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Background

The Cocktail Party Problem and a Candidate Solution

Denote the time signals recorded by each microphone by x1(t) and x2(t),
which are weighted sums of the two sources signals emitted by the two
speakers, s1(t) and s2(t).

x1(t) = a11s1 + a12s2

x2(t) = a21s1 + a22s2

where a11, a12, a21, a22 are parameters depending on each speakers’
distance from the microphones.
Our goal:
Untangle the two speakers and identify s1 and s2 from only x1 and x2 (and
without any knowledge of the aijs!)
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Background

Blind Source Separation

We observe
x = As

and we wish to uncover the signals s. We seek a projection of the data,

u = Wx

which recovers the original signals, possibly reordered and rescaled.
Clearly, if the knowledge of A were available, we just take

W = A−1

and we require that the signals be assumed (not only uncorrelated, but
also) independent. We further assume the si each have non-gaussian
distributions.
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Methods

Preprocessing and Assumptions

Denote
x′ = (x1, x2, . . . , xn)′

s′ = (s1, s2, . . . , sn)′

and assume

x has been centered so that E [x] = 0

x has been whitened, or E [xx′] = I

One can achieve this property using the eigenvalue-eigenvector
decomposition of Σ = E [xx′] = UDU ′ and transforming x, taking

x̃ = D−
1
2 U ′x

The {si} are mutually independent

The {si} have non-gaussian distributions
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Methods

Principle Components Analysis and Identifiability
Why Forbid Normality?

For ICA to be possible, we must require that the independent components
be non-gaussian.

Principal Components Analysis also seeks an ”optimal” representation of
the data, restricting solutions, Wp to orthogonal projections of the data
(or WW ′ = diagonal). Using the eigenvalue- eigenvector decomposition of

Σ as before, the PCA solution is Wp = D−
1
2 U ′.

If we assume that the {si} are normally distributed, then the joint
distribution of the {xi} is determined entirely by the covariance matrix
AA′, and this covariance matrix is preserved if we simply replace A byAR ′

for any orthogonal ”rotation” matrix, R. Hence, for PCA, the solution W
is only attainable up to a rotation, leaving ambiguity in interpretation of
the principal components.
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Methods

Recovery of Signals via Non-gaussianity

We wish to recover s via some transformation of the form ŝ = Wx for

W =


w1
′

w2
′

. . .
wn
′


Take one of the rows of W, w ′, denote y = w ′x and define z ′ = A′w so
that

y = w ′x = w ′As = z ′s =
n∑

i=1

zi si

Note that if w were one of the rows of A−1, then z ′ = w ′A would have
exactly one nonzero element. However, without knowledge of A inhibits
such a wise choice of w, but the Central Limit Theorem allows us to
choose a satisfactory w without being prophets.
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Methods

The CLT saves the day! (again.)

By the Central Limit Theorem, z ′s =
∑n

i=1 zi si is more gaussian than just
a single one of the si . Hence the z with only one nonzero element
corresponds to a w that is one of the rows of A−1 and minimizes the
gaussianity of y = w ′x .

Hence, our solution W makes the ”non-gaussianity” of Wx the largest!
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Methods

Measuring Non-gaussianity

Several proposed measures of non-gaussianity:

Kurtosis: the Classical measure

Entropy and Negentropy

Mutual Information
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Methods

Kurtosis

Kurtosis is a measure of the ”peakedness” of the probability distribution of
a random variable.

Kurt(y) = E
[
y4
]
− 3E

[
y3
]2

= E
[
y4
]
− 3

and for Normal random variables, this quantity is zero (and nonzero for
almost all non-gaussian random variables.)

Large positive values correspond to spiky distributions (leptokurtic)

Large negative values correspond to flat, diffuse distributions
(platykurtic)

not robust
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Methods

Negentropy

Entropy is a measure of randomness (or how unpredictable/unstructured a
random variable is.)

H(y) = −
∫

logf (y)f (y)dy

= E

[
log

(
1

f(y)

)]
and considering all random variables of equal variance, Normal random
variables have the largest entropy. Define negentropy, J

J(y) = H (ygauss)− H (y)

where ygauss is a Normally distributed random variable with the same
covariance matrix as y.
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Methods

Approximations to Negentropy

Calculation of negentropy requires knowledge (estimation) of a probability
density. Alternatively,

J (y) ≈ 1
12E

[
y3
]2

+ 1
48kurt (y)2 (Jones, Sibson 1987)

where y is mean zero, unit variance.

problems with robustness

J (y) ≈
∑p

i=1 ki (E [Gi (y)]− E [Gi (η)])2 (Hyvärinen, 1998b)

for positive constants {ki} and certain choice of non-quadratic functions
{Gi} and where η is a standard Normal random variable. More simply, for
p = 1,

J (y) ∝ (E [G (y)]− E [G (η)])2 (1)
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Methods

Approximations to Negentropy

The relationship in (1) holds for practically any choice of ”measuring
function” G, but the approximation improves with improved choice of G.

