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Influenza has been circulating in the human population
and has caused three pandemics in the last century (1918
H1N1, 1957 H2N2 and 1968 H3N2). The 2009 A(H1N1)
was classified by World Health Organization as the
fourth pandemic. Influenza has a high evolution rate,
which makes vaccine design challenging. We here con-
sider an approach for early detection of new dominant
strains. By clustering the 2009 A(H1N1) sequence data,
we found two main clusters. We then define a metric to
detect the emergence of dominant strains. We show on
historical H3N2 data that this method is able to identify a
cluster around an incipient dominant strain before it
becomes dominant. For example, for H3N2 as of 30
March 2009, the method detects the cluster for the new
A/British Columbia/RV1222/2009 strain. This strain
detection tool would appear to be useful for annual influ-
enza vaccine selection.
Keywords: clustering/H1N1/H3N2/influenza

Introduction

The recent outbreak of 2009 A(H1N1) caused immediate
international attention (Deem and Pan, 2009; Fraser et al.,
2009; Garten et al., 2009; Smith et al., 2009). This new 2009
A(H1N1) virus contains a combination of gene segments
from swine and human influenza viruses (Fraser et al., 2009;
Garten et al., 2009). Confirmed infections reached 270 000
globally as of September 2009 (World Health Organization,
2009b). The novel 2009 A(H1N1) strain was defined as a
pandemic strain by the World health Organization (WHO) in
2009 (World Health Organization, 2009d), and was the epi-
demic strain in the 2009 Northern winter.

Influenza viruses are hyper-mutating viruses. It has been
estimated that the nucleotide mutation rate per genome per
replication is approximately 0.76 (Drake and Holland, 1999).
Influenza viruses escape the human immune system by con-
tinual antigenic drift and shift (Fitch et al., 1997; Gupta
et al., 1998; Webster, 1998; Ferguson et al., 2003; Ghedin
et al., 2005; Nelson and Holmes, 2007). The quasispecies
nature of influenza viruses makes the strain structure
complex (Domingo et al., 2002). Usually, there is one or a

few dominant influenza strains circulating in the population
for each flu season. The flu vaccine is most effective when it
matches this dominant circulating strain (Hak et al., 2002;
Gupta et al., 2006). The degree to which immunity induced
by a vaccine protects against a different viral strain is deter-
mined by the antigenic distance between the vaccine and the
virus. Due to evolution of the antigenic regions of the influ-
enza virus, the composition of the flu vaccine is typically
modified annually (Russell et al., 2008a). However, since the
influenza strains used in the flu vaccine are decided 6 months
before the flu season, a mismatch between the vaccine strain
and dominant circulating strain may occur if the virus
evolves significantly. Such a situation arose for the H3N2
virus in the 2009–2010 flu season, when A/British
Columbia/RV1222/2009 emerged in the early spring
(Seasonal influenza, 2009; Skowronski, 2009). Accurate early
prediction of the dominant circulating strain is an essential
and important task in influenza research.

There are several ways to estimate the flu vaccine effec-
tiveness. Gupta et al. (2006) proposed pepitope as a measure
of antigenic distance between influenza A vaccine and circu-
lating strains. The hemagglutinin protein has five epitopes.
The dominant epitope for a particular circulating strain in a
particular season was taken as that which had the largest
fractional change in amino acid sequence relative to the
vaccine strain. The value of pepitope is defined as the fraction
of number of amino acid differences in the dominant epitope
to total number of amino acids in the dominant epitope. The
antigenic distance between the vaccine strain and the circu-
lating strain is quantified by pepitope. By a metaanalysis of
historical vaccine efficacy data from over 50 publications,
Gupta et al. (2006) showed in a metaanalysis that the pepitope

between vaccine strain and circulating strain correlates well
with the vaccine efficacy, with R2 . 0.8.

Understanding the evolution of influenza viruses has bene-
fited from phylogenetic reconstructions of the hemagglutinin
protein evolution (Ferguson et al., 2003; Russell et al.,
2008b). In an alternative approach, Lapedes and Farber
(2001), followed by Smith et al. (2004), applied a technique
called multidimensional scaling to study antigenic evolution
of influenza. Plotkin et al. (2002) clustered hemagglutinin
protein sequences using the single-linkage clustering algor-
ithm and found that influenza viruses group into clusters.

Here, we present a low-dimensional clustering method that
can detect the cluster containing an incipient dominant strain
for an upcoming flu season before the strain becomes domi-
nant. The method builds upon the dimensional projection
technique used by Lapedes and Farber (2001) and Smith
et al. (2004) to characterize hemagglutination inhibition (HI)
data. Importantly, the present method requires only sequence
data, unlike the approach of Lapedes and Farber (2001) and
Smith et al. (2004), which require ferret HI assay data
animal data. In this paper, we first study the evolution of
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2009 A(H1N1) by an evolutionary path map which leads to a
suggestion for the H1N1 vaccine strain. Then, we introduce
the low-dimensional protein sequence clustering method. We
propose an influenza vaccine selection procedure based on
this sequence clustering. The procedure is demonstrated and
tested in detail using historical data. We show the perform-
ance of the method to predict the dominant H3N2 strain in
an upcoming flu season using data solely from before the flu
season, on data since 1996. We compare the results to those
from existing methods since 1996. In the discussion section,
we discuss the relationship between the protein sequence
clustering method and previous approaches. We discuss the
false positive rate, as well as other challenges.

Results

Evolutionary path of 2009 A(H1N1) influenza
We first construct the directional evolutionary path for the
2009 A(H1N1) influenza. We use high-resolution data in
sequence, time and world spatial coordinate to construct this
evolutionary relationship.

