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Summary. High dimension, low sample size data are emerging in various areas of science.
We find a common structure underlying many such data sets by using a non-standard type of
asymptotics: the dimension tends to 1 while the sample size is fixed. Our analysis shows a
tendency for the data to lie deterministically at the vertices of a regular simplex. Essentially all
the randomness in the data appears only as a random rotation of this simplex. This geometric
representation is used to obtain several new statistical insights.
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1. Introduction

High dimension, low sample size (HDLSS) data are becoming increasingly common in various
fields. These include genetic microarrays, medical imaging and chemometrics, which we treat
briefly in the next three paragraphs.

A currently very active area of data analysis is microarrays for measuring gene expression;
see for example Eisen and Brown (1999), Alter et al. (2000), Perou et al. (1999, 2000) and Sørlie
et al. (2001). A single measurement yields simultaneous expression levels for thousands to tens
of thousands of genes. Because the measurements tend to be very expensive, the sizes of most
data sets are in the tens, or maybe low hundreds, and so the dimension d of the data vectors is
much larger than the sample size n.

In medical image analysis, there are many research problems which currently need statistical
input. These lie in the direction of understanding and analysing populations of three-dimen-
sional images. A useful approach is first to represent numerically shapes of organs of inter-
est. This is done in a wide variety of ways, including the boundary representations that were
developed by Cootes et al. (1993), and the completely different medial representations, which
were well described by Yushkevich et al. (2001). This results in numerical summaries, in the
form of vectors of parameters, with dimensionality usually in the high tens to low hundreds
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for three-dimensional images. However, such representations are often expensive to compute,
mostly because the segmentation step (i.e. finding the boundary of the object) often requires
at least some human intervention on a slice-by-slice basis. Thus sample sizes (i.e. numbers of
such representations that are collected) are usually in the low tens, again resulting in HDLSS
data.

Various types of spectral measurements are very common in chemometrics, where the spectra
are recorded in channels that number well into the thousands; see for example Schoonover et al.
(2003) and Marron et al. (2004). As with the above fields, practical considerations limit the
number of samples to far fewer than the number of channels, again resulting in n�d.

Such HDLSS data present a substantial challenge to many methods for classical statistical
analysis. Indeed, the first step in a standard multivariate analysis is often to ‘sphere the data’,
through multiplying the data matrix by the root inverse of the covariance matrix. For HDLSS
data, however, this inverse does not exist, because the covariance matrix is not of full rank.

As part of the development process of new methodologies, there is a need to validate, assess
and compare them. For this it is useful to employ both numerical simulation and mathemat-
ical analysis. In this paper we provide a mathematical structure within which asymptotics for
d → ∞, with n fixed, gives informative and insightful results. The key idea is to study either
the subspace or the hyperplane that is generated by the data. When the data satisfy some
fairly standard distributional conditions, the subspace or hyperplane can be rotated in such a
way that the data converge to the vertices of a deterministic regular simplex. Thus HDLSS
data sets, modulo a random rotation, tend towards this elementary geometric representa-
tion.

The asymptotics in this paper treat the HDLSS case of d →∞, with n fixed, although the
case where d and n diverge together, with d=n2 → ∞, may be addressed similarly. The most
common case in the current literature is n → ∞, with d fixed. Some researchers, e.g. Huber
(1973) and Portnoy (1984, 1988), have addressed the case of n→∞, with d also growing, say as
some power (generally less than 1) of n. Bai and Sarandasa (1996), Sarandasa and Altan (1998)
and Johnstone (2001) have studied asymptotics where n →∞, and d grows at the same rate.
The risk bounds of Tsybakov (2003) have very interesting implications across a wide range of
combinations of n→∞ and d →∞. Rao (1973) discussed some ideas of Mahalanobis (1936),
who considered the relationship of populations as d →∞. See Rao and Varadarajan (1963) for
discussion of these issues in the context of stochastic processes.

For simplicity of presentation, these ideas are first explored in the standard Gaussian case,
via some elementary calculations, in Section 2. A more general mathematical treatment follows
in Section 3.

This new geometric representation is used to analyse the HDLSS performance of some dis-
crimination rules, including the support vector machine (SVM), in Section 4. In addition to
giving a mathematical tool for comparison of methods, the new geometric representation also
provides an explanation for some previously puzzling phenomena.

2. Standard Gaussian geometrical representation

Insight into the high dimensional phenomena which drive the geometric representations that
are developed in this paper comes from some perhaps non-obvious facts about high dimensional
standard normal distributions. Let Z.d/= .Z.1/, . . . , Z.d//T denote a d-dimensional random vec-
tor drawn from the normal distribution with zero mean and identity covariance matrix. Because
the sum of the squared entries has a χ2-distribution with d degrees of freedom, which tends
towards the Gaussian distribution as d →∞, a simple delta method calculation shows that the
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Euclidean distance has the property

‖Z‖=
(

d∑
k=1

Z.k/2
)1=2

=d1=2 +Op.1/:

This provides a sense in which the data lie near the surface of an expanding sphere. The result
is readily extended to the case of two independent vectors from the standard normal, Z1.d/ and
Z2.d/ say:

‖Z1 −Z2‖= .2d/1=2 +Op.1/ as d →∞: .1/

Thus data points tend to be a deterministic distance apart, in a similar sense. A further useful
insight comes from considering the angle, at the origin, between the vectors Z1 and Z2. Again
a simple delta method calculation, this time for the inverse cosine of the inner product, gives

ang.Z1, Z2/= 1
2π +Op.d−1=2/, .2/

where ang.Z1, Z2/ denotes the angle, in measured radians at the origin, between vectors Z1 and
Z2. Of course, both equations (1) and (2) hold for a random sample Z1, . . . , Zn, implying that
all pairwise distances in the sample are approximately equal and that all pairwise angles are
approximately perpendicular. This is challenging to visualize for n�4.