G1(t) =
1

a1
logcosh(a1t) (2)

G2(t) = −e−
t2

2 (3)

for some constant 1 ≤ a1 ≤ 2 are typical choices.

Kernel ICA
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Methods

The Maximum Density Entropy

Assume that any knowledge, or information, we have about the density of
x takes the form

ci =

∫
f (x) Gi (x) dx ; i = 1, . . . , n

We call the {Gi} measuring functions.

Under mild regularity conditions, the density satisfying the above
conditions having maximum entropy has form

f0 (x) = Ae
P

i aiGi (x)

Solving for A and {ai} requires solving

ci =

∫
Gi (x) A e

P
i aiGi (x)dx

1 =

∫
A e

P
i aiGi (x)dx
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Methods

The Maximum Density Entropy: Approximation

Assuming f is not far from φ (· ), lets approximate f0 by adding three
additional constraints:

1 Gn+1 (u) = u , cn+1 = 0

2 Gn+2 (u) = u2 , cn+2 = 1

3 We assume the Gi are orthonormal wrt φ (· ) and are orthogonal to all
polynomials of degree 2.

If f is indeed near φ (· ), then ai � an+2 = −1
2 and we can approximate

the maximum entropy density by

f̂ (x) = φ (x)

(
1 +

n∑
i=1

ciGi (x)

)

where ci = E [Gi (x)]
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Methods

Connection to Negentropy

Using a Taylor approximation to the natural log function (and some
algebra), we can show that

H (x) = −
∫

f̂ (x) log f̂ (x) dx

≈ H (ν)− 1

2

n∑
i=1

ci
2

Hence, minimizing H(x) is equivalent to maximizing
∑n

i=1 ci
2, and

equation (1) is finally clear.
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Methods

Choosing Measuring Functions

If f(x) were known, the clear choice of measuring function would be
Gopt = − log f (x) since −E [log f (X )] gives directly the entropy, H(x).
Our considerations when choosing the {Gi}:

1 The {Gi} satisfy the orthogonality assumptions discussed previously.

2 Estimation of E [Gi (X )] must be ”easy” and not too sensitive to
outliers.

3 f0 (x) = Ae
P

i aiGi (x) must be integrable.

For (1), apply Gram-Schmidt orthonormalization to any set of n linearly
independent Gi and {xk}, k = 0,1,2
For (3) to hold, the {Gi} should not grow faster than quadratically as a
function of |x | Reasonably, one might take Gi as the log density of some
well-known important densities.
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Methods

Mutual Information

The mutual information, I, between the components of y is given by

I(y1, y2, . . . , yn) =

(
n∑

i=1

H (yi )

)
− H (y)

= DKL

(
f (y) ||

n∏
i=1

mi (yi )

)
For invertible linear transformation W,

I(y1, y2, . . . , yn) =
n∑

i=1

H (yi )− H (x)− log detW

I = E
[
yy ′
]

= E
[
Wxx ′W′

]
= WE

[
xx ′
]

W′ = WW′

⇒ 1 = det
(
W E

[
xx ′
]

W′
)

= detW detW′

⇒ I (y) = C −
n∑

i=1

J (yi )
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Methods

Maximum Likelihood

We can write the log-likelihood of y

L =
n∑

i=1

logfi
(
wi
′x
)

+ log det |W|

where the {fi} are the pdf’s of the {si} (assumed here to be known), and
taking expectations on both sides we obtain

E [L ] =
n∑

i=1

E
[
logfi

(
wi
′x
)]

+ log det |W|

and if the {fi} are identically the densities of the {si}, this quantity is the
negative mutual information up to additive constant.
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FastICA: An Algorithm

FastICA for one unit

Our solution, W*, will maximize

J (y) = J (Wx) ∝ (E [G (Wx)]− E [G (Wx)])2

⇒ W* will occur at certain optima of E [G (Wx)] under the constraint
that wi

′x has unit variance ∀ i = 1,. . . , n. So, we maximize the objective
function

E
[
G
(
w ′x

)]
− β

2

(
w ′w − 1

)
and differentiating, we obtain

E
[
xg
(
w ′x

)]
− βw = 0 (4)

giving β = E
[
w∗′xg

(
w∗′x

)]
where w∗ is the value of w at the optimum.
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FastICA: An Algorithm

FastICA for one unit

To simplify the inversion of the Jacobian matrix for the LHS of (4), take

JF (w) = E
[
xx ′g ′

(
w ′x

)]
− βI

≈ E
[
xx ′
]
E
[
g ′
(
w ′x

)]
− βI

=
(
E
[
g ′
(
w ′x

)]
− β

)
I

So an approximate Newton iