
of J . The node i is then placed in the community for
which this gain is maximum until no individual move
can improve the modularity. The second phase consists
in building a new network whose nodes are now the
communities found during the first phase. It is then possible
to reapply the first phase to the resulting weighted network
and to iterate. This method has been tested on the UK-
Union WebGraph [104], on cocitation networks [105], and
on mobile phone networks.

A particularly interesting modularity framework is Mul-
tislice modularity [89]. The authors extend the null model
of modularity (the random graph) to the novel multi-
plex (i.e., multidimensional) setting. They use several
generalizations, namely an additional parameter that con-
trols coupling between dimensions, basing their opera-
tion on the equivalence between modularity-like quality
functions and Laplacian dynamics of populations of ran-
dom walkers [56]. Basically they extend Lambiotte et al.’s

work by allowing multidimensional paths for the random
walker [106], considering the different connection types
with different weights [107], and a different spread of these
weights among the dimensions [108].

In order to represent both snapshots and dimensions of
the network, the authors use slicing. Each slice s of a
network is represented by adjacency Aijs between nodes
i and j . The authors also specify interslice couplings Cjrs

that connect node j in slice r to itself in slice s. They notate
the strengths of each node individually in each slice, so that
kjs = ∑

i Aijs and cjs = ∑
r Cjsr , and define the multislice

strength κjs = kjs + cjs . The authors then specify an
associated multislice null model. The resulting multislice
extended definition of modularity is the following:

Q = 1

2µ

∑
ijsr

{(
Aijs − γs

kiskjs

2ms

δsr

)
+ δijCjsr

}
δ(cis, cjr ).

In this extension γs is the resolution parameter, that may
or may not be different for each slice. If γs = 1 for any s,
then this formula degenerates on the usual interpretation of
modularity as a count of the total weight of intraslice edges
minus the weight expected at random. Otherwise interslice
coupling Cjsr is considered. Cjsr takes values from 0 to
∞. If Cjsr = 0 we degenerate again in the usual modularity
definition. Otherwise the quality-optimizing partitions force
the community assignment of a node to remain the same
across all slices in which that node appears. In addition the
multislice quality is reduced to that of an adjacency matrix
summed over the contributions from the individual slices
with a null model that respects the degree distributions
of the individual contributions. The generality of this
framework also enables different weights to be included
across the Cjsr couplings. After defining the new quality
function, the algorithm needed to extract communities can
be one of many modularity-based algorithms.

In Table 2 we merged all modularity approacches on the
single ‘Modularity’ row. One caveat is that, depending on
the implementation, not all the features may be returned
(e.g., only Multislice implementation is able to consider
multidimensionality).

5.2. MetaFac [21]

In this work, the authors introduce the concept of
metagraph. The metagraph is a relational hypergraph to
represent multirelational and multidimensional social data.
In practice, there are entities which connect to different
kinds of objects in different ways (e.g., in a social media
through tagging, commenting, or publishing a photo, video,
or text). The aim is to discover a latent community structure
in the metagraph, for example, the common context of user
actions in social media networks. In other words the authors
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Fig. 6 A third-order tensor.

are interested in clusters of people who interact with each
other in a coherent manner. In this model, a set of entities
of the same type is called a facet. An interaction between
two or more facets is called a relation.

The idea of the authors is to use an M-way hyperedge to
represent the interactions of M facets: each facet as a vertex
and each relation as a hyperedge on a hypergraph. A meta-
graph defines a particular structure of interactions between
facets (groups of entities of the same type), not between
facet elements (the entities themselves). In order to do so,
the metagraph is defined as a set of data tensors. A tensor is
an array with N dimensions (see Fig. 6 for an intuitive rep-
resentation of a three dimensional tensor). This is a math-
ematical and computer science definition of tensors, for
the notion of tensor in physics and engineering see [109].
For an extensive review of tensors, tensor decomposition
and their applications and tools see [110] (in this work
some examples are also provided of possible applications
of tensor decompositions: signal processing [111], numeri-
cal linear algebra [112] and, closer to our area of interest,
data mining [113,114], graph analysis tasks [115,116], and
recommendation systems [117]).

Given the metagraph and its defined data tensors, the
authors apply a tensor decomposition and factorization
operation, which is a very hard task with a number of
known issues. To the best of our knowledge, only recently
have some memory and time efficient techniques been
developed, such as [118]. In the metagraph approach the
tensor decomposition can also be viewed as a dynamic anal-
ysis, when the sets of tensors are temporally annotated and
the resulting core tensor refers to a specific time-step t .
This is called metagraph factorization (for time evolving
data). Finally, the MF problem can be stated in terms of

optimization, i.e. minimizing a given cost function, thus
obtaining facet communities (for a time complexity of
O(mnD)).

5.3. Variational Bayes [22]

In this work, the authors model a complex network as
a physical system, and then the problem of assigning each
node to a module (inferring the hidden membership vector)
in the network is tackled by solving the disorder-averaged
partition function of a spin-glass.

The authors define a joint probability by considering the
number of edges present and absent within and among the
K communities of a network. Traditional methods [119]
need to specify K , this one is parameter free: the most
probable number of modules (i.e., occupied spin states)
is determined as K∗ = argmaxKp(K|A). Such methods
also need to infer posterior distributions over the model
parameters (i.e., coupling constants and chemical poten-
tials) p(π, θ |A) and the latent module assignments (i.e.,
spin states) p(σ |A). The computationally intensive solution
is tackled using the variational Bayes approach [120].

This is a special case of the more general Stochastic
Block Model, which is a family of solutions that reduces
the community discovery problem to a statistical inference
one. Historical approaches are [121,122], while other algo-
rithms with the same technique, but different community
definitions, are presented in different sections of this paper.

5.4. LA → IS2* [23]

In this work, the authors adopt the following definition
of a community: a group C of actors in a social
network forms a community if its communication density
function achieves a local maximum: basically, a group is
a community if adding any new member to, or removing
any current member from, the group decreases the average
number of the ‘communication exchanges’ [123] (you can
think this communication exchanges as the edges).

This work is an evolution of ref. [124]. It is built on
two distinct phases: link aggregate (LA) and the real core
of community detection (IS2). The authors need a two-
step approach because the IS2 algorithm performs well
at discovering communities given a good initial guess, for
example, when this guess is the output of another clustering
algorithm, in this case called LA.

In LA, the nodes are ordered according to some
criterion, for example decreasing Page Rank [125], and then
processed sequentially according to this ordering. A node is
added to a cluster if adding it improves the cluster density.
If the node is not added to any cluster, it creates a new
cluster. The complexity of this stage is O(mk + n).
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IS2 explicitly constructs a cluster that is a local
maximum w.r.t. a density metric by starting at a seed
candidate cluster and updating it by adding or deleting
one node at a time as long as the metric strictly improves.
The algorithm can be applied to the results of any other
clustering technique, thus making this approach useful
a general framework to improve some incomplete, or
approximate, results.

5.5. Local Density [24]

In this work, the authors apply the classical approach
which characterizes this category, that is, to define a density
quality measure to be optimized and then recursively merge
clusters if this move produces an increase in the quality
function. Here this function is the internal degree of a
cluster C, that is, the number of edges connecting vertices in
C to each other, degint (C) = |{(u, v) ∈ E|u, v ∈ C}|. Thus
it is possible to define the local density of cluster as

δl(C) = degint(C)
|C|(|C| − 1)

.

Optimizing δ ∈ [0, 1] alone makes small cliques superior
to larger but slightly sparser subgraphs, which is often
impractical. For clusters to only have a few connections to
the rest of the graph, one may optimize the relative density

δr (C) = degint(C)
degint(C) + degext(C)

,

where degext(C) = |{(u, v) ∈ E|u ∈ C, v ∈ V \ C}|. The
final quality measure used is f (C) = δl(C)δr (C). A good
approximation of the optimal cluster for a given vertex
can be obtained by a local search, guided with simulated
annealing [126].

6. BRIDGE DETECTION

The meta definition of community for the algorithms in
this section is:

Meta Definition 4 (Isolated Community) An isolated co-
mmunity in a complex network is a component of the
network obtained by removing all the sparse bridges from
the structure that connect the dense parts of the network.

Usually, approaches in this category implement the
following meta procedure:

Meta Procedure 3 Rank nodes and edges in the network
according to a measure of their contribution to keeping the
network connected and then remove these bridges or avoid
expanding the community by including them.

Fig. 7 An example of a graph that can be partitioned by
identifying a ‘bridge’.

The bridge identified by the arrow in Fig. 7 is a perfect
example of an edge to be removed in order to decompose
the network into disconnected components which represent
our communities. The main focus for these approaches is
how to find these bridges (which can be either nodes or
edges) inside the network. The most popular approach in
this category is to use a centrality measure. No assumptions
at all are made about the internal density of the identified
clusters.

In a social network analysis, a centrality measure is a
metric defined in order to obtain a quantitative evaluation
of the structural power of an entity in a network [127].
An entity does not have power in the abstract, it has power
because it can dominate others. There are a number of mea-
sures defined to capture the power of an entity in a network.
These include: degree centrality, actors who have more ties
to other actors may have more favorable positions; close-
ness centrality, the closer an entity is to other entity in the
network, the more power it has; betweenness centrality, the
most important entity in the network is the entity present in
the majority of the shortest paths between all other entities.

Here we focus on two methods based on an edge
definition of the traditional node betweenness centrality:
the very first edge betweenness community discovery
algorithm [4], which has recently been the focus of further
evolutions, that is, a general approach that uses split
betweenness in order to obtain an overlapping community
discovery framework [25]. We then also consider two
alternative methods [26,27] which try to detect the bridges
by expanding the community structure and computing a
community fitness function.

As can be seen in Table 2, these algorithms are good at
finding overlapping partitions (it is not the original edge
betweenness algorithm, however basically the CONGA
strategy enables it to detect overlapping clusters). The weak
points of this approach appear when dealing with dynamic,
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multidimensional or incremental structures. We are not able
to prove this point in the experimental section so we will
use an intuitive explanation. In order to compute the fitness
function to detect bridges, it is necessary to start from the
assumption that the algorithm is a complete representation
of all connections among the clusters, which may be hard in
an incremental setting. Furthermore, for routing algorithms
that are needed to compute the betweenness or closeness
centrality, there are some constraints on the structure of
the network which are not satisfied in a multidimensional
setting. Consider a network with two dimensions and a rule
that states that jumping from one dimension to another,
lowers the cost of the path. We thus have negative cycles
and a significant shortest path cannot be computed (as in
Bellman-Ford’s algorithm, disallowing edge repetition, it is
possible to obtain a shortest path that will always cross all
the negative cycles it can, thus destroying the concept of
bridge [128]).

6.1. Edge Betweenness [4]

The main assumption of this work is that if a network
contains communities or groups that are only loosely con-
nected by a few inter-group edges, then all the shortest
paths between different communities must go along one
of these edges. In order to find these edges, which are
mostly between other pairs of vertices, the authors gener-
alize Freeman’s betweenness centrality [129] to edges, and
define the ‘edge betweenness’ of an edge as the number of
shortest paths between pairs of vertices that run along it.
Figure 8 depicts an example, where the size of the edges
is proportional to their edge betweenness. As can be seen,

Fig. 8 An intuitive example of the bridge detection approach. In
this graph the edge width is proportional to the edge betweenness
value. Wider edges are more likely to be a bridge between
communities.

the higher edge betweenness values are taken by the edges
between communities. By removing these edges, it is possi-
ble to separate one group from one another and thus reveal
the underlying community structure of the graph.

This is one of the first community discovery algorithms
developed after the renewed interest in social network anal-
ysis that started in the late 1990s. Previously the traditional
graph partitioning approach constructed communities by
adding the strongest edges to an initially empty vertex set
(as in hierarchical clustering [130]). Here, the authors con-
struct communities by progressively removing edges from
the original graph.

While the classical implementation of the edge between-
ness algorithm is O(mn), a speed-up for parallel systems
that are linear [125] has recently been proposed. Thus with-
out the parallel algorithm the worst case time complexity
is O(m2n). There are slight variations of this method using
different centrality measures [131,132].

6.2. Cluster-Overlap Newman Girvan Algorithm [25]

Cluster-overlap Newman Girvan algorithm (CONGA) is
based on the well-known edge betweenness community
discovery algorithm [4], described in Section 6.1. It adds
the ability to split vertices between communities, based on
the new concept of ‘split betweenness’.

The split betweenness [133] of a vertex v is the number
of shortest paths that would pass between the two parts of
v if it was split. There are many ways to split a vertex
into two, the best split is the one that maximizes the split
betweenness. Basically, with the following split operation,
any disjoint community discovery algorithm can be applied
and returns overlapping partitions [134]:

1. Calculate edge betweenness of edges and split
betweenness of vertices.

2. Remove edge with maximum edge betweenness or
split vertex with maximum split betweenness, if
greater.

3. Recalculate edge betweenness and split betweenness.

4. Repeat from step 2 until no edges remain.

Given a relaxed assumption on the edge betweenness
computation, the total time complexity of CONGA is
O(n log n).

6.3. L-Shell [26]

In L-Shell algorithm, the idea is to expand a community
as much as it can, stopping the expansion whenever the
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network structure does not allow any further expansion,
that is, the bridges are reached.

The key concept is the l-shell, a group of l vertices
whose aim is to grow and occupy an entire community
while two quantities are computed: the emerging degree and
total emerging degree. The emerging degree of a vertex is
defined as the number of edges that connect that vertex
to vertices that the l-shell has not already visited as it
expanded from the previous (l − 1), (l − 2), ... −shells.
The total emerging degree Kj of an l-shell is thus the sum
of the emerging degrees of all vertices on the leading edge
of the l-shell.

For a starting vertex j the algorithm starts an l-shell,
l = 0, at vertex j (add j to the list of community members)
and computes the total emerging degree of the shell. Then
it spreads the l-shell, l = 1, it adds the neighbors of j to the
list, and computes the new total emerging degree. Now it
can compute the change in the emerging degree of the shell.
If the total emerging degree is increased less than a given
threshold α, then a community has been found. Otherwise
it increases the size of the shell (posing l = l + 1) until α

is crossed or the entire connected component is added to
the community list. As can be seen, for each node we have
a quadratic problem, that is, the time complexity is O(n3).
The assumption is that a community is a structure in which
the total emerging degree cannot be significantly increased,
that is,the vertices at the border of the community have
few edges outside it and these edges are the bridges among
different communities.

6.4. Internal-External Degree [27]

An approach close to l-shell starts from the similar
basic assumption that communities are essentially local
structures, involving the nodes belonging to the modules
themselves plus at most an extended neighborhood of them.
The fitness chosen here is the total internal degree of nodes
on the sum of internal and external degrees to the power of a
positive real-valued parameter (α). Given a fitness function,
the fitness of a node A with respect to subgraph G, fG, is
defined as the variation of the fitness of subgraph G with and
without node A. The process of calculating the fitness of
the nodes and them joining them together in a community
stops when the nodes examined in the neighborhood
of G all have negative fitness, that is, their external
edges are all bridges, after a total time complexity of
O(n2 log n).

Large values of α yield very small communities, instead
small values deliver large modules. For α = 1 this method
recalls [131] closely, which is another algorithm that falls
into this category. Going from α = 0.5 to α = 2 reveals the
hierarchical structure of the network.

Fig. 9 An example of graph partitioned with a diffusion process.

7. DIFFUSION

A diffusion is a process in which vertices or edges of
a graph are randomly designated as either ‘occupied’ or
‘unoccupied’ the various properties of the resulting patterns
of vertices are then queried [135] (see Fig. 9, which also
highlights the lack of clear bridges between communities or
any density difference between the inside and the outside
of clusters). A generalization of a diffusion process can
be used for community discovery in complex networks,
according to the following definition of community:

Meta Definition 5 (Diffusion Community) A diffusion
community in a complex network is a set of nodes that are
grouped together by the propagation of the same property,
action or information in the network.

The definition of the meta procedure followed by
algorithms in this category is thus:

Meta Procedure 4 Perform a diffusion or percolation pro-
cedure on the network following a particular set of trans-
mission rules and then group together any nodes that end
up in the same state.

According to this meta definition, a community can
also be defined as a set of entities influenced by a
fixed set of sources. This is important because algorithms,
which are not explicitly developed as approaches for graph
partitioning, are also considered as a community discovery
method. Basically, this definition of the problem overlaps
with another well-known data mining problem: influence
spread and flow maximization [1], which is often used
for viral marketing [136]. Preliminary ideas can be found
in ref. [137], even if only a novel centrality measure is
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defined, and the approach can be mapped in the Newman
edge betweenness algorithm [4]. Another approach that
mixes physics and information theory is given in ref. [138].

Other interesting works in viral marketing are, given a
community partition, the analysis of the group characteris-
tics in order to predict their evolution [139]. In addition, it
is possible to predict if a single vertex will be attached to
a group, or even classify some features (and the evolution
of these features) of a group. While it is not a community
discovery work, ref. [139] can be used as a framework
after a community detection algorithm in order to obtain a
temporal evolving description of the identified groups.

To sum up, the classical community discovery diffusion-
based algorithms presented here are: a label propagation
technique [28], dynamic node coloring for temporal evolv-
ing communities [29], and edge resistor algorithms that
consider the original graph as an electric circuit [30].

The influence propagation approaches reviewed here are:
an analytical description of a network representing an
exchange of information [31]; GuruMine [9], a framework
whose aim is to analyze ‘tribes’, DegreeDiscountIC [140],
a classical spread maximization algorithm, and a mixed
membership stochastic blockmodel algorithm [32], which
uses Bayesian inferences in order to compute the final state
of the influence vectors for each node in the network.

In this category, it is natural to deal with directed com-
munities, since the diffusion process, when dealing with
information spread, is naturally modeled following asym-
metric relations. It is also intrinsically dynamic, thus many
diffusion algorithms provide this feature in the community
discovery solution. We found that no approach currently
considers multidimensional networks, however we believe
that considering different communication channels inside a
network should be a key feature of this category.

7.1. Label Propagation [28]

Suppose that a node x has neighbors x1, x2, . . . , xk and
that each neighbor carries a label denoting the community

that it belongs to. Then x determines its community based
on the labels of its neighbors. A three-step example of this
principle is shown in Figure 10.

The authors assume that each node in the network
chooses to join the community to which the maximum
number of its neighbors belongs. As the labels propagate,
densely connected groups of nodes quickly reach a consen-
sus on a unique label. At the end of the propagation process,
after a quasilinear time complexity (O(m + n)) nodes with
the same labels are grouped together as one community.

Clearly, a node with an equal maximum number of
neighbors in two or more communities can belong to both
communities, thus identifying overlapping communities.
It is easy to define an overlapping version of this
algorithm [141].

7.2. Node Coloring [29]

Consider an affiliation network in which some individ-
uals form groups by attending the same event. In this
approach, which represents an evolution of [142], the base
input representation is an evolving bipartite graph of indi-
viduals connected to events.

Various rules have been defined to connect groups over
time and form communities of groups:

1. In each time step, every group is a representative of
a distinct community;

2. An individual is a member of exactly one community
at any one time (but can change community affilia-
tion over time);

3. An individual tends not to change his/her community
affiliation very frequently;

4. If an individual keeps changing affiliations from one
community to another, then it is not a true member
of any of those communities;
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Fig. 10 Possible steps of a label propagation-based community discoverer.
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5. An individual is frequently present in the group
representing the community with which he/she is
affiliated.

The authors define the community interpretation of a
graph G as a function f : V → N. Each individual belongs
to exactly one community in each time-step, and each
group represents exactly one community. Thus, although
the affiliation can change over time, this is a disjoint
community detection algorithm, not an overlapping one.
To measure the quality of a community interpretation, the
authors use costs (whenever an individual changes color,
or it connects to groups with different colors, etc.) to
penalize violations of Rules 3 and 5. The optimization
problem is then to find the valid community interpretation
by minimizing the total cost resulting from the individual
edges, group edges and color usage. The authors present
an exhaustive global optimum algorithm with exponential
time complexity (the algorithm with dynamic programming
tries all possible colorings of the graph) and then some
heuristics, ending up with a final complexity of O(ntk2).
In [143] the authors present another set of heuristics and
optimizations.

7.3. Kirchhoff [30]

In this paper, the basic idea is to imagine each edge as
a resistor with the same resistance. It is then possible to
connect a virtual ‘battery’ between chosen vertices so that
they have fixed voltages. Having made these assumptions
the graph can be viewed as an electric circuit with a
current flowing through each edge (resistor). By solving
Kirchhoff’s equations, the authors obtain the voltage value
of each node. The authors claim that, from a node’s voltage
value they are able to judge whether it belongs to one
community or another. This approach is very efficient, as
the complexity is O(m + n).

A further expansion [144] applies a walk-based approach
in order to unveil the hidden hierarchical structure of the
network and identify good choices for the seed poles. The
authors then apply a very similar implementation of this
method using a Kirchhoff matrix.

7.4. GuruMine [9]

The aim of GuruMine is to investigate how influence (for
performing certain actions) propagates from users to their
network friends, potentially recursively, thus identifying a
group of users that behave homogeneously (i.e., a tribe
or a community). For instance, Table 3 shows a possible
action table with two actions, α and β, and five users.
Figures 11(a) and (b) represent the influence graphs of
these two actions. U1 can be considered as a tribe leader in

Table 3. An example of GuruMine action table.

User Action Time

U1 β 12
U5 β 14
U1 α 15
U2 β 15
U3 β 16
U4 β 17
U2 α 18
U4 α 19
U3 α 19

1

1

3 4

U4

U2

U1

U3

(a) Action a

2

1

3

2

4
2

U4

U2

U1

U3

U5

(b) Action b

Fig. 11 The GuruMine data structures: the action table and the
influence graphs.

both cases. However, for action α, U1 cannot be considered
a leader if the threshold regarding the minimum number of
influenced users is equal to 4.

As the set of influenced users is the same, we have a
‘tribe leader’, meaning the user leads a fixed set of users
(tribe) w.r.t. a set of actions, which can be considered a
community. The general goal is similar to recent works
such as refs [145–147]. However, here the input includes
not just a graph (which is not edge-weighted) but also an
action table which plays a central role in the definition
of leaders. This action table contains a triple (u; t; a)

indicating that user u performed action a at time t , from
which a directed propagation graph is derived. If the
composition of the influenced graph is the same, we have
a tribe.

Any algorithm for extracting leaders must scan the action
log table and traverse the graph (which means that the com-
plexity also depends on this table and is O(T An2)). The
implementation works with only one scan, with the action
log stored in chronological order. With this scan the influ-
ence matrix IMπ(U ; A) can be computed. For tribe leaders
the influence cube Users × Actions × Users is needed,
with cells containing Boolean entries if user v was influ-
enced by user u w.r.t. action a. A tribe is essentially an
item-set, i.e. a community with common behavior. This
phase is implemented by ExAMiner [148]. This work is
part of a larger framework that also has a query inter-
face [149].
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7.5. DegreeDiscountIC [140]

This work is in the context of the classical data
mining influence spread. The problem definition consists
in deciding who to include in the initial set of targeted
users so that, if necessary, they influence the largest number
of people in the network. This knowledge can be used
for community discovery: each seed node is the head of
a community that acts uniformly, and the set of these
influenced nodes is the community members. This work
is an implementation of the idea in ref. [147] and the
improvement of the algorithm proposed in ref. [146].

Influence is propagated in the classical network repre-
sentation of social interactions according to a stochastic
cascade model. Let S be the subset of vertices selected
to initiate the influence propagation. In the cascade model
(IC), let Ai be the set of vertices that are activated in the
i-th round, and A0 = S. For each edge with one inactive
endpoint, there is a probability of activation proportional
to the active neighbors, and this is repeated until the cas-
cade cannot expand any further. Then all edges not used for
propagation are removed, and the set of influenced vertices
is simply the set of vertices reachable from S in G′. This
cascade can be evolved in a weighted model (WC), by con-
sidering the number of inactive neighbors of an active node
and the activated neighbors of an inactive node. A discount
on the degree of these vertices is considered if both con-
nected nodes are part of the seed set. With this and more
finely tuned heuristics on degrees, the authors manage to
develop a well performing algorithm with a reasonable level
of complexity (equal to O(k log n + m)).

7.6. MMSB [32]

In the mixed membership stochastic blockmodel
approach (MMSB), the authors implement the following
mechanism: each node belongs to any possible commu-
nity with a certain probability. These probabilities are then
influenced by the probabilities of all other nodes. In prac-
tice, the influence of affiliations spreads over the network
until convergence, by averaging the vector of probabilities
of each node with the vector of the general influences. In
other words, this process is equivalent to label propagation,
and instead of a simple number indicating the membership
there is a vector of probabilities.

The indicator vectors are in the form of −→z p→q , which
denotes the group membership of node p when it is
approached by node q (note that this is not symmetric).
Then, for each node i a mixed membership vector −→πi is
drawn, and the value of the interaction between this vector
and the original one of the node is sampled. The authors
also introduce a sparsity parameter to calibrate the impor-
tance of noninteraction.

As for other mixed membership models, this is intractable
to compute. A number of approximate inference algorithms
for mixed membership models have recently appeared
such as mean-field variational methods [150], expectation
propagation [151] and Monte Carlo Markov chain sam-
pling [152]. In these papers, the authors apply mean-field
variational methods to approximate the posterior of inter-
est, which has a complexity of O(nk). An extension of
this work which considers also the degree of the vertices
as a normalization factor is [153]. A work very related to
this one, working with a very similar notion of propagating
probabilities as influence or information, is [154].

8. CLOSENESS

A very intuitive notion of community in a complex net-
work is based on the concept of how close its members are
connected together. A community is a set of individuals
who can communicate with each other very easily because
they can reach any other member in a relatively lower num-
ber of hops than the network’s average. Figure 12 shows a
simple example of this configuration. The underlying defi-
nition of community in this case is:

Meta Definition 6 (Small World Community) A small
world community in a complex network is a set of nodes
that can reach any member of its group usually by cross-
ing a very low number of edges, significantly lower than the
average shortest path in the network.

We use the term ‘small world’ [33] since it conveys
the idea of very closely connected nodes. A very efficient
approach used with this problem definition relies on random

Fig. 12 An example of a graph which can be partitioned by
considering the relative distance, in terms of number of edges,
among its vertices.
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walks. A random walk is a process in which at each time
step a walker is on a vertex and moves to a vertex chosen
randomly and uniformly from its neighbors. The same
procedure is followed for the new selected vertex. This is a
Markov process and it is at the basis of very sophisticated
random walk based applications. For example, the popular
link analysis PageRank algorithm [125] is based on random
walks. This ends up in the following meta procedure:

Meta Procedure 5 Given a network, perform several ran-
dom walks and then cluster together nodes which appear
frequently in the same walk.

Algorithms in this category inherit the weakness in mul-
tidimensional networks from Bridge Detection algorithms,
since also in this case paths are important in this community
discovery category.

To the best of our knowledge there are three main com-
munity discoverers that use random walks in order to
find communities whose members are very close to each
other: Walktrap [34], based on the assumption that when
performing random walks the virtual surfer is trapped in
the high density regions of the graph (i.e., the commu-
nities); DOCS [35], a more complex framework that also
uses modularity as a fitness function; and Infomap [155],
which applies an information-theoretic approach. An older
approach in this category is the Markov Cluster Algo-
rithm [156], which is still commonly used especially in
bioinformatics. It simulates a controlled flow through ran-
dom walks in a network using matrix multiplication and
inflation.

8.1. Walktrap [34]

The Walktrap approach is based on the following
intuition: random walks are able to unveil the real distance
among nodes by frequently exploring nodes in the same
community. The key problem is the definition of the
distance function between any two vertices, computed from
the information given by random walks in the graph. High
values of this measure mean that the two vertices i and j

‘see’ the network in a very similar way, thus they belong to
the same community. Therefore, this distance must be large
if the two vertices are in different communities, and small
otherwise. In the original paper this distance is defined as:

rij =
√√√√ n∑

k=1

(P t
ik − P t

jk)
2

d(k)

where P t
ik is the probability to go from i to j in t steps and

d(k) is the degree of vertex k.
A critical parameter is the length t of the random walks:

it must be sufficiently long to gather enough information

regarding the topology of the graph. However, it must not
be too long because when the length of a random walk
starting at vertex i tends toward infinity, the probability of
being on a vertex j only depends on the degree of vertex
j (and not on the starting vertex i).

Similar random walk approaches are [157,158]. How-
ever, they are less efficient compared to the average com-
plexity of Walktrap, which is at the worst case O(mn2).

8.2. DOCS [35]

This method is based on a spectral partition and random
walk expansion, and is an extension of ref. [159]. The gen-
eral idea is to obtain an initial guess in a first step regarding
the community structure, and then collapse or expand these
communities according to the hints given by the random
walks among them.

The first step is to coarsen the original graph into a
series of higher level graphs. This is guided by modularity
maximization. In the lazy random walk stage, vertices
are labeled as contributing or noncontributing vertices
depending on whether or not they can be moved to another
cluster and provide an increase in modularity. They are also
sorted in a descending order by their contributing values.
The target communities can then be extracted.

8.3. Infomap [155]

The Infomap algorithm is one of the most accurate com-
munity discovery methods [160]. It is based on a combina-
tion of information-theoretic techniques and random walks.
The authors explore the graph structure with a number of
random walks of a given length and with a given probability
of jumping to a random node. This approach is equivalent
to the random surfer of the PageRank algorithm [125].

Intuitively, the random walkers are trapped in a commu-
nity and exit from it very rarely. Each walk is described
as a sequence of steps inside a community followed by a
jump. By using unique names for communities and reusing
a short code for nodes inside the community, this descrip-
tion can be highly compressed, in the same way as reusing
street names (nodes) inside different cities (communities).
The renaming is done by assigning a Huffman coding to
the nodes of the network. The best network partition will
result in the shortest description for all the walks.

9. STRUCTURE DEFINITION

A number of works tackle community discovery with a
very strong assumption: to be called a community, a group
of vertices must follow a very strict structural property.
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In other words, they use the following meta definition of
community:

Meta Definition 7 (Structure Community) A structure
community in a complex network is a set of nodes with a
precise number of edges between them, distributed in a very
precise topology defined by a number of rules. Sets of nodes
that do not satisfy these structural rules are not communi-
ties.

The aim of the community discovery algorithm is to
find all the maximal structures in the network that satisfy
the desired constraints. The corresponding meta procedure
implemented in this category is simple (i.e., find in a
efficient way all the maximal structure defined) and hence
there is no need to discuss it further.

This task is similar to a very well-known data mining
problem in network analysis: graph mining. Some examples
of graph mining algorithms are [5,37,161,162]. However,
traditional graph mining algorithms only return all the
single different structure patterns with their support. In
community discovery there is only one important structure
and the desired result is the list of all vertex groups that
make up that structure in the network.

We will thus ignore pure graph mining algorithms and
just focus on structural community discovery approaches.
The methods reviewed here are: clique percolation [3]
and its evolution for bipartite graphs [36], the s-plexes
detection [38] and a maximal clique approach [163]. We
will not focus on other minor evolutions, such as the
k -dense approaches [164].

An historical approach following this definition can be
found in the blockmodel family of solutions. In particular,
some works focuses on the definition of ‘structural
equivalence’ [53,54]. In these approaches, authors define
the notion of structural equivalence generally by looking
at the pattern in the connections of the nodes: if they
are connected to the same (or equivalent) portions of
the network, then the nodes are in the same community,
because their ‘role’ inside the network is the same.

As a defined structure may be, without any constraint,
overlapping, weighted, directed or multidimensional, there
is virtually no structural feature that cannot be embedded
in a definition used by the algorithms in this category.
Depending on the desired structure, analysts can also find
communities that do not overlap with any of the previous
categories, thus avoiding densities, or bridges or any other
previous definition. The downside of this strategy arises
when working in an incremental setting: given a simple
modification on the structure, such as adding or deleting a
single node or edge, the algorithm is likely to recompute
everything from scratch. This is because properties of the
substructure that are discovered may be violated by any
single modification.

Fig. 13 The overlapping community structure detected by a
clique-percolation approach.

9.1. k -Cliques [3]

Palla et al. suggest that a community can be interpreted
as a union of smaller complete (fully connected) subgraphs
that share nodes. The authors define a k -clique-community
as the union of all k -cliques that can be reached from each
other through a series of adjacent k -cliques. Two k -cliques
are said to be adjacent if they share k − 1 nodes. A 2-
clique is simply an edge and a 2-clique-community is the
union of those edges that can be reached from each other
through a series of shared nodes. Consider Figure 13. In
this case the clique percolation approach detects {0, 1, 2, 3}
as a 4-clique. Then it considers {1, 2, 3, 4}: it is again a
4-clique and it shares 3 vertices with the previous one.
Thus the two cliques are joined in one community. The
same is true for the 4-cliques {2, 3, 4, 6} and {2, 4, 5, 6},
thus identifying the community {0, 1, 2, 3, 4, 5, 6}. In this
process, two communities can have an overlap of some
vertices (in the example, vertices 5 and 9).

The algorithm first extracts all complete subgraphs of the
network that are not part of a larger complete subgraph.
The aim of the first phase is to populate a clique–clique
overlap matrix. In this data structure each row (and column)
represents a clique and the matrix elements are equal to the
number of common nodes between the corresponding two
cliques. The diagonal entries are equal to the size of the
clique. The k -clique-communities can be found by erasing
every off-diagonal entry smaller than k − 1. The complexity
of this procedure, since the hardness of clique detection, is
O(m

ln m
10 ).

9.2. s-Plexes Enumeration [38]

An s-plex is a relaxed concept of the c-isolated
clique [165,166]. Let G = (V , E) be an undirected graph.
A set S ⊆ V of k vertices is called c-isolated if it has less
than ck outgoing edges, where an outgoing edge is an edge
between a vertex in S and a vertex in V \S. A c-isolated
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clique is a concept that is considered too restrictive for a
community. Instead, the authors use a relaxed version of a
c-isolated clique called s-plex [167]: in an undirected graph
G = (V , E), a vertex subset S ⊆ V of size k is called an
s-plex if the minimum degree in G[S] is at least k − s.
Hence, cliques are exactly 1-plexes.

As in an s-plex S of size k every vertex v ∈ S is adjacent
to at least k − s vertices, the subgraph induced by S in the
complement graph (the graph with the same set of vertices
and complementary edge set) G[S] is a graph with a
maximum degree of at most s − 1. The idea is to enumerate
maximal s-plexes in G by deleting minimal subgraphs with
a maximal degree of s − 1 in the complement graph. A key
concept for this solution is the pivot set P . The pivot set
contains the pivot vertex v and those vertices that belong
to the s-plex but are not adjacent to v. The pivot vertex is
defined as the vertex with the lowest index of those vertices
with less than c outgoing edges.

The algorithm is an evolution of [168] and removes
vertices from the candidate set C with too few neighbors in
C. It builds the complement graph, then for each possible
pivot set P applies the deletion of minimal subgraph in
the complement graph. Finally, it removes enumerated s-
plexes that either have pivot u �= v or are not maximal. The
complexity is O(knm).

9.3. Biclique [36]

This is a bipartite graph version that solves various
issues regarding the k -clique approach [3], namely the
impossibility to analyze sparse network regions, due to the
fact that 2-clique communities are simply the connected
components of the network. The first nontrivial k -clique
has size k = 3 and nodes must have at least two links in
order to qualify for participation in a 3-clique. In networks
with heavy tailed degree distributions, a large fraction of
the nodes have less than two edges.

Biclique is a natural approach for affiliation networks,
where in a one-mode projection all (sparse) information
regarding the bipartite linkages is reduced to a giant qua-
siclique. All the information contained in edge weights is
typically discarded in a subsequent thresholding operation.
The Biclique algorithm detects structures between 2-clique
communities and 3-clique communities where the k -clique
algorithm usually fails.

The algorithm begins by isolating the N maximal
bicliques in the bipartite network using [169]. Using this list
the authors create two symmetric clique overlap matrixes
for the two classes of nodes. Then, for both matrix diagonal,
elements greater than or equal to a and b (the two
parameters of the algorithm) respectively are set to one,
while everything else is set to zero. The final overlapping
matrix is obtained by the matrix intersection, using the

AND operator. The final step is to determine the connected
components of L; each component corresponds to a biclique
community. The final complexity of the approach is
O(m2).

9.4. EAGLE [163]

EAGLE starts from the following assumption: in every
dense-linked community there is at least one large clique.
This clique could be considered the core of the commu-
nity. EAGLE firstly finds out all the maximal cliques in
the network with the Bron-Kerbosch algorithm [39] (com-
plexity O(3

n
3 )), discarding those whose vertices are part of

other larger maximal cliques and those with less than k ver-
tices. EAGLE then calculates the similarity between each
pair of communities. It then selects the pair of communi-
ties with the maximum similarity, incorporating them into
a new community and calculating the similarity between
the new community and other communities. The similarity
measure is the modularity [20]. This calculation is repeated
until only one community remains, thus completing the den-
drogram.

The second stage is to cut the dendrogram. Any cut
through the dendrogram produces a cover of the network.
To determine the place of the cut, a measurement is required
to judge the quality of a cover, computed with a given
variant of modularity.