These properties are illustrated in Fig. 1, where the case d = 3 and n = 3 is considered. All
the rays from the origin to the respective data points are of approximately equal length, and
the distances between data points are all about 21=2 times as large. The rays from the origin
are also nearly orthogonal. It is a matter of personal taste whether to focus attention on the
subspace that is generated by the data (of dimension n = 3 in this case) or on the hyperplane
that is generated by the data (of dimension n−1=2 here). Here only the structure of the data
in the hyperplane is explored further. Because all pairwise distances are nearly the same, the
data lie essentially at the vertices of an equilateral triangle, which is the ‘regular 3-hedron’, i.e. a
3-simplex. This is the picture that will be most useful to keep in mind during the general analysis
in Section 3. (A topologist would generally refer to our 3-simplex as a 2-simplex, notating it by
using the number of dimensions in which it lives, rather than its number of vertices. However,
the notation in this paper will be simpler if we index a simplex in terms of its number of vertices,
and so we shall follow that course.)

Another example elucidating these ideas is shown in Fig. 2. Each panel shows overlaid scatter-
plots of 10 samples (shown as different geometrical shapes) of standard normal random vectors

Fig. 1. Three-point toy example, showing the geometric representation, by rotation of the two-dimensional
hyperplane containing the data, to give a regular n-hedron
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Fig. 2. Gaussian toy example, illustrating the geometric representation, for n D 3, and convergence to a
3-simplex with increasing dimension: (a) d D2; (b) d D20; (c) d D200; (d) d D20000

of size n=3, and in d =2, 20, 200, 20000 dimensions in Figs 2(a), 2(b), 2(c) and 2(d) respectively.
The 10 samples give an impression of the sampling variation, as a function of the dimension,
which varies for the panels. For each sample, and each dimension, the hyperplane that is gen-
erated by the data (i.e. the plane that is shown in Fig. 1) is found, and the data are projected
onto that. Within that hyperplane the data are rotated so that the horizontal co-ordinates of
the bottom two points are centred on 0, to give the scatterplots that are shown in Fig. 2. In
view of equation (1) it is expected that these points will lie close to the vertices of the equilateral
triangle, with side length .2d/1=2 shown with the broken lines (the regular 3-simplex}, and that
this approximation will be better for higher dimensions.

Fig. 2 confirms these conjectures. Note that for d =2 the points appear to be quite random,
and indeed not all of them are easy to associate with the appropriate vertex of the triangle. How-
ever, for d = 20 there is reasonable convergence to the vertices, suggesting that the geometric
representation is already informative. For d = 200 the approximation is quite good, making it
clear that the majority of variability goes into the two rotations that were considered above. As
expected, the case d =20000 shows an even more rigid geometric representation.

Andrew Barron remarked that this geometric representation bears a strong similarity to some
of the ideas that underlie Shannon information theory.

3. General geometrical representation

In this section, the geometric representation is made more general. Section 3.1 treats the single-
sample case. Section 3.2 extends these ideas to two data sets from different distributions, to
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lay the foundation for using geometric representation ideas for the analysis of discrimination
methods.

3.1. Representation of a single sample
Consider a data vector X.d/= .X.1/, . . . , X.d//T, which is obtained by truncating an infinite time
series which we write as a vector, X= .X.1/, X.2/, . . ./T. If a law of large numbers applies to the
time series, in the sense that

d−1 ∑
k

X.k/2 →a

in probability, for a constant a> 0, then we might fairly say that X.d/ lies approximately on the
surface of a d-variate sphere, of radius .ad/1=2, as d →∞.

The approximate n-simplex structure, which was observed in Section 2, will follow from the
limiting behaviour of distances between pairs of points in a sample, X .d/={X1.d/, . . . , Xm.d/},
where the data vectors Xi.d/ are taken to be independent and identically distributed as X.d/.
Assume the following.

(a) The fourth moments of the entries of the data vectors are uniformly bounded.
(b) For a constant σ2,

1
d

d∑
k=1

var.X.k//→σ2: .3/

(c) The time series X is ρ mixing for functions that are dominated by quadratics, as defined
in Section 5.1.

Then it follows by a law of large numbers that the distance between Xi.d/ and Xj.d/, for any
i �= j, is approximately equal to .2σ2d/1=2 as d →∞, in the sense that

1
d1=2

{
d∑

k=1
.X

.k/
i −X

.k/
j /2

}1=2

→ .2σ2/1=2, .4/

where the convergence is in probability. See Section 5.1 for details on result (4).
Stationarity of the time series X is not required. Instead we need only boundedness of

moments, weak independence and condition (3), which entails stationarity only in a very weak,
Cesàro-averaged, first-order form. In this sense we are working with a rich class of mod-
els for high dimensional data. Assumption (c) is a simple way of permitting the amount of
information that is available for discrimination to diverge to ∞ as d increases. (In conven-
tional asymptotics, information diverges through increasing sample size.) However, it is also
of interest to explore more marginal cases where conditions such as assumption (c) fail; see
Section 6.

Application of result (4) to each pair .i, j/ with 1� i<j �m, and scaling all distances by the
factor d−1=2, shows that the pairwise differences between points in X .d/ are all asymptotically
equal to .2σ2/1=2, as d →∞. Equivalently, if we work with the .m−1/-dimensional space into
which all m points in X .d/ can be projected without losing their intrinsic relationships to one
another, and rescale as before, we conclude that

after rescaling by d−1=2, the points Xi.d/ are asymptotically located
at the vertices of an m-simplex where each edge is of length .2σ2/1=2: .5/

Of course, the theory that is described in conclusion (5) involves keeping m fixed as d increases.
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As noted in Section 2, the m-simplex is an m-polyhedron with all edges of equal length, e.g. for
m=3 the equilateral triangle with broken edges that is shown in Fig. 1.