Since its first detection, the 2009 A(H1N1) virus has
been extensively sequenced (Fraser et al., 2009; Garten
et al., 2009). By 1 May 2009, the number of confirmed
cases reported by WHO was 333 (World Health
Organization, 2009b). At the same time, the sequenced
hemagglutinin proteins (HA) available in NCBI Influenza
Resources Database were 312 (Bao et al., 2008); that is to
say most of the confirmed cases at that time were
sequenced. On 1 July 2009, the ratio of sequenced HA
protein to confirmed cases by WHO was 1039/77201
(World Health Organization, 2009b), a number which is
still much larger than that for seasonal flu. In addition, the
Influenza Resources Database contains the date of collec-
tion of each 2009 A(H1N1) virus strain. We reconstruct
the evolutionary history of swine flu viruses with the fol-
lowing procedure. If strain B is mutated from strain A, we
term strain A ‘founder’ and strain B ‘F1’. We align the
HA proteins of all 2009 A(H1N1) strains. Then, for each
strain, we find its founder strain based on the following
four criteria: (i) the founder strain should appear earlier
than the strain, as judged by collection date; (ii) the
founder strain should have only one amino acid difference
in the HA1 protein relative to the F1 strain; (iii) the
founder should also have the most similar nucleotide
sequence relative to F1; and (iv) the founder strain should
have a large number of identical copies circulating in
human population, as approximated by the number of
different strains with identical HA sequences in the
Influenza Resources Database. By applying these four cri-
teria to 2009 A(H1N1) influenza, we construct the direc-
tional evolutionary path map, as shown in Fig. 1. We can
see two clusters: one around A/New York/19/2009 (#28)
and another one around A/Texas/05/2009 (#12). Most new
strains are from the Northern hemisphere, and strains from
the Southern hemisphere are mainly located at the edge of
the map, such as strains #96, #120 and #126. That the
Southern hemisphere strains appear at the boundary of the
figure provides a self-consistency check of the validity of
the assumptions entering the construction of this figure.
Geographically, we see many founder to F1 links are from

the USA and Mexico to other countries, but we rarely see
founder to F1 links that are from other countries to the
USA and Mexico, or from other countries to other
countries except the USA and Mexico (see Materials and
methods). We also found that strains with more F1 in
Fig. 1 are more frequently seen in the human population.
For example, in the Influenza Resources Database, we
found 153 strains to be identical with A/New York/19/
2009, which has 29 F1 strains, and 120 strains to be iden-
tical with A/Texas/05/2009, which has 24 F1 strains. We
can see in Fig. 1 that A/Texas/05/2009 is at the very
upstream of the map, with downward connections to most
of the other strains by direct or two-step links. This result
agrees with the US Food and Drug Administration (FDA,
2009) recommendation of A/Texas/05/2009 as a vaccination
strain. The alternative vaccine strain A/California/7/2009
(#7) has fewer F1 strains and it is not located at the center
of the network.

Low-dimensional clustering
We use a low-dimensional clustering method to visualize the
antigenic distance matrix of the viruses. We use a statistical
tool called ‘multidimensional scaling’ (Everitt et al., 2001).
This method was used by Lapedes and Farber (2001) and
Smith et al. (2004) to project ferret HI assay data to low
dimensions. The influenza viral surface glycoprotein hemag-
glutinin is a primary target of the protective immune
response. Here, we project the hemagglutinin protein
sequence data, rather than animal model data, to low dimen-
sions. The HA1 protein of influenza with 329 residues can
be considered as a 329-dimension space. The multidimen-
sional scaling method is applied to rescale the
329-dimension space to a two-dimensional space, so that we
can plot and visualize it. First, we do a multialignment of the
HA1 proteins. Then, the distance between any two proteins
is calculated as

dij ¼
1

N

XN

m¼1

ð1� dsi;m;s j;m
Þ ð1Þ

where si;m is the amino acid of protein i at position m.
The term dsi;m;s j;m

is 1 if amino acids of protein i and j at pos-
ition m are the same. Otherwise, it is 0. For the 2009 H1N1
viruses, we consider the entire HA protein, and N ¼ 566. For
H3N2 viruses, we consider only the HA1 protein, and N ¼
329, because the entire HA proteins are not completely
sequenced in many cases. Thus, dij is the number of amino
acid differences between HA proteins normalized by length.
The multidimensional scaling produces a protein distance
map, for example, Fig. 2b. In this map, each data point rep-
resents a flu strain isolate. The Euclidean distance between
two points in the map approximates the protein distance in
Equation (1) between these two flu strains (see Materials and
methods for details of this distance approximation pro-
cedure). Two closely located points imply two strains with
similar HA protein sequences.

We apply the low-dimensional clustering method to study
2009 A(H1N1). We plot the protein distance map in Fig. 2b.
Both A/Texas/05/2009 and A/New York/19/2009 are located
near the center of the cluster, in good agreement with the
observation from Fig. 1 that they are the founder strains for
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many F1 strains. To detect the clusters in the protein distance
map, we use a statistical method known as kernel density
estimation (Everitt et al., 2001). Kernel density estimation is
a non-parametric method to estimate the probability density

function from which data come. The kernel density figure is
produced from the protein distance map, and it shows the
density of influenza strains in sequence space. We plot the
kernel density as the three-dimensional shaded surface. For

Fig. 2 (a) Kernel density estimation for the protein distance map of 2009 A(H1N1) influenza as of 5 December 2009. (b) The protein distance map of 2009
A(H1N1) influenza. The vertical and horizontal axes of both figures represent protein distance as defined in Equation (1). A 0.0018 unit of protein distance
equals one substitution in the HA protein sequence of H1N1. The height and colors in (a) both represent the density of isolates.