10. LINK CLUSTERING

Some recent approaches have been based on the idea
that the community is not a partition of network nodes,
but a partition of the links. In other words, it is the
relationship between two entities that belongs to a particular
environment and the entities belong to all the communities
of their edges (or a subset of them).

The meta procedure in this class is:

Meta Procedure 6 We are given a set of relations M
between a set of entities N. We cluster together relations
that are similar, that is, established between the same
set of entities, and we then connect each entity n to the
communities its relations belong to.

The underlying meta definition of community is:

Meta Definition 8 (Link Community) A link community
in a complex network is a set of nodes that share a number
of relations clustered together as they belong to a particular
relational environment.

This approach implies an overlapping partition, since a
node belongs to all the communities of its links, and only in
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rare occasions do all the links belong to a single community.
We prove this point in Section 12, by looking at the average
number of communities a node belongs to, according to
algorithms in this category. One feature that is ignored by
this community definition is the direction of a relation,
since an undirected link belongs to a single community.
There is no way to attach a relationship from u to v to
a community and a relationship from v to u to another
community, since they both belong to the same relational
environment.

The basic approach to the link clustering problem is to
define a projection graph in which the nodes represent the
links of the original graph and the definition of a proximity
value in order to understand how close two edges of the
network are. In both cases the critical point is to measure
the relations between the edges. A classical clustering
algorithm can then be applied.

The methods reviewed here reflect both approaches. The
first [40] defines the projection graph with a random walk
measure for the proximity of the projected edges, then
uses modularity to compute the modules of the network.
The second one [41] is a general framework in which it
is possible to define any distance measure for the nodes
(such as the Jaccard index) and then apply a classical
hierarchical clustering technique based on this distance
definition. Finally we present also a bayesian approach to
this problem [170].

10.1. Link modularity [40]

In this work, by defining communities as a partition of
the links rather than the set of nodes, the authors interpret
the usual modularity Q in terms of a random walker moving
on the nodes. They further define two walking strategies: a
link–link and a link–node–link random walk. They project
the adjacency matrix onto a bipartite incidence matrix. The
elements Biα of this n × m matrix are equal to 1 if link α

is related to node i, and 0 otherwise.
The incidence matrix is then projected onto a line graph:

a link is added between two nodes in this projected graph
if these two nodes have at least one node of the other
type in common in the original incidence bipartite graph.
Modularity is then computed on this line graph. The
total complexity of creating the line graph and computing
modularity is O(2mk log n).

10.2. Hierarchical Link Clustering HLC* [41]

In this approach, the authors start from the assumption
that whereas nodes belong to multiple groups (individuals
have families, coworkers, and friends), links often exist for
one dominant reason (two people are in the same family,
work together, or have common interests) and therefore

they cluster them. They define a link similarity measure as
the Jaccard coefficient. This measure is computed on the
sets of neighbors of each edge sharing one node (i.e., only
adjacent edges). The formula used is:

S(eik, ejk) = |n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

where eik is an edge between nodes i and k and n+(i)

is the set of neighbors of node i. The approach can be
used with an arbitrary similarity function for the edges.
Furthermore, although weights and multipartite structures
are not considered with this formula, the authors claim that
it is possible to extend the approach in order to obtain such
features.

The authors then build a dendrogram with a classical
hierarchical clustering approach using the defined similar-
ity measure, with a time complexity of O(nK

2
). In the

dendrogram each leaf is a link from the original network
and branches represent link communities. In the hierar-
chical structure identified, links occupy unique communi-
ties whereas nodes naturally occupy multiple communities,
owing to their links. Thus the extracted network struc-
ture is both hierarchical and overlapping. The dendrogram
is then cut by optimizing the partition density objective
function [42].

10.3. Link Maximum Likelihood [170]

In this work the general idea of a link clustering is
combined with multidimensional networks: the idea is
that communities arise when there are different types of
edges, that is, dimensions, in a network. Basically the
approach is to generate a model for the observed net-
work with a given partition of edges into link communities
and then testing these communities with a maximum like-
lihood approach. The generation and test is very similar
to the technique implemented in the Expectation Max-
imization [7] presented in the following section, but in
this case is applied on edges instead of applying it on
nodes.

11. META CLUSTERING

There are a number of frameworks for community
discovery that use a very trivial definition of community
or have no definition at all. These methods often assume
that there are some desirable features of the community
that are not provided by many algorithms. They define
preprocessing and/or postprocessing operations and then
apply them to a number of other different known methods
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which do not extract communities with the desired features.
In this way they improve the results.

Basically, the meta definition adopted is:

Meta Definition 9 (Community) Communities in a com-
plex network are sets which present a number of particular
features regardless of why their nodes are grouped together.

Of course, the meta procedures and features of these
approaches depend on both the pre/postprocess and the
‘hosted’ method. The works which present a proper
definition of a community are, for instance, the evolutionary
clustering [10] or the CONGA algorithm [25], which have
already been outlined in this survey. Given that we have
presented their desired common features for the sets in the
form of an independent community definition, we have not
included these methods in this category.

Instead we focus on four methods: the first is a
hybrid framework combining Bayesian and non-Bayesian
approaches [43], the second relies on a custom definition
of community given by the analyst and then performs a
multidimensional community discovery, by identifying the
noisy relations inside the network [44], the third one is a
bayesian hierarchical approach [171], finally the last one is
based on an expectation maximization principle [7].

11.1. Hybrid* [43]

For this framework, the authors start from the point that
overlapping communities are a more precise description for
the multiplicity of node links compared to nonoverlapping
approaches. If a node’s links cannot be explained by a
single membership, then the community discovery problem
has to be solved in an overlapping formulation. On the
other hand, if a node’s links can be explained almost
equally well by a number of single and mixed memberships,
hard clustering may be simpler. The conclusion is that a
combination of an overlapping community discoverer that
takes an already hard defined community as input with
a nonoverlapping method should perform better. Thus the
HFCD framework is built. It is made up of three parts: the
Bayesian core, the hint source procedure and the coalescing
strategies.

The Bayesian core is the overlapping community dis-
covery algorithm that collects the hints from the other
nonoverlapping method and outputs the final community
partition. In ref. [43] the authors use a Latent Dirichlet
Allocation on Graphs [172,173] as their core method. The
Bayesian core needs some hints in order to perform the
community discovery procedure. These hints are provided
by any other nonoverlapping community detection algo-
rithm, namely modularity [20] and Cross Associations [60]
(here reviewed in its evolution as a context-specific cluster
tree [19]).

The most important contribution of this approach is
in creating a procedure that solves the problem of how
to incorporate the hints into the core model. This is
done by the coalescing strategies. The authors propose
three different strategies: attributes (each community is an
attribute of the node), seeds (the community partition is
used as an initial configuration of the second community
discovery phase), and prior (a mix of the previous two). In
order to make the inference procedure both for attributes
and for the initial configuration, the authors use the Gibbs
sampling technique [174]. The additional complexity over
the used methods is O(nkK).

11.2. Multirelational Regression [44]

This algorithm aims to discover hidden multidimensional
communities. The authors use the term ‘relation’ for a
dimension, that is, a criterion to connect entities. They
define relation networks, group them together and create a
kind of social network, calling it a multirelational social
network or heterogeneous social network, another name
for a multidimensional or multiplex network. The basic
assumption is that each relation (explicit or implicit) plays
a different role in different tasks.

For instance, consider the multidimensional network
in Fig 14. The authors suppose that an analyst might
want to specify that nodes 8, 9, 10, and 11 belong to
the same community. The three dimensions (represented
by solid, dashed, and thick edges) then have a different
importance in reflecting the user information needed. The
thick dimension can be considered as noise, and the most
important dimension is obviously the dashed dimension.
The community discovery process should take this situation
into account in order to provide an output close to the
information needs of the user.

The authors thus represent each relation with a weighted
matrix. Each element in the matrix reflects the relation
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Fig. 14 A multidimensional network. Solid, dashed, and tick
lines represent edges in three different dimensions.
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strength between the two corresponding entities. This
matrix is then mined depending on a user example (or
information need): the user submits a query defining the
desired community structure. From this structure, the algo-
rithm reconstructs the possible hidden relation, combining
the single relation graphs with linear techniques, and then
performs the community discovery on the resulting hidden
graph.

The hidden relation is tackled as a prediction problem:
once the combination coefficients of the desired entities
and the desired relations are computed, the hidden relation
strength between any object pair can be predicted. This is
a regression problem that can be solved with a number
of techniques [175]. For a discussion of the issues in
this solution based on unconstrained linear regression see
ref. [176]. The exact regression used is the ridge regression.

11.3. Hierarchical Bayes [171]

In this work authors start from the assumption that
many real world networks present an hidden hierarchical
organization able to explain some of the basic properties
of the structure. By reconstructing this latent organization,
they are able to group together nodes which are part of
the same functional module of the network. It is evident
that there is no traditional definition of community at all,
and also the authors acknowledge that to reconstruct the
hidden dendrogram is a task which goes beyond the simple
clustering.

Basically, authors generate and sample a set of dendro-
grams, which are able to generate a random network with
similar features to the observed network, with a Monte
Carlo algorithm. The sampling is driven by the maximum
likelihood, that is, the dendrograms are extracted according
to how well they can reproduce the observed features. By
varying the pr parameter, the probability to join two ver-
tices in the dendrogram, authors can tune the dendrogram
generation in order to fit different properties of the network.
Finally, the set of dendrograms is merged into a single con-
sensus dendrogram, which is the best overall representation
of the observed network. Although their technique presents
an exponential time complexity at the worst case, authors
found that in average their complexity should not exceed
O(n2).

11.4. Expectation Maximization [7]

This work acknowledge the standard assumption in the
community discovery literature, that is, to define what
a community is and then to implement an algorithmic
procedure able to create a partition of the network which
reflect the best community division according to the starting
definition. However, the problem is that sometimes it is

hard to define a priori what a community is in a particular
network, and failing to do so may end up in finding not
significant results. The proposed method is instead able
to adapt its definition of community to the most likely
present in the data, which may be anyone of the presented
classification in this paper.

Basically the authors consider the group membership of
each node as an unknown feature. They then define for
each vertex i the probability that a (directed) link from a
particular vertex in group r connects to vertex i as ηri .
Finally, πr is the probability of belonging to group r . Both
ηri and πr are unknown and depend on each other. With
an iterative, self-consistent approach that evaluates both
simultaneously, two characteristic equations which define
the expectation maximization algorithm are derived, and
the problem can be then solved.

12. EXPERIMENTS

In this section we briefly present an experimental
evaluation of some of the presented algorithms. The aim
is to strengthen the intuition regarding the desired features
which each category is either able to present naturally or
has difficulties with.

In order to do this, as our benchmark we used a network
extracted from the ego network of one of the author’s
Facebook profiles. We depicted the graph used in Fig. 15.
The network contains 261 nodes and 1722 edges. We chose
this network because the human eye can easily spot natural
denser areas: there are four main ones at the bottom and
left hand side of the picture and three big areas in the upper
right hand side, while in the middle there is a sort of gray
area and smaller cliques and quasicliques of 3–7 nodes float
around. We also have a thorough knowledge regarding the
nodes and the actual community partition of these people

Fig. 15 Our benchmark network.
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from the perspective of the network ego; however, for
privacy reasons we cannot include more detailed data.

We have tried to include as many algorithms as possible
in this section.1 We excluded reviewed methods for any
of the following reasons: we were not able to find
any implementation (or working implementation) freely
available, the algorithm did not provide better knowledge
regarding its category being very similar to another already
included, or the algorithm was not suitable for real-world
purposes, that is, it was not able to provide a result on our
example network in less than 2 h and 1 GB of memory
occupation (for a 37 kB input).

All of the evaluation measures used take a partition P of
the network as input, that is, a list of set of nodes which
may or may not have common elements (i.e., overlap).

• Modularity (Q). Although there are overlapping defi-
nitions for this measure [95], the main version used is
the standard one which is not defined for overlapping
partitions. Therefore, we computed the original ver-
sion of Modularity only for nonoverlapping results.

• Flake-ODF (f l), introduced in ref. [177], is defined
as the fraction of nodes in a community that have
fewer edges pointing inside than outside of the clus-
ter. We calculate the average over all communities,
that is, f l(p) = ∑

k∈P
|{u:u∈k,|{(u,v):v∈k}|<deg(u)/2}|

|k| . In
ref. [177] many evaluation measures are presented in
order to solve the monotonic increase in modularity
(i.e., the resolution problem: bigger clusters tend to
score better). However, we tested all of them in our
experimental setting (some are not reported here for
the sake of readability) and we found that all tend
to assign constantly lower scores to overlapping par-
titions in the same network. Thus, these measures
should be refined in order to be more general and to
include the very common and popular overlap feature.

• Reverse Conductance (C−1). Conductance is also
presented in [177] as the fraction of total edge volume
that points outside the cluster. We are interested in
the reverse concept, that is, the fraction of total edge
volume that points inside the cluster, that is, C−1 =

1
|P |

∑
k∈P

mk

2ck+mk
, where mk = |{(u, v) ∈ m : u ∈ k ∧

v ∈ k}| and ck = |{(u, v) ∈ m : u ∈ k ∧ v �∈ k}|.

• Overlap Ratio (o) is informally defined as the aver-
age number of communities that a node belongs
to in the network, that is, o(p) = ∑

n∈N
|{k∈P :n∈k}|

|N | .

1 We implicitly thank all the authors of the included algorithms
for making them available or sending them to us.

Table 4. The statistical parameters of communities extracted
with different approaches.

Algorithm k n Q fl C−1 o

SocDim 12 45.58 N/A 6.58 0.45 2.1
Autopart 6 43.5 0.31 18.5 0.21 1
Modularity 8 32.63 0.72 0.38 0.74 1
Local density 31 8.42 0.71 0.23 0.55 1
Edge betweenness 11 23.73 0.74 0.46 0.66 1
CONGA 119 5.28 N/A 3.96 0.08 2.41
Label Propagation 13 20.08 0.74 0.39 0.62 1
Walktrap 12 21.75 0.74 0.25 0.65 1
Infomap 17 15.35 0.72 0.77 0.51 1
k-Clique 16 16.13 N/A 1.56 0.34 0.99
s-Plex 96 3.62 N/A 2.42 0.07 1.33
Link modularity 37 26.22 N/A 3.73 0.4 3.72
HLC 256 3.73 N/A 2.54 0.06 3.66

While a nonoverlapping community discovery usu-
ally returns 1 in this metric, if an algorithm does not
cluster all the vertices in the network then it may
return a value less than 1.

We report the final results in Table 4, in which we have
one row per algorithm and one column per measure. We
added some statistically simple parameters such as the
number of communities and average number of nodes per
community. For the measures, in Table 4 we use the same
notation used in this section to present them.

We are now able to provide an additional reason for our
classification by analyzing the presented results.

SocDim and Autopart belong to the Feature Distance
category. As discussed in Section 4, in this category we
have a method with basically any feature (e.g., SocDim
is multidimensional and overlapping, while Autopart is
parameter free and allows directed edges). The downside
is the counter intuitive partition according to the graph
topology. It is easy to see, in fact, how poorly Autopart
scores in the modularity test (Q). However, since we did not
compute Modularity for the overlapping SocDim partition,
we also used the Flake-ODF measure (f l). In this case too,
both SocDim and Autopart got higher values, that is, it is
more frequent that a node has more edges pointing outside
the cluster than pointing in. Overlap partitions usually have
the lowest performance according to Flake-ODF, and to
Conductance, since nodes in the overlap zone are densely
connected to two or more clusters. However, Autopart is
not an overlapping method and SocDim turned out to be
the worst of the other overlapping algorithms according to
this evaluation.

For the internal density category (Section 5) we tested
Modularity and Local Density algorithms. Their edge
volume inside the community (Reverse Conductance C−1)
is high. For Modularity edge volume was the highest score,
while Local Density scored well, although it did not come
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second for implementation reasons (the algorithm returns
some communities with only one vertex which obviously
contributes with zero to the sum).

As stated in Section 6 regarding the bridge detection
community discovery, no assumptions about the density of
the clusters are made. Thus these algorithms may have a
high score on the inverse conductance (edge betweenness),
or may not (CONGA).

Unfortunately our set of algorithms for the diffusion
(Section 7) category is very narrow and no conclusions
can be drawn. Instead, closeness algorithms (Section 8)
Walktrap and Infomap highlight their independence from a
simple density definition: Walktrap favors a few bigger (and
denser) communities, while Infomap focuses on smaller and
lower level sparser ones.

There is one clear downside to the Structure definition
category (Section 9): the k -clique algorithm has an overlap
ratio o less than one, as its structure definition is very
strict and many nodes cannot satisfy it, ending up in no
community.

Finally, algorithms in the link community category
(Section 10) gave a very high overlap score (o). This proves
that clustering edges is a natural and automatic way to get
highly overlapping partitions.

13. RELATED WORKS

Over the last decade, several reviews of community
discovery methods have been published. We would consider
the most important to be refs [178–183].

Fortunato and Castellano [181], hugely extended by For-
tunato in ref. [6], have published the most recent and prob-
ably the most comprehensive review on the community
discovery problem. To tackle the problem they consider
various definitions of community (local, global, and vertex
similarity), features of communities for extraction, and dif-
ferent categories. The number of algorithms and references
they considered is impressive. We believe that a new review
of this topic is needed because the authors analyze the
main techniques of each method for community detection;
however, they do not build an organization of community
definitions (while acknowledging that different ones exist).
Thus, they do not consider the main contribution of our
review: the creation of a classification of community based
on definitions of state of the art algorithms. Without focus-
ing on a classification of community definitions, Fortunato
and Castellano’s review cannot be used by a researcher with
his/her own definition of what a community is in order to
find the most relevant set of methods for his/her problem.
Their review is aimed at people interested in building a new
community detection algorithm, not people who want to use
the methods in the literature. Furthermore, their work does

not include some more advanced features and definitions of
community found in the literature, such as multidimension-
ality or an influence spread formulation of the problem.

Porter et al. [182] and Schaeffer [183] have also recently
reviewed community discovery methods. In Ref. [183] they
also introduced the problem of a comprehensive meta defi-
nition of community in a graph. Again, however, although
they begin to provide different definitions of community,
they do not create a classification of the community dis-
covery algorithm based on such a community.

In Newman’s pioneering work [178] he organizes his-
torical approaches to community discovery in complex net-
works following their traditional fields of application. He
presents the most important classical approaches in com-
puter science and sociology, enumerating algorithms such
as spectral bisection [52] or hierarchical clustering [184].
He then reviews new physical approaches to the community
discovery problem, including the known edge between-
ness [4] and modularity [86]. His paper is very useful for
a historical perspective, however it records few works and
obviously does not taken into account all the algorithms
and categories of methods that have been developed since
it was published.

Chakrabarti and Faloutsos [179] give a complete survey
of many aspects of graph mining. One important chapter
discusses community detection concepts, techniques and
tools. The authors introduce the basic concepts of the
classical notion of community structure based on edge
density, along with other key concepts such as transitivity,
edge betweenness, and resilience. However, this survey is
not explicitly devoted to the community discovery problem.
It describes existing methods but does not investigate the
possibility of different definitions of community or of a
more complex analysis.

Danon et al. [180] test an impressive number of different
community discovery algorithms. They compare the time
complexity and performance of the methods considered.
Furthermore, they define a heuristic to evaluate the results
of each algorithm and also compare their performance.
However, they focus more on a practical comparison of
the methods, rather than a true classification, both in terms
of a community definition and in the feature considered for
the input network.

Various authors have also proposed a benchmark graph,
which would be useful to test community discovery
algorithms [185].

14. CONCLUSIONS

The aim of this survey was to create a manual for
the community discovery problem, to answer the question:
‘Given what is considered a community for analysts, which
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community detection algorithm should they use?’. This is a
sort of orthogonal point of view compared to the classical
approach of community discovery reviews, traditionally
aimed at analysts already within the community discovery
field.

We first tackled the problem of the lack of a universally
accepted definition of what is a community. As pointed out
by Fortunato [6], this lack of a theoretical framework has
some important consequences not only in the community
detection task itself (if we do not agree on the meaning
of ‘community’ how can we extract a community from the
network?) but also in other aspects. One of these aspects
is, for instance, the evaluation of an algorithm w.r.t. the
results from another approach using a different definition
of community.

We have proposed a meta definition of community, and
on this basis we built a new classification of community
discovery methods based on the relationships of each
definition of community using the general meta definition.
We have reviewed the approaches according to general
categories such as internal density, community structure
definition and so on. This classification is a proposed
answer to the problems highlighted by Fortunato. Each
main method is then briefly presented, along with its
relationship with other algorithms, its complexity and the
strong and weak points of the category it belongs to.

A crucial problem that we have identified is the need for
an extensive study of the overlap between the definitions
of community. As pointed out in Section 3.1 there are
several complex connections between different definitions
and different algorithms. It would be worth creating an
accurate graph representation of this overlap, in which the
nodes are the connected algorithms if they share part of their
community definition, some features of the input/output,
some quality functions or a search space exploration
approach. This multidimensional complex network could
be studied in order to have a clearer and more detailed
view on the community discovery problem.

Another contribution of this paper is the inclusion of the
important innovative features of a graph partition algorithm,
which has not considered in other reviews. The definition of
different features is critical because clearly there is no ‘per-
fect method’. However, methods that are or are not able to
consider multidimensionality, algorithms that do or do not
treat overlapping communities, and so on, can be catego-
rized as such. We have discussed this point in each category,
trying to highlight which features are naturally provided
by each category and which ones are not. We chose to
include novel features like multidimensionality, so far not
considered by community discovery reviews, as they add
a fundamental analytical power that better describes real
world phenomena. Moreover, an approach is not necessar-
ily better if it has a longer list of supported features: in

some cases a specialized method can achieve a better per-
formance than a general one. Thus we believe that Table 2
is useful for checking the features of all algorithms. We
hope this will help analysts to find the desired algorithm
also in terms of features and not only the underlying defi-
nition of community.

To define and predict what will be the most important
features in the future is another open question that
we leave for future work. There is interest especially
in multidimensionality [44,78,89,90,170], perceived as a
feature that is part of the solution and not only as an input
to be preprocessed. In other words, we want not only to
consider multidimensionality as an input, but also to extract
truly multidimensional communities. Another interesting
feature might be the presence of both a hierarchical and
overlapping organization of the community structure at the
same time, since these two features are no longer seen as
being mutually exclusive [41].
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