3.2. Representation of two samples
For the study of classification, the two-sample case is also important. Suppose that, in addition
to the sample X .d/ where data vectors are distributed as the first d components of the time
series X, there is an independent random sample Y.d/={Y1.d/, . . . , Yn.d/}, where each Yj.d/=
.Y

.1/
j , . . . , Y

.d/
j /T is distributed as the first d components of a time series Y = .Y.1/, Y.2/, . . ./T.

Straightforward modifications of assumptions (a)–(c) in Section 3.1 for the time series Y ,
together with a new assumption about separation of population means, gives the new conditions

1
d

d∑
k=1

var.Y.k//→ τ2,

1
d

d∑
k=1

{E.X.k//−E.Y.k//}2 →µ2,

.6/

where τ and µ denote finite positive constants. It follows that the analogue of result (4) holds:
after rescaling by the factor d−1=2, the data Yi.d/ are asymptotically located at vertices of an
n-simplex where each edge is of length 2τ1=2.

As will shortly be seen, the second part of conditions (6) is especially relevant to accurate
classification. If µ in expression (6) is too small, and in particular if it equals 0, then a classifier
of any conventional type (SVM, distance-weighted discrimination (DWD), nearest neighbour,
etc.) operates asymptotically in a degenerate fashion, without respecting the population, with
probability converging to 1 as d →∞, from which a new datum comes, i.e. the classifier assigns
the new datum to the same population, regardless of the actual population from which it came.
In such instances the classifier is overwhelmed by the stochastic noise that accrues from a very
large number of dimensions. The case µ=0 can arise when there is only a finite number of truly
discriminating components.

Since the samples X .d/ and Y.d/ are independent, a weak law of large numbers and prop-
erty (6) show that the distance between Xi.d/ and Yj.d/, divided by d1=2, converges in probability
to .σ2 + τ2 +µ2/1=2 as d →∞:

1
d1=2

{
d∑

k=1
.X

.k/
i −Y

.k/
j /2

}1=2

→ l≡ .σ2 + τ2 +µ2/1=2: .7/

See Section 5.1 for details. Thus, after rescaling all distances by the factor d−1=2, and writing
N for m+n, we obtain the following geometric picture of the two samples, X .d/ and Y.d/, for
large d and fixed m and n.

After rescaling each component of d-variate space by the factor d−1=2, the N points in
X .d/∪Y.d/ are asymptotically located at the vertices of a convex N-polyhedron in
.N −1/-dimensional space, where the polyhedron has N vertices and N.N −1/=2 edges.
Just m of the vertices are the limits of the m points of X .d/ and are the vertices of an
m-simplex of edge length 21=2σ: The other n vertices are the limits of the n points of Y.d/

and are the vertices of an n-simplex of edge length 21=2τ : The lengths of the edges in the
N-polyhedron that link a vertex deriving from a point in X .d/ to one deriving from
a point in Y.d/ are all of length l: .8/

The results here hold as d →∞, for fixed m and n. An N-polyhedron is a figure in .N − 1/-
dimensional space that has just N vertices and has all its faces given by hyperplanes in .N −1/-
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variate space. The particular N-polyhedron that is discussed at result (8) has all the scale invariant
properties of an N-simplex and in particular has just

(
N
k

)
k-faces, or faces that are of dimension

k −1. Thus, it has
(

N
1

)
vertices,

(
N
2

)
edges, and so on.

If σ =τ and µ=0 (e.g. if the time series X and Y have the same distribution) then the N-poly-
hedron that is discussed at result (8) is exactly an N-simplex, with all edge lengths .2σ2/1=2.

In the general case, the N-polyhedron of the two-sample geometric representation can be
constructed by rescaling an N-simplex, as follows. An N-simplex has m of its vertices arranged
as those of an m-simplex in .m − 1/-variate space, and the other n vertices arranged in an
n-simplex in .n−1/-variate space. Alter the scales of these two simplices so that their respective
edge lengths are 21=2σ and 21=2τ ; each is still a simplex in its own right. Then alter the lengths
of the other edges, of which there are

1
2 N.N −1/− 1

2 m.m−1/− 1
2 n.n−1/=mn,

so that they all equal l.
Examples for small values of m and n are readily visualized, as discussed in the next para-

graph. We shall use the term ‘tetrahedron’ for the non-regular version of that figure, in which
edge lengths are not necessarily equal. In the following paragraph we shall write simply X and
Y for X .d/ and Y.d/ respectively.

When m= 2 and n= 1 the N-polyhedron is a triangle, with one of its edges being of length
21=2σ and the corresponding two vertices representing the points in X , the other two edges being
of length l, and the third vertex representing the single point in Y . When m = 3 and n = 1 the
N-polyhedron is the surface of a tetrahedron, with the three vertices in its base representing
the points in X and forming an equilateral triangle of side length 21=2σ, and the vertex at the
apex representing the point in Y and being distant l from each of the vertices in the base. When
m = n = 2 the N-polyhedron is again the surface of a tetrahedron, as follows. Let two of the
vertices in the base of the tetrahedron correspond to the two points in X , and let the other
vertex in the base, and the vertex at the apex of the tetrahedron, correspond to the two points
in Y . Let the edge joining the two X -points be of length 21=2σ, let the edge joining the other
two points be of length 21=2τ and let the other four edges all be of length l.

This interpretation converts an intrinsically complex, highly stochastic, high dimensional
data configuration into a highly symmetric, virtually deterministic, low dimensional one. As
noted in Section 2, almost all of the stochastic variability in the data goes into random rotation,
although some goes into small perturbations of vertices that disappear as d →∞. As d increases,
the orientation of the N-polyhedron constantly changes and does not converge in probability.
Thus, as d →∞ the polyhedron is constantly randomly spinning in a space of ever increasing
dimension. Furthermore, the polyhedron’s location also varies with d (unless the means are 0,
as assumed in Section 2).