Fig. 1 The evolutionary path of 2009 A(H1N1) influenza. Strain #1: A/California/05/2009. Strain #2: A/California/04/2009. Strain #7: A/California/07/2009.
Strain #12: A/Texas/05/2009. Strain #28: A/New York/19/2009. For complete strain names, see Supplementary data. Strains from the Northern and Southern
hemisphere are shown as red dots and blue dots, respectively. One branch represents one substitution in the amino acid sequence.

Low-dimensional clustering and detection of influenza strains
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example, the kernel density surface Fig. 2a is produced from
Fig. 2b. The x and y axes in Fig. 2a are the same as that in
Fig. 2b and are protein distance coordinates. The z dimension
measures the density of flu strains around point (x, y). We
use the surface height and the colors to represent z values,
and the color is proportional to surface height. A peak in
kernel density Fig. 2a indicates a cluster of related flu strains
in the protein distance map Fig. 2b.

There are two significant clusters in Fig. 2a, as two
peaks are observed. The cluster on the left side contains
A/Texas/05/2009. Another cluster on the right side contains
A/New York/19/2009. The 2009 A(H1N1) virus has evolved
slowly to date. The greatest pepitope antigenic distance
between A/Texas/05/2009 and all sequenced strains is
measured to be ,0.08. Values of pepitope less than 0.45 for
H1N1 indicate positive expected vaccine efficacy (Pan et al.,
2009), and so a vaccine is expected to be efficacious. All of
the amino acids in all five epitopes of a strain of A/Texas/05/
2009 and a strain of A/New York/19/2009 are the same.
Multidimensional scaling predicts that A/Texas/05/2009 will

be the dominant strain in the 2009–2010 season, and that
A/Texas/05/2009 is a suitable strain for vaccination. Our
focus is on the expected vaccine effectiveness, as it can be
judged from antisera HI assay or sequence data alone. We do
not consider other aspects such as growth in hen’s eggs or
other manufacturing constraints. Laboratory growth and
passage data are needed to address these aspects.

H3N2 virus evolution for 38 years
We construct the protein distance map to determine the evol-
ution of influenza A(H3N2) virus from 1969 to 2007.
Sequences of HA1 proteins were downloaded from the
Influenza Virus Resources database (Bao et al., 2008). We
use the multidimensional clustering method (Lapedes and
Farber, 2001) to generate the protein distance map and corre-
sponding kernel density estimation in Fig. 3. Smith et al.
(2004) produced a similar graph using ferret antisera HI assay
data. The figure presented here has a higher resolution, and
more clusters are observed, because protein sequences data
are more abundant and accurate than antisera HI assay data.

Fig. 3 (a) The protein distance map and (b) corresponding Kernel density estimation of influenza from 1968 to 2007. The vertical and horizontal axes of both
figures represent protein distance as defined in Equation (1). A 0.0030 unit of protein distance equals one substitution in the HA1 protein sequence of H3N2.
The colors in (a) represent the time of collection of the isolates. The colors and height in (b) represent the density of isolates. Each cluster is named after the
first vaccine strain in the cluster. HK68: Hongkong/1/68, EN72: England/42/72, VT75: Victoria/3/75, TX77: Texas/1/77, BK79: Bangkok/1/79, PP82:
Philippines/2/82, SC87: Sichuan/2/87, BJ89: Beijing/32/92, SD93: Shandong/9/93, JB94: Johannesburg/33/94, WH95: Wuhan359/95, SN97: Sydney/5/97,
PM99: Panama/2007/99, FJ02: Fujian/411/2002.
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The evolution of influenza tends to group strain into clusters.
In Fig. 3, we identified 14 major clusters by setting a cutoff
value of kernel density for the past 38 years from 1969 to
2007. The average duration time for a cluster is therefore 2.7
years, which is also the approximate duration of a vaccine.
We marked each cluster by the first vaccine strain in the
cluster. There are apparent gaps between clusters. The anti-
genic distance between two strains in two separate clusters is
larger than the distances within the same cluster. The influ-
enza virus evolves within one cluster before jumping from
one cluster to another cluster. This dynamics occurs because
small antigenic drift by one or a few sequential mutations
does not lead the virus to completely escape from cross-
immunity induced by vaccine protection or prior exposure.

For vaccine design, when the viruses evolve as a quasispe-
cies in the same cluster, the vaccine that is targeted to the
cluster provides protection. This protection decreases with
antigenic distance. When the viruses jump to a new cluster
by antigenic drift or shift, one would want to update the
vaccine to provide protection against strains in the new
cluster. In Fig. 3a, the arrows point to the exact position of
vaccine strains. It can be seen that the positions of vaccine
strains are near the center of clusters. It can be shown math-
ematically that choosing the consensus strain of a cluster as
vaccine strain minimizes the pepitope antigenic distance
between vaccine strain and cluster strains, and thus maxi-
mizes expected vaccine efficacy (Gupta et al., 2006).

Influenza vaccine strain selection
We now use the low-dimensional sequence clustering
method in an effort to detect a new flu strain before
it becomes dominant. A question of interest in influenza
research is whether we can predict which strain will be domi-
nant in the next flu season based on the information we have
at present. WHO gathers together every February to make a
recommendation for influenza strains to be used in vaccine
for next flu season in the Northern hemisphere. The vaccine
is expected to have high efficacy if the chosen strain is domi-
nant in the next flu season. The recommendation is
especially challenging to make when the dominant strain in
next flu season has not been dominant before February of
that year. For example, in mid-March 2009, a new H3N2
strain appeared (Seasonal influenza, 2009; Skowronski,
2009), which infected a significant fraction of the population
in the Southern hemisphere.

The current accepted influenza vaccine strain selection
procedure is as follows (Russell et al., 2008a). Isolates
samples are collected by WHO GISN and are characterized
antigenically using the HI assay. About 10% of samples are
also sequenced in HA1 domain of HA gene. Antigenic maps
are constructed from the HI assay data using the dimensional
projection technique. Examination of HI data is not depen-
dent on analysis using dimensional projection, but rather, the
primary HI data may carry the most weight. If the vaccine
does not match the current circulating strains, the vaccine is
updated to contain one representative of the circulating
strains. The emerging variant strains are identified. If the
antigenically distinct emerging variants are judged to be the
dominant strains in the upcoming season, the vaccine is
updated to include one representative of emerging variants.
The key issue and major difficulty is how to judge whether
emerging variants will be the dominant variants in the next

season. If a fourfold difference in antisera HI titer between
the vaccine strain and the emerging strains is observed, the
emerging strain is to be determined to be dominant strains in
the upcoming season, and an updated vaccine is rec-
ommended to include the emerging strains (Russell et al.,
2008a).

Here, we propose a modified vaccine selection process
based on clustering detection. First, we apply the multidimen-
sional scaling to make a protein distance map from HA1
sequences, instead of constructing an antigenic map from HI
assay data. Then, we use kernel density estimation to determine
the clusters of strains. If the vaccine does not match the current
circulating cluster, the vaccine is updated to contain the current
circulating strain. If the vaccine matches the current circulating
cluster, but an emerging cluster is judged likely to be the
major cluster in the upcoming season, the vaccine is updated
to contain the consensus strain of the emerging cluster. We
judge whether a cluster is an emerging dominant cluster by
two criteria. The first criterion is that this cluster can be
detected by kernel density estimation, and is separate from the
cluster that contains the current circulating strain or vaccine
strain. A cluster that can be detected by kernel density esti-
mation usually contains a central strain that has multiple identi-
cal copies and some F1 strains that are closely related to the
central strain. An example is the cluster of A/Texas/05/
2009(H1N1) in Fig. 1. A/Texas/05/2009(H1N1) is the central
strain, which has 120 strains with identical HA protein
sequences in the Influenza Virus Resource database (Bao
et al., 2008). A/Texas/05/2009(H1N1) also has 29 F1 strains
with one amino acid different. So, A/Texas/05/2009(H1N1)
and the surrounding strains form a cluster as we detected in
Fig. 2 by kernel density estimation.

The second criterion is that the current vaccine strain does
not match the consensus strain of the cluster and is estimated
to provide low protection against strains in the cluster. That
is, is the new strain sufficiently different so that an immune
response stimulated by the current vaccine is not expected to
be effective. The consensus strain is a protein sequence that
shows which residues are most abundant in the multialign-
ment at each position. The efficacy of current vaccine to the
new cluster can be estimated from ferret antisera HI assay
data. However, the antisera data have low resolution and has
an imperfect correlation to vaccine effectiveness in humans
(Gupta et al., 2006; Zhou et al., 2010). Instead, we use
pepitope, which is calculated as the fraction of mutations in
dominant epitope, to estimate vaccine efficacy and which has
a more robust correlation to vaccine effectiveness in human
than do ferret HI data (Gupta et al., 2006). When the pepitope

between the current vaccine strain and consensus strain of
the new cluster is larger than 0.19, expected vaccine efficacy
decreases to 0 for H3N2 influenza, and the current vaccine
cannot be expected to provide protection from new strains.
As the examples shown below, our method can detect an
incipient dominant strain at its very early stage, and the
method appears to require about 10 sequences in the new
cluster for detection.

Demonstration of low-dimensional sequence
clustering method
We demonstrate the method of detecting the A/Fujian/411/
2002(H3N2) strain. The A/Panama/2007/1999 had been the
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vaccination strain for four flu seasons between 2000 and
2004 in the Northern hemisphere.

The vaccine strain was replaced by A/Fujian/411/
2002(H3N2) in the 2004–2005 flu season, as described in
Table I. The vaccine strain in the 2003–2004 season was
A/Panama/2007/1999, while the dominant circulating strain
became A/Fujian/411/2002(H3N2). This mismatch resulted
in a large decrease in vaccine efficacy in the 2003–2004 flu
season (Gupta et al., 2006). The vaccine efficacy is estimated
to be only 12% (MMWR Morb, 2004). We test whether our
method can detect A/Fujian/411/2002(H3N2) as an incipient
dominant strain before it actually became dominant. We use
only virus sequence data before 1 October 2003. We did not
use any virus data collected in the 2003–2004 season.
Therefore, our prediction and results are made without any
knowledge from what happened in the 2003–2004 season.
We plot the protein distance map of the 2001–2002 flu
season in Fig. 4d. To detect the clusters, we plot the kernel
density in Fig. 4b for the data in Fig. 4d. There are two sep-
arate significant clusters. The one with the largest kernel
density on the left contains the current dominant strain
A/Panama/2007/1999 and the widespread A/Moscow/10/
1999 strain. The smaller one on the right is a new cluster,
which contains A/Fujian/411/2002. Using the data as of 30
September 2002, we seek to determine whether the new
cluster on the right in Fig. 4b and d will be the next domi-
nant strain after A/Panama/2007/1999. We determine
whether this cluster fulfills the two criteria above. First, this
new cluster can be significantly detected by kernel density
estimation. This cluster is separate from the current dominant
strain, as we can see in the figure. Second, we calculated the
average pepitope of the new cluster on the right with regard to
A/Moscow/10/1999, A/Panama/2007/1999 and A/Fujian/411/
2002 to be 0.214, 0.1214 and 0.083, respectively. This
means the current vaccine contains A/Moscow/10/1999 is
expected to provide little protection against viruses in the
new cluster. This result makes the new cluster fulfill the
second criterion. Thus, we predict based on the data as of 30

September 2002, that the cluster on the right in Fig. 4d will
be the next dominant cluster. This prediction was made on
data collected 1 year earlier than when the A/Fujian/411/
2002 became dominant in the 2003–2004 season. To further
support our prediction, in Fig. 4c, we plot the protein dis-
tance map from 1 October 2002 to 1 February 2003, right
before the WHO selected the vaccine strain for the 2003–
2004 season. To detect the clusters, we plot the kernel in
Fig. 4a for the data in Fig. 4c. There are two separate major
clusters observed in the kernel density estimation in Fig. 4a.
The left cluster has the current dominant strain of A/Panama/
2007/1999 and also A/Moscow/10/1999. The right cluster
has the A/Fujian/411/2002. We calculated the average pepitope

of the right new cluster with regard to A/Moscow/10/1999,
A/Panama/2007/1999 and A/Fujian/411/2002 to be 0.2725,
0.1811 and 0.0367, respectively. This result further supports
the prediction that the new cluster will become dominant,
and A/Fujian/411/2002, which is the most frequent strain in
the new cluster, will be or is very close to the next dominant
strain. This suggestion proceeds the vaccine component
switch by 1–2 years, as shown in Table I.

Prediction for H3N2 influenza in 2009–2010
By applying our method to the 2008–2009 flu season, we
predict that the dominant H3N2 strain in the 2009–2010 flu
season may switch. Based on the flu activity in the 2008–
2009 flu season, the WHO made the recommendation in
February 2009 that A/Brisbane/10/2007(H3N2) should be
used as the vaccine (World Health Organization, 2009c).
However, a new strain evolved just after the recommendation
was published. The British Columbia Center for Disease
Control detected a new virus strain (Seasonal influenza,
2009; Skowronski, 2009) with 3 mutations in antigenic sites
(two in epitope B and one in epitope D). Since this new
strain is relatively far from the vaccine strain, with pepitope ¼
0.095, vaccine efficacy is expected to decrease to 20%
(Gupta et al., 2006; Deem and Pan, 2009). However, since
the mutations in this new strain ‘do not fulfill the criteria

Table I. Summary of results

Flu season Vaccine strain from WHO
(World Health Organization, 2009c)

Our prediction Circulating H3N2 strain Circulating subtype

1996–1997 Wuhan/359/95 Wuhan/359/95 Wuhan/359/95 H3
1997–1998 Wuhan/359/95 Wuhan/359/95 Sydney/5/97 H3
1998–1999 Sydney/5/97 Sydney/5/97 Sydney/5/97 H3
1999–2000 Sydney/5/97 Sydney/5/97 Sydney/5/97 H3
2000–2001 Panama/2007/1999 Panama/2007/1999 N/A H1
2001–2002 Panama/2007/1999 Panama/2007/1999 Panama/2007/1999 H3
2002–2003 Panama/2007/1999 Fujian/411/2002 N/A H1
2003–2004 Panama/2007/1999 Fujian/411/2002 Fujian/411/2002 H3
2004–2005 Fujian/411/2002 Fujian/411/2002 Fujian/411/2002 H3
2005–2006 California/7/2004 California/7/2004 California/7/2004 H3
2006–2007 Wisconsin/67/2005 Wisconsin/67/2005 Wisconsin/67/2005 H3
2007–2008 Wisconsin/67/2005 Wisconsin/67/2005 N/A H1
2008–2009 Brisbane/10/2007 Brisbane/10/2007 Brisbane/10/2007 H3
2009–2010 Brisbane/10/2007 BritishColumbia/RV1222/09 BritishColumbia/RV1222/09 H1
2010–2011 Perth/16/2009 BritishColumbia/RV1222/09 N/A N/A

This table includes the H3N2 vaccine strains, our prediction of dominant strains, the reported dominant circulating H3N2 strains (World Health Organization,
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005a, 2006, 2007, 2008, 2009a, 2010) and the circulating subtypes in the northern hemisphere
(World Health Organization, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005a, 2006, 2007, 2008, 2009a, 2010). Circulating H3N2 strains
are absent if the dominant subtype is H1 or influenza B. The reported dominant H3N2 strains and circulating subtypes data are from WHO Weekly
Epidemiological Record (http://www.who.int/wer/en/).
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proposed by Cox as corresponding to meaningful antigenic
drift’ (Cox and Bender, 1995; Skowronski, 2009), and this
strain still remained the minority of H3N2 viruses in July
2009, health authorities were not certain that this new strain
would replace the current dominant strain in the 2009–2010
flu season. We use our method to investigate whether this
new strain will be the next dominant strain. We construct the
protein distance map as shown in Fig. 5(c). We plot the
kernel density estimation in Fig. 5(a) for data in Fig. 5(c).
By the data up to June 14, 2009, we see two major clusters
in Fig. 5(a). The larger one on the right contains the current
dominant strain A/Brisbane/10/2007, and the left one is a
new cluster which contains A/British Columbia/RV1222/
2009. It is apparent that this new cluster is separate from the
current dominant cluster. Thus, this cluster fulfills the first
criterion. We calculated the average of pepitope of strains in
the left new cluster with regards to A/Brisbane/10/2007 and
A/British Columbia/RV1222/2009 to be 0.103 and 0.042
respectively. The vaccine that contains A/Brisbane/10/2007
has an expected efficacy of 20% to the virus strains in the
new cluster. Thus, this new cluster satisfies both two criteria,
and so we predict that this cluster which contains A/British
Columbia/RV1222/2009 will be the dominant cluster in the
2009–2010 season. The earliest time for us to make this pre-
diction is 30 March 2009. In Fig. 5d and b, we already see
this new cluster on the left side of figure, though since there
are only about 10 sequences in the new cluster, the kernel
density of this new cluster is smaller than that in the

dominant cluster. This strain was mentioned as a concern on
5 May 2009, although by conventional methods the strain
was not considered a potentially new dominant strain in July
2009 (Skowronski, 2009). With the method of the present
paper, this new cluster is suggested earlier using the data as
of 30 March 2009.