4. Analysis of discrimination methods

In this section, the geometric representation ideas of Section 3.2 form the basis of a mathemat-
ical analysis of observed behaviour of discrimination methods. In particular, in the simulation
study of Marron and Todd (2005), it was observed that, at very high dimensions, the tech-
niques considered all had similar error rates, across a wide array of simulation settings. A basic
version of the popular SVM and the more recently developed DWD method are treated in
Section 4.1. Related ideas for other discrimination rules are discussed in Section 4.2. Some of
the theoretically predicted effects are more deeply investigated in a small simulation study in
Section 4.3.
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4.1. Support vector machine and distance-weighted discrimination
Several methods for classification operate by dividing the sample union X .d/ ∪Y.d/ into two
classes by a hyperplane, and classifying a new datum as coming from the X- or Y -population
according to whether it lies on one side or the other of the hyperplane. (Here and below, unless
otherwise specified, a hyperplane will be d −1 dimensional.) When d �N, and no k data points
lie in a .k −2/-dimensional hyperplane (which happens with probability 1 for data from contin-
uous probability densities), it is always possible to find a hyperplane that has X .d/ entirely on
one side and Y.d/ entirely on the other. Attention is restricted to this ‘separable’ case, and we
shall study how the different classification methods vary in terms of the hyperplane that they
select.

The SVM method (see for example Vapnik (1982, 1995), Burges (1998), Christianini and
Shawe-Taylor (2000) and Schölkopf and Smola (2001)) has been implemented and studied in
a wide variety of forms. Here we consider only the simplest basic version, which chooses the
hyperplane that perpendicularly bisects the line segment between the two closest points in the
convex hulls of the respective data sets. These points do not have to be data values. In the asymp-
totic geometric representation that is described at result (8), these convex hulls are precisely the
m- and n-simplices, the vertices of which represent the limits, as d →∞, of the data sets X .d/

and Y.d/ respectively. (Here and below, in a slight abuse of notation, we refer to the limiting
simplices of the samples X .d/ and Y.d/ simply as the m-simplex and the n-simplex respectively.)

It is thus clear that the projection of the basic SVM hyperplane, into the .N −1/-dimensional
hyperplane that is generated by the data, where all the data in X .d/∪Y.d/ can be considered to
lie, is given asymptotically by the unique .N −2/-dimensional hyperplane that bisects each of the
edges of length l in the N-polyhedron. To illustrate this point, recall from Section 3.2 that when
m= 2 and n= 1 the N-polyhedron is an isosceles triangle, with its base having length .2σ2/1=2

and corresponding to the 2-simplex representing the sample X .d/. In this case the projection
of the basic SVM hyperplane into the plane of the 3-polyhedron is, in the limit as d →∞, the
straight line that bisects the triangle’s two equal sides of length l.

Now add a new random point to d-variate space; it should be independent of the data in
X .d/∪Y.d/ and have the distribution of either X.d/ or Y.d/. We make the following claim.

Theorem 1. Assume that σ2=m � τ2=n; if need be, interchange X and Y to achieve this.
If µ2 > σ2=m − τ2=n, then the probability that a new datum from either the X- or the
Y -population is correctly classified by the basic SVM hyperplane converges to 1 as d →∞. If
µ2 <σ2=m− τ2=n, then with probability converging to 1 as d →∞ a new datum from either
population will be classified by the basic SVM hyperplane as belonging to the Y -population.

The proof follows directly from the geometric representation that was developed in Section 3.2
and is given in Section 5.2.

It follows that, for any µ �=0, the basic SVM hyperplane gives an asymptotically correct clas-
sification of new X-values whenever m is sufficiently large, for any given value of n, and an
asymptotically correct classification of new Y -values whenever n is sufficiently large, for any
given value of m.

Another interesting consequence of theorem 1 is that if the X- and Y -populations have the
same average variances, i.e. if σ2 = τ2, and if µ2=σ2 < |m−1 −n−1|, then the basic SVM classi-
fier ensures asymptotically perfect classification for the population with the larger sample, and
asymptotically completely incorrect classification for the population with the smaller sample.

The case of Marron and Todd’s (2005) DWD approach differs in important respects, at least
when the sample sizes m and n are unequal. When X .d/ and Y.d/ are separable as discussed at
the beginning of this section, a general version of the DWD hyperplane is defined by minimizing



Representation of High Dimension, Low Sample Size Data 435

CX CY
P

Fig. 3. Relative relationships of simplex centroids CX , CY and the candidate DWD cut-off point P

the sum, Sp say, of the pth powers of the inverses of perpendicular distances from a candidate
for the hyperplane to points in X .d/ and Y.d/, where p> 0 is fixed.

Let us analyse quickly the properties of the DWD hyperplane. Let CX be the centroid of the
simplex X .d/ and CY the centroid of the simplex Y.d/. It is easy to see that the line joining CX

and CY is orthogonal to the linear subspaces that are generated by the simplices. From this it
easily follows that the DWD hyperplane must be orthogonal to the line joining the centroids.
Let P be any point on the interval CXCY . We want to see when it lies on the DWD hyperplane.
Relative relationships are diagrammed in Fig. 3.

Because the simplex X .d/ is orthogonal to CXCY , all the vertices in the simplex are distance
α from the hyperplane passing through P , orthogonal to CXCY . Similarly all the points of the
simplex Y.d/ are distance β from the hyperplane. The DWD hyperplane minimizes

m

αp
+ n

βp

subject to the constraint that α+β is constant. It is an easy exercise in calculus to see that the
minimum satisfies the identity

α

β
=

(m

n

)1=.p+1/
: .9/

This tells us the location of the DWD hyperplane. It is the hyperplane that is orthogonal to the
line CXCY , passing through the point P which satisfies condition (9). In Section 5.3 we shall see
how to compute on which side of the hyperplane a new datum point lies. Here we note that α=β
if and only if m=n. In this case, the basic SVM hyperplane and the DWD hyperplane coincide.
The larger m=n, the closer the point P will be to CY . As m=n→∞, the DWD hyperplane moves
ever closer to the simplex whose vertices represent the smaller of the two samples.

Therefore, theorem 1 applies without change to the DWD algorithm, provided that the two
sample sizes are equal. In the contrary case the limit, as d →∞, of the probability that a new
datum is classified as being from the same population as the larger sample increases with the
larger sample size for a fixed value of the smaller sample size. This anticipates the often-assumed
property that the larger sample comes from a population with higher prior probability. In the
general case we have the following.

Theorem 2. Assume that σ2=m.p+2/=.p+1/ � τ2=n.p+2/=.p+1/; if need be, interchange X and Y

to achieve this. If µ2 >.n=m/1=.p+1/σ2=m− τ2=n, then the probability that a new datum from
either the X- or the Y -population is correctly classified by the DWD hyperplane converges
to 1 as d →∞. If µ2 < .n=m/1=.p+1/σ2=m − τ2=n, then with probability converging to 1 as
d → ∞ a new datum from either population will be classified by the DWD hyperplane as
belonging to the Y -population.

See Section 5.3.
As p →∞, theorems 1 and 2 become identical. More generally, the rules which determine

success or failure of classification, using the basic SVM or DWD, are similar when p is large.
In this sense, the basic SVM can be viewed as a limiting case of DWD; the basic SVM may be
regarded as a form of DWD, using a very large value of the exponent that is applied to distance
from the space splitting hyperplane.
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Recall from Section 3 that our geometric representations are based on large d laws of large
numbers. The small stochastic perturbations in those laws are generally asymptotically normally
distributed and of size d−1=2. An examination of the nature of the perturbations shows that when
m=n the DWD hyperplane is less stochastically variable than its basic SVM counterpart, giv-
ing rise to the lower error rates for classification. Specifically, stochastic errors in locating the
basic SVM hyperplane are, to first order, the result of extrema of small, independent, zero-mean
errors in locating simplex vertices. In contrast, errors in the position of the DWD hyperplane
arise from averaging those errors. Since the extrema of independent perturbations are generally
larger than the perturbations’ average, except in very heavy-tailed cases which are excluded
by our moment conditions, then the DWD algorithm produces a less stochastically variable
approximation to the common hyperplane to which the basic SVM and DWD hyperplanes
converge as d →∞. This explains the result that was observed in Fig. 5 of Marron and Todd
(2005), that for spherical Gaussian data DWD gave a somewhat better classification perfor-
mance than the basic SVM. However, in other cases, in particular where the conditions of the
theorems are not well preserved, the SVM can outperform DWD. See the end of Section 4.3 for
an example.

4.2. Other discrimination rules
Let CX.d/ and CY .d/ denote the centroids of the data sets X .d/ and Y.d/ respectively. The
‘centroid rule’ or ‘mean difference rule’ classifies a new datum, Z say, as being from the X- or
Y -population according to whether Z is closer to CX.d/ or to CY .d/ respectively. Clearly, CX.d/

and CY .d/ converge, after rescaling by d−1=2 and letting d →∞, to the centroids of the respec-
tive simplices. It follows that the centroid rule discriminator (CRD) enjoys the same properties,
described by theorem 1, as the basic SVM classifier. Indeed, the hyperplane which bisects all
the lines (of equal length l) linking points in the m- and n-simplices also has the property that it
divides space into points which lie nearer to one or other of the centroids of either simplex, i.e.
the limit of the basic SVM hyperplane splits space in exactly the same way as the limit of the
CRD hyperplane. However, as with DWD, the variation in the CRD is driven by averaging the
stochastic errors, not by the extrema. This is a new way of understanding the superior perfor-
mance of the CRD over the basic SVM in the example that was considered in Fig. 5 of Marron
and Todd (2005). DWD gave essentially the same performance in that case because the sample
sizes were equal.

The standard one-nearest-neighbour rule, which classifies Z as coming from the X- or
Y -population according to whether the nearest point in X .d/∪Y.d/ is from X .d/ or Y.d/ respec-
tively, has quite different behaviour. Instead of theorem 1 the nearest neighbour discriminator
(NND) satisfies the following.

Theorem 3. Assume that σ2 � τ2; if need be, interchange X and Y to achieve this. If µ2 >σ2−
τ2, then the probability that a new datum from either the X- or the Y -population is correctly
classified by the NND hyperplane converges to 1 as d →∞. If µ2 <σ2 −τ2, then with proba-
bility converging to 1 as d →∞ a new datum from either population will be classified by the
NND hyperplane as belonging to the Y -population.

The contrast between theorems 1 and 3 is marked. For example, taking m = n for simplic-
ity, theorem 1 asserts that, in the large d limit, the basic SVM misclassifies data from at least
one of the populations only when µ2 < |σ2 − τ2|=m, whereas theorem 3 asserts that the NND
leads to misclassification, for data from at least one of the populations, both in this range
and when |σ2 − τ2|=m�µ2 < |σ2 − τ2|. This quantifies the inefficiency that might be expected
from basing inference on only a single nearest neighbour. Furthermore, without the condition
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m = n, the basic SVM has an asymptotic advantage over the NND, in the sense of leading
to the correct classification of data from the X-population for a wider range of values of µ,
whenever 1 < τ2=σ2 < .1 − m−1/.1 − n−1/−1, and has this advantage for the Y -population if
1 <σ2=τ2 <.1−n−1/.1−m−1/−1.

As noted earlier in this section and in Section 4.1, if the CRD and DWD (for m=n, or for
large p) classifiers are equivalent to the basic SVM, then the remarks in the previous paragraph
remain true if we replace the basic SVM by either DWD or CRD. This explains the observation
of Marron and Todd (2005) that these methods all gave similar simulation results for very large
dimension d (in the case of m = n). Furthermore, the four classifiers that are considered here
divide naturally into two groups. The first group contains the basic SVM, DWD (for m=n or
large p) and CRD, which for large d have similar performance in a wide range of circumstances;
and the second group contains just the NND, which is generally somewhat inferior to the other
two, in terms of the width of the range where it gives correct classification. These issues are
illustrated by using simulations in Section 4.3.

We have avoided treating ‘marginal’ cases, in particular µ2 =|σ2m−1 − τ2n−1| in the setting
of theorem 1 and µ2 =|σ2 − τ2| in the case of theorem 3. There the probabilities of misclassi-
fication depend on relatively detailed properties of the sampling distribution. Indeed, they are
influenced by the errors in the laws of large numbers which led to properties such as theorem 1.
These errors are generally asymptotically normally distributed, and their joint limiting distribu-
tions determine large d classification probabilities when µ2 =|σ2m−1 −τ2n−1| or µ2 =|σ2 −τ2|.

4.3. Simulation illustration
Some of the consequences of the geometric representation ideas that are developed here are
illustrated via simulation in this section.

An interesting, and at the time surprising, observation of the simulation study of Marron
and Todd (2005) was that in a variety of simulation settings considered there, for all of the
basic SVM, DWD and CRD, the classification error rates tended to come together for large
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d. Fig. 4 is similar to Fig. 5 of Marron and Todd, except that the NND has now been added.
This shows overall error rates, for the four classification methods that are considered in this
paper. Here the training sample sizes were m=n=25, and dimensions d =10, 40, 100, 400, 1600
were considered, and the data are standard normal (i.e. multivariate Gaussian with mean 0 and
identity covariance), except that the mean of X

.1/
i , i=1, . . . , m (and of Y

.1/
j j =1, . . . , n), has been

shifted to 2.2 (and −2.2 respectively). Classification error rates were computed on the basis of
100 new data points from each of the two classes, and the means are summarized by the curves
in Fig. 4. Monte Carlo variation, over 1000 repetitions of each experiment, is reflected by the
error bars, which are standard normal theory 95% confidence intervals for the true underlying
population means.

This simulation setting is not identical to that of this paper, because the first entries of the
data vectors have a different mean from the other entries. However, the data space can be simply
rotated (through a change of variables) so that the first dimension lies in the direction of the vec-
tor whose entries are all 1. Thus this simulation setting is equivalent to the assumptions above,
with µ= 4:4=d1=2. In view of the geometrical representation and the calculations in Sections
4.1 and 4.2, it is not surprising that this effectively decreasing value of µ gives error rates that
increase in d. Also as expected from the theory, the error rates for the basic SVM, DWD and
CRD come together for increasing d, although the convergence is perhaps faster than expected.
(Recall, from theorems 1 and 2 and the first paragraph of Section 4.2 that, in the case m = n

which we are considering here, the classification probabilities for the basic SVM, DWD and
CRD all converge to 1 as d increases.) Finally, again as predicted, the basic SVM lags somewhat
behind DWD and the CRD (which are not significantly different).

The simulation performance of the NND rule is also included in Fig. 4. As predicted in
Section 4.2, the NND lags quite substantially behind the other rules in performance (again
reflecting the loss in efficiency from using only one nearest neighbour).

The ideas of theorems 1–3 are illustrated in a different way in Fig. 5. The simulation setting
of Fig. 5 is again Gaussian, with training sample sizes m=n=16. This time the parameters are
µ as shown on the horizontal axis, σ2 =20 and τ2 =4. A range of dimensions, d =10, 100, 1000,
are shown in Figs 5(a), 5(b) and 5(c) respectively. The classification methods are distinguished
by using different line types. Different line thicknesses are used to decrease overplotting effects;
for example, for d =1000, the basic SVM, DWD and CRD results are essentially on top of each
other. Again error rates are computed using 100 new test cases for each class, and averaged over
1000 Monte Carlo repetitions.
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Fig. 5 allows a convenient study of the classification error rate as a function of µ. Theorem 1
suggests that for ‘µ large’ perfect discrimination (i.e. error rate 0) is possible for the basic SVM,
which is reflected by the full curves coming to 0 on the right-hand side. The convergence is
faster for larger dimension d, also as expected. But much more precise information is given
in theorem 1, with in particular a changepoint at µ= .σ2=m− τ2=n/1=2 = .20=16−4=16/1=2 =1
expected. To the left of the changepoint, the theory predicts that the error should be 0.5, because
the class X .d/ data will be completely correctly classified, and the class Y.d/ data will all be
incorrect. The changepoint is quite sharp for d = 1000 and less so for lower d, as expected,
because the geometric representation has not fully taken over for the lower dimensions.

Very similar performance is predicted for DWD by theorem 2 and is seen in Fig. 5 as the
broken curve. The performance is virtually identical to that of the basic SVM for d =1000 and,
again as predicted at the end of Section 4.1, DWD is marginally better for d =10 and d =100.

Recall from theorem 3 that for NND the changepoint is quite different, now appearing for
µ= .σ2 −τ2/1=2 = .20−4/1=2 =4 (further to the right, reflecting the expected inefficiency of one
nearest neighbour discrimination). This changepoint is also well reflected in Fig. 5, as the curves
comprised of bold dots. Again the asymptotically predicted results are strongest for the highest
dimension d =1000.

Our results also suggested that interesting effects should appear for unequal sample sizes n

and m. Some simulations in that case are summarized in Fig. 6. Specific results are shown for
the case of m=2 and n=5. Fairly similar results were obtained for other values of m and n.