Comparison with previous results
Here we present a historical test of the method. For each flu
season in the North Hemisphere from 1996, we use only the
H3N2 sequences data until 1 February, before WHO pub-
lished the recommendation for vaccine. We use the low-
dimensional clustering to make the prediction for the domi-
nant strain. The conventional method as used by WHO is
phylogenetic analysis combined with ferret antisera HI assay.
In Table I, we compare the method with the conventional
method. In the most recent 14 flu seasons, influenza subtype
H3 was dominant in 10. The WHO H3N2 vaccine com-
ponent matches the circulating strains in eight seasons. Our
predictions match the circulating strains in nine seasons. In
the 1997–1998 season, a novel flu strain Sydney/5/97 was
found in June 1997. Because no similar strains were col-
lected before 1 February, neither of the two methods can
predict it. In the 2003–2004 season, our method predicts
Fujian/441/2002 as the dominant strain, while phylogenetic
analysis combined with ferret antisera HI assay did not. For
all other eight seasons dominated by influenza subtype H3,
the predictions of both methods matched the dominant

Fig. 4 (a) Kernel density estimation and (c) protein distance map for H3N2 viruses between 1 October 2002 and 1 February 2003. (b) Kernel density
estimation and (d) protein distance map for H3N2 viruses between 1 October 2001 and 9 September 2002. We plot a dotted line to separate the two clusters.
The vertical and horizontal axes of all figures represent protein distance as defined in Equation (1). A 0.0030 unit of protein distance equals one substitution of
the HA1 protein sequence of H3N2.
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circulating strain. The 2009–2010 influenza season was
dominated by H1N1. But data from local outbreaks of H3N2
infections (Seasonal influenza, 2009; Skowronski, 2009)
showed that the dominant H3N2 strain was A/British
Columbia/RV1222/2009, as predicted in Table I, rather than
the vaccine strain A/Brisbane/10/2007. For the 2010–2011
season, we recommend A/British Columbia/RV1222/2009 as
a vaccine strain, and the WHO recommended A/Perth/16/
2009. These two strains are in the same cluster and antigeni-
cally similar with a small pepitope ¼ 0.048. Although these
two strains are slightly different, the vaccine is expected to
be effective.

Detecting A/Wellington/1/2004 in the 2004 flu season
in the Southern hemisphere
The low-dimensional clustering can also be applied to influ-
enza in the Southern hemisphere. As an example, we test our
method on the 2004 flu season. The recommended H3N2
vaccine strain by WHO used in the 2004 flu season in the
Southern hemisphere was A/Fujian/411/2002. Data from the
surveillance network suggested that the circulating dominant
flu strain in the 2004 season in Southern hemisphere was A/
Fujian/411/2002, and a late surge of A/Wellington/1/2004
was also observed. For example, in Argentina, a study
showed that about 50% of infections were closely related to
A/Fujian/411/2002 and another 50% were closely related to
A/Wellington/1/2004 (Santamaria et al., 2008). In New
Zealand, the dominant flu strain was A/Fujian/411/2002

which caused 78% of flu infections (Virology, 2004), and a
late season surge of A/Wellington/1/2004 was also reported
(Northern hemisphere, 2004). Therefore, the vaccine rec-
ommended by WHO matches the dominant strain and would
be expected to have vaccine efficacy in the 2004 season in
Southern hemisphere.

We here use the low-dimensional clustering method to
detect the A/Wellington/1/2004 strain, which is not the
major dominant strain but caused significant infections in the
2004 flu season. We plot the protein distance and kernel
density estimation for the H3N2 viruses in Fig. 6d and b. We
use the data only as of 1 February 2004, 3 months prior to
the 2004 flu Southern hemisphere season, which is usually
from May to September. We observed two clusters. The
major cluster on the left side of Fig. 6d is A/Fujian/411/
2002-like, which was the vaccine strain in the 2004 season.
There is a new cluster in the right side of Fig. 6d which con-
tains A/Wellington/1/2004. The pepitope of A/Wellington/1/
2004 with regards to A/Fujian/411/2002 is 0.118. Therefore,
we predict that A/Wellington/1/2004 will infect a large frac-
tion of the population, and the A/Fujian/411/2002 vaccine is
expected to provide only partial protection against the
A/Wellington/1/2004 virus. However, since the appearance
of A/Wellington/1/2004 was just before the 2004 flu season,
it did not have sufficient time to spread out and become the
dominant strain in the 2004 flu season. From our observation,
it usually takes about 8 months or longer for a new strain to
become dominant after its appearance in a new cluster.

Fig. 5 (a) Kernel density estimation and (c) protein distance map for H3N2 viruses from 1 October 2008 to 14 June 2009. (b) Kernel density estimation and
(d) protein distance map for H3N2 viruses between 1 October 2008 and 30 March 2009. The vertical and horizontal axes of all figures represent protein
distance as defined in Equation (1). A 0.0030 unit of protein distance equals one substitution of the HA1 protein sequence of H3N2.
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Therefore, the predominant flu strain in the 2004 season is
expected to be A/Fujian/411/2002 based on the data as of 1
February 2004. This result agrees with the dominant flu
strain in the 2004 flu season.

Detecting A/California/4/2004 as a future dominant strain
As a further example of applying the low-dimensional cluster-
ing method to influenza in Southern hemisphere, we test the
method on the 2005 flu season. The recommended H3N2
vaccine strain in the 2005 flu season in the Southern hemi-
sphere was A/Wellington/1/2004. Data from HI assay tests
and surveillance suggest that the dominant H3N2 strain in the
2005 season was A/California/7/2004. In HI tests with postin-
fection ferret sera, the majority of influenza A(H3N2) viruses
from February 2005 to October 2005 were closely related to
A/California/7/2004, as reported by WHO on 7 October 2005
(World Health Organization, 2005b). Surveillance data from
Victoria, Australia, show that 45% of influenza A infections
were A/California/7/2004-like(H3), 11% were A/Wellington/
1/2004 (H3) and 44% were A/New Caledonia /20/99-like
(H1), as collected in the 2005 flu season (Turner et al., 2006).
Surveillance data from New Zealand also show that the domi-
nant H3N2 strain in the 2005 flu season was A/California/7/
2004 (Influenza Weekly, 2005).

We plot the protein distance for the H3N2 viruses in the
2003–2004 flu season in Fig. 6c. We only use the data as
of 30 September 2004, earlier than the October 2004 date
when the WHO published the influenza vaccine recommen-
dation for Southern hemisphere. We plot the kernel density
estimation in Fig. 6a for the data in Fig. 6c. There are
three major clusters in Fig. 6a. The one on the left is the

current dominant cluster which are mostly A/Fujian/422/

2002-like viruses. There is a middle cluster centered on A/

Wellington/1/2004. The one on the right contains A/

California/7/2004. Both the A/California/7/2004 cluster and

the A/Wellington/1/2004 cluster are antigenically novel

from A/Fujian/411/2002.
When the protein distance map and kernel estimation as

of 1 February, 2004 is plotted in Fig. 6d and b, we still
see the A/Wellington/1/2004 cluster. With these data, the
A/California/7/2004 cluster is no longer observed. Thus,
A/California/7/2004 cluster is a newly appearing cluster and
we consider it to be the emerging strain. The new cluster
which contains A/California/7/2004 is separate from the
current dominant cluster. We calculated the average pepitope

of the new cluster that contains A/California/7/2004 with
regard to A/Fujian/411/2002 to be 0.112. This makes the
new cluster fulfill both criteria for an incipient dominant
strain cluster. So we predict based on the information as of

Fig. 6 (a) Kernel density estimation for the protein distance map for H3N2 viruses between 1 October 2003 and 30 September 2004. (b) Kernel density
estimation for the protein distance map for H3N2 viruses between 1 October 2003 and 1 February 2004. (c) Protein distance map for H3N2 viruses between 1
October 2003 and 30 September 2004. We plot a dotted line to separate the two clusters. (d) Protein distance map for H3N2 viruses between 1 October 2003
and 1 February 2004. The vertical and horizontal axes of all figures represent protein distance. A 0.0030 unit of protein distance equals one mutation of the
HA1 protein sequence of H3N2.
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30 September 2004 that A/California/7/2004 will be the next
dominant strain after A/Fujian/411/2002 in Southern hemi-
sphere. We further predict from these data that A/California/
7/2004 will be the dominant strain in the following flu
season in the Northern hemisphere. These predictions agree
with the observed dominant strain in the 2005 flu season.

Discussion

The evolution of influenza virus is driven by cell receptor
distributions, non-specific innate host defense mechanisms,
cross-immunity (Gupta et al., 1998; Ferguson et al., 2003)
and other contributions to viral fitness. In this paper, we
focussed on HA protein evolution under antibody selection
pressure. The degree to which the immunity induced by one
strain protects against another strain depends on their anti-
genic distance (Gupta et al., 2006). Because the human
immune response to viral infection is not completely cross-
protective, natural selection favors amino acid variants of the
HA protein that allow the virus to evade immunity, infect
more hosts and proliferate. Mutant strains surround the domi-
nant strain and group into a cluster rather than evolve in a
defined direction (Plotkin et al., 2002; Smith et al., 2004).
After the virus has circulated in population for one or more
years, effective vaccines and cross-immunity of the popu-
lation drive the evolution of influenza by mutation and reas-
sortment. This evolution increases the immune-escape
component of the fitness of new strains, and eventually
causes a new epidemic. These new immune-escape strains
will form a new cluster, and the old clusters will die out,
thus starting a new cycle. This process of creating of new
clusters is what our method detects. The low-dimensional
clustering can be used not only in genetic sequences but also
on distances calculated from inhibition assays of antibody
and antigens, as first shown by Lapedes and Farber (2001)
and Smith et al. (2004). The inhibition assay provides an
approximation of antigenic distance and is broadly used as a
marker for vaccine efficacy. The inhibition assay suffers
from low resolution of data, which multidimensional scaling
improves, and is less able to predict the vaccine efficacy than
the pepitope method (Gupta et al., 2006). The genetic
sequences used here are a direct description of the evolution
of pathogen and the antigenic distance of influenza. To aid
vaccine selection, the low-dimensional clustering on genetic
sequences appears informative.

Challenges may arise in application of the method
described here. If two or more new clusters appear in one
season, additional information is needed to decide which
cluster should be chosen for vaccine. Fortunately, it has been
shown that the evolution of influenza is typically in one
direction (Ferguson et al., 2003; Smith et al., 2004). It is rare
to have two or more new clusters in the protein distance map
in one season. As experience with the low-dimensional
sequence clustering is gained, it may be that cluster structure
will allow more precise prediction of vaccine efficacy.
Despite these issues, the method described here can assist
the design of vaccines, and it provides a new tool to analyze
influenza viral dynamics. We did not see any false positive
results in Table I.

The current WHO method works quite well in many years.
The method discussed here appears to offer an additional
tool which may provide additional utility.