As in Fig. 5, line types represent dimension d =10, 100, 1000. The results are easiest to inter-
pret when the error rates are broken down in terms of class, so the line type is used to indicate
this, with thin lines representing error rates for class X .d/ only, medium lines for class Y.d/

only and the thickest line for the combined error rates. The distributions are again independent
Gaussian, with E.X.k// = 0 and E.Y.k// = µ, and the variances were taken to be σ2 = τ2 = 1.
Again error rates are displayed as a function of

µ=
[

1
d

d∑
k=1

{E.X.k//−E.Y.k//}2
]1=2

:

Once again the lessons from asymptotic prediction apply. In particular, for small values of
µ, the m = 2 class X .d/ error rates (indicated by the thin curves) are quite large and increase
to 1 for d = 1000 (the thin full curves). The n = 5 class Y.d/ error rates (indicated by medium
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width lines) are much smaller and decrease to all 0 for d = 1000 (the medium full curves). The
overall rates lie between these, because they are just 2/7 of the class X .d/ rates plus 5/7 of the
class Y.d/ rates. For larger values of µ, there is more discrimination information in the data, so
all the rates decrease, with the fastest decrease for d =1000 (shown by using full curves).

Also as predicted, for the highest d = 1000, the CRD and SVM give essentially the same
results (i.e. for each line thickness the chain curve is always almost on top of the corresponding
full curve), and DWD is substantially worse in terms of both class X .d/ and overall error rates
(the thin and thick broken curves are higher than the corresponding curves of other line types).
For lower dimensions, the results are fairly similar, but DWD seems to give better class Y.d/

performance (shown by the dashed medium width lines being below the other two line types), as
expected, since DWD errs by using the wrong intercept. DWD even has slightly better overall
performance for small values of µ (indicated by the thick broken curve being below the other
thick curves).

The overall error rates (shown as the thick curves) also indicate the predicted performance.
For the SVM (full curves), and µ>.σ2=m−τ2=n/1=2 = .1=2−1=5/1=2 ≈0:55, the error rates tend
towards 0 as the dimension d increases. The inferior performance of DWD, predicted by the
different threshold of µ>{.n=m/1=.1+p/σ2=m−τ2=n}1=2 ={.5=2/1=.1+1/1=2−1=5}1=2 ≈0:77, is
also clear.

5. Technical details

This section gives the technical details that were used in the above discussion.

5.1. Laws of large numbers
This section gives a concise formulation of the ρ mixing condition and shows how it can be used
to develop the laws of large numbers (4) and (7).

We say that the time series X= .X.1/, X.2/, . . ./ and Y = .Y.1/, Y.2/, . . ./, assumed to be inde-
pendent of one another and to have uniformly bounded fourth moments, are ρ mixing for
functions dominated by quadratics, if, whenever functions f and g of two variables satisfy
|f.u, v/|+ |g.u, v/|�Cu2v2 for fixed C> 0 and all u and v, we have

sup
1�k,l<∞,|k−l|�r

|corr{f.U.k/, V .k//, g.U.k/, V .k//}|�ρ.r/,

for .U, V/ = .X, X/, .Y , Y/, .X, Y/, where the function ρ satisfies ρ.r/ → 0 as r → ∞. See, for
example, Kolmogorov and Rozanov (1960).

If the ρ mixing condition holds, then, by elementary moment calculations,

E

[
d∑

k=1
{.U

.k/
i −V

.k/
j /2 −E.U

.k/
i −V

.k/
j /2}

]2

=o.d2/

as d → ∞, for .U, V/ = .X, X/, .Y , Y/, .X, Y/, where i �= j if .U, V/ = .X, X/ or .U, V/ = .Y , Y/.
Therefore, by Chebyshev’s inequality,

1
d

d∑
k=1

{.U
.k/
i −V

.k/
j /2 −E.U

.k/
i −V

.k/
j /2}→0

in probability. This result, together with expressions (3) and (6), implies laws (4) and (7).

5.2. Derivation for basic support vector machine
This section contains the details leading to theorem 1.
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Let the new datum have the distribution of X.d/ and be independent of the data in X .d/∪Y.d/.
Denote it by X′.d/. The asymptotic theory that is described in Sections 3.1 and 3.2 implies that, as
d →∞, the distance of X′.d/ from each Xi.d/∈X .d/, rescaled by d−1=2, converges in probability
to .2σ2/1=2; and the rescaled distance of X′.d/ from each Yj.d/∈Y.d/ converges in probability
to l.

Recall that we refer to the limiting simplices of the samples X .d/ and Y.d/ as the m-simplex
and the n-simplex respectively. The squared distance from any vertex of the m-simplex to its
centroid equals σ2.1 − m−1/. To appreciate why, let us temporarily take σ2 = 1 and represent
the m-simplex in m-variate Euclidean space through its vertices, at the points with co-ordinates
.1, 0, . . . , 0/, . . . , .0, . . . , 0, 1/. (This m-variate representation is simpler than an .m− 1/-variate
representation.) Then the centroid of the simplex has co-ordinates .m−1, . . . , m−1/, and so its
squared distance from any of the vertices equals .1−m−1/2 + .m−1/m−2 =1−m−1.

Let Z ∈ Rd be a point which is distant r from each vertex of the m-simplex. Then Z, any
vertex V of the m-simplex, and the centroid of the m-simplex, are the vertices of a right-angled
triangle of which the hypotenuse is the line joining Z to V . Therefore, by Pythagoras’s theorem,
the squared distance from Z to the centroid equals r2 −σ2.1−m−1/.

The datum X′.d/ is correctly classified if and only if it is nearer to the convex hull of the
m-simplex than to the hull of the n-simplex. Equivalently, X′.d/ is classified as coming from
X .d/ if and only if it is nearer to the centroid of the m-simplex than to the centroid of the
n-simplex. In view of the result that was derived in the previous paragraph, the squared dis-
tance of X′.d/ from the centroid of the m-simplex and from the centroid of the n-simplex equal
respectively

2σ2 −σ2.1−m−1/=σ2.m+1/=m,

l2 − τ2.1−n−1/=µ2 +σ2 + τ2n−1:

Hence, X′.d/ will be nearer to the n-simplex (and therefore misclassified) if σ2.m + 1/=m >

µ2 +σ2 + τ2n−1, i.e. if µ2 < σ2m−1 − τ2n−1, and will be nearer to the m-simplex (and so cor-
rectly classified) if µ2 >σ2m−1 − τ2n−1.

So far we have made no assumption regarding which of σ2=m and τ2=n is bigger. Now assume
that σ2=m>τ2=n. The above tells us when a datum point of type X′.d/ will be classified correctly.
For a datum point of type Y ′.d/, the same argument with X and Y interchanged tells us that a
datum point of type Y will be classified correctly if µ2 > τ2n−1 −σ2m−1. Since the right-hand
side is negative, this always happens. In other words a datum point of type Y is always classified
correctly. Theorem 1 simply assembles the information about data points of type X and Y .

5.3. Derivation for distance-weighted discrimination
In Section 5.2 we saw that, given a point Z whose distance from each vertex of the m-simplex
X .d/ is r, the squared distance of Z from the centroid of the m-simplex is r2 −σ2.1−m−1/. We
can apply this where Z=Y is one of the vertices of the simplex Y.d/. The square of the distance
from Y to a point in X .d/ is µ2 +σ2 + τ2, and hence the square distance of Y from the centroid
CX of X .d/ is

µ2 +σ2 + τ2 −σ2.1−m−1/=µ2 +σ2=m+ τ2:

Now this is true for every vertex Y in Y.d/. The same analysis now tells us that the square
distance of CX from the centroid CY of the simplex Y.d/ is given by

µ2 +σ2=m+ τ2 − τ2.1−n−1/=µ2 +σ2=m+ τ2=n:
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Fig. 7. Relative relationships between the new datum point X0.d/ and the simplex centroids CX and CY

Now let X′.d/ be a new datum point of type X, independent of X .d/∪Y.d/. In Section 5.2 we
computed the square distances of X′.d/ from CX and CY . In other words, in the triangle that is
shown in Fig. 7, we know the distances CXCY , X′.d/CX and X′.d/CY .

In Fig. 7, P is the projection of X′.d/ to the line CXCY . The distances that we have computed
tell us

α2 +h2 =σ2.1+m−1/, .10/

β2 +h2 =µ2 +σ2 + τ2=n, .11/

.α+β/2 =µ2 +σ2=m+ τ2=n: .12/

Subtracting equation (11) from equation (10) we have

α2 −β2 =σ2=m−µ2 − τ2=n: .13/

Adding equations (12) and (13), and subtracting these two equations, we obtain respectively

α.α+β/=σ2=m, .14/

β.α+β/=µ2 + τ2=n, .15/

from which we conclude that

α

β
= σ2=m

µ2 + τ2=n
: .16/

The point X′.d/ will be classified as belonging to X if it lies on the same side of the DWD
hyperplane as CX, i.e. if

σ2=m

µ2 + τ2=n
<

(m

n

)1=.p+1/
:

It will be classified as belonging to Y if

σ2=m

µ2 + τ2=n
>

(m

n

)1=.p+1/
:

So far our treatment has been general. Now assume that

σ2=m.p+2/=.p+1/ � τ2=n.p+2/=.p+1/:

The analysis above tells us when a point X′.d/ will be classified correctly. Suppose that we have
a point Y ′.d/. By the inequality above

τ2=n

σ2=m
�

( n

m

)1=.p+1/
:
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But then for any positive µ2 we have

τ2=n

µ2 +σ2=m
<

τ2=n

σ2=m
�

( n

m

)1=.p+1/
:

i.e. Y ′.d/ will always be classified as belonging to Y .
Theorem 2 simply combines the information above, on X′.d/ and Y ′.d/.

5.4. Derivation for nearest neighbour discriminator
As in Section 5.2, let X′.d/ denote a new datum, from the X-population, added to the d-variate
hyperplane. In the limit as d →∞, and after the usual normalization, X′.d/ converges to a point
whose squared distances from points of the m- and n-simplices equal 2σ2 and l2 respectively.
Hence, the limit of the probability that X′.d/ is correctly classified equals 1 or 0 according to
whether 2σ2 < l2 or 2σ2 > l2 respectively. Since 2σ2 < l2 if and only if µ2 > σ2 − τ2, theorem 3
follows.

6. Summarizing remarks and conclusions

We have shown that, in a model where components of data vectors follow a time series that
is stationary in a second-order, Cesàro-averaged sense (see expressions (3) and (6)), the per-
formances of different classifiers for very high dimensions can be represented, quite simply, in
terms of the relationships between the average co-ordinate variances, and the average squared
differences of means. This analysis has revealed a variety of properties of different classifiers.
For example, it has been shown that the basic SVM and DWD classifiers perform similarly
when the sample sizes are the same, but not necessarily when the sample sizes differ, and that,
from some perspectives, the basic SVM can be viewed as the limit of DWD as the exponent p in
the latter increases. It quantifies the belief that, relative to the basic SVM and DWD, the NND
classifier is swamped by the effects of variability in high dimensional samples, since (in the case
of equal sample sizes) the condition ‘µ2 > |σ2 − τ2|=n’ that characterizes good performance for
the basic SVM and DWD methods must be strengthened to ‘µ2 > |σ2 − τ2|’ for the NND. In
these and other ways, the second-order, Cesàro stationarity model gives theoretical insight into
numerical results about the performances of different classifiers.

The model can be altered, and in particular generalized, in a variety of ways, to gain still
further information. For example, the way in which the componentwise means and variances
change with the component index can be adjusted, so that σ2, τ2 and µ2 are all 0, or where
for other reasons the marginal cases (e.g., in the example in the previous paragraph, the case
µ2 =|σ2 − τ2|) obtain. Furthermore, the distributions of components can be given a degree of
heavy-tailed behaviour, or be given stronger dependence, than has been considered in this paper.
In these ways, and in others, the simple model that is suggested here can be used as the basis
for a wider range of explorations of the manner in which classifiers compare.
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