Materials and methods

Data sources
Influenza hemagglutinin A(H3N2) sequences before 1
October 2008, and A(H1N1) sequences as of 5 December
2009, were downloaded from NCBI Influenza Virus
Resources (Bao et al., 2008). All hemagglutinin sequences
used in our study are filtered by removing identical
sequences, Thus, all groups of identical sequences in the
data set are be represented by the oldest sequence in each
group. This approach reduces the number of sequences by
keeping only the unique sequences in the data set. The
hemagglutinin proteins of 2009 A(H1N1) used in our work
are listed in Supplementary data, Table S3. The numerical
labels in Figs 1 and 2 are the same as the labels in the first
column of Supplementary data, Table S3. Influenza
A(H3N2) sequences after 1 October 2008 were downloaded
from GISAID database, see Supplementary data, Table S6.
GISAID has the latest H3N2 sequence data.

Geographical spread pattern of 2009 A(H1N1)
It is believe that the 2009 A(H1N1) virus was most likely
originated from Mexico (Fraser et al., 2009). It first spread
to the neighboring country USA and then to other
countries. We display this geographical spread pattern in
Fig. 1. We take the founder–F1 relationship from Fig. 1,
and assume the virus spreads from location of founder to
the location of F1. We consider three regions: the USA,
Mexico and other countries except the USA and Mexico.
Then we count the cases of spreading from one region to
another region. In Supplementary data, Table S2, we show
that we observed many more paths of spreading from the
USA to other countries than from other countries to the
USA. The major path of spreading is from the USA to
other countries. This result indicates our directional evol-
utionary map of Fig. 1 is in good agreement with the
pattern of geographical spread.

Multidimensional scaling
The goal of multidimensional scaling is to represent the dis-
tance of proteins by a Euclidean distance in coordinate
space. We calculate the distance between proteins i and j, dij,
by the number of amino acid residue differences divided by
the total number of amino acid residues, as defined by
Equation (1) in the main text. To do multidimensional
scaling, we start with the distance of the proteins. The object
of multidimensional scaling is to find the two, or p in
general, directions that best preserve the distances dij

between the N proteins

F ¼
XN

i;j¼1

ðdi;j � DijÞ2 ð2Þ

Here, Dij ¼k xi � xj k is the Euclidean distance between pro-
teins i and j in the projected space, and k † k is the vector
norm. The algorithm is as follows. Let the matrix A ¼ ½ðaijÞ�,
where aij ¼ �ð1=2Þd2

ij. The eigenvalues of A areg1; g2; . . . ; gN

and g1 � g2 � � � � � gN . Let V ð1Þ ¼ ðvð1Þ1 ; v
ð1Þ
2 ; . . . ; v

ð1Þ
N Þ be

the eigenvector of g1 and V ð2Þ ¼ ðvð2Þ1 ; v
ð2Þ
2 ; . . . ; v

ð2Þ
N Þ be the

eigenvector of g2. Letx ¼ ffiffiffiffiffi
g1

p
V ð1Þ and y ¼ ffiffiffiffiffi

g2

p
V ð2Þ. The two

coordinates in Figs 2–6 are x and y. The x-axis in the protein
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distance map is the largest eigenvector. We take the H3N2
2008–2009 season as an example. In Fig. 5c, we observe two
clusters. One cluster is on the right side of figures with x value
positive and another one has negative x values. We define the
consensus sequence of a group of flu strains by taking the most
frequent amino acid at each position. We calculate
the consensus sequences both for the strains in the cluster on
the right and on the left side of the figure. We found amino
acids at four positions (76, 160, 172 and 203) are different for
these two consensus H3N2 strains, see Supplementary data,
Table S1. Interestingly, the Shannon entropy calculated from
all 2008–2009 season sequences at these four positions (0.43,
0.67, 0.59 are 0.50) are the largest, which means the diversity
at these four position are the largest.

There is software available to run the multidimensional
scaling. We use the Matlab function ‘CMD-SCALE’ to gen-
erate an N � p configuration matrix Y. Rows of Y are the
coordinates of N points in p-dimensional space. The
‘CMDSCALE’ also returns a vector E containing the sorted
eigenvalues of what is often referred to as the ‘scalar product
matrix,’ which, in the simplest case, is equal to YYT. If only
two or three of the largest eigenvalues E are much larger
than others, then the matrix D based on the corresponding
columns of Y nearly reproduces the original distance matrix
d. We used the influenza H3N2 in the 2001–2002 season as
an example. The five largest of all 180 eigenvalues are
0.0361, 0.0032, 0.0024, 0.0020 and 0.0016. The first two
largest eigenvalues contribute 70% to the sum of all 180
eigenvalues, which indicates p ¼ 2. Then, we plot the N
points in a two-dimensional graph. Each point represents a
protein. The Euclidean distance between any two points Dij

on the graph should be equal to or close to the distance of
these two proteins. That is, Dij � dij. As an example, in
Supplementary data, Fig. S1, we show that Dij and dij have a
strong linear relationship. A short MATLAB program of
multidimensional scaling is as follow.

% Multidimensional scaling.
% alignment.aln is a sequence multialignment file
% generated by software ClustalW.
clear
Sequences ¼ multialignread(’alignment.aln’);
distances ¼ seqpdist(Sequences,’Method’,’p-distance’);
Y ¼ cmdscale(distances);
scatter(Y(:,1), Y(:,2));

Biases in the data
There are two biases in the sequence data. First, more iso-
lates are sequenced in recent years. Generally speaking, more
sequences make the vaccine selection based on low-
dimensional clustering methods more reliable. That is why
we compared low-dimensional clustering methods with
WHO results only since 1996 in Table I. To avoid these
biases in the generation of the figure of evolution history of
influenza for the 40 years (Fig. 3), we choose 20 random iso-
lates for each season, even though the database contains
more sequences in recent years. Second, most isolates are
collected in the USA. We found that many isolates collected
in the USA are identical, because of the high sampling rate
in the USA. To reduce this bias, we collapse redundant
strains, keeping only distinct strains.

Supplementary data

Supplementary data are available at PEDS online.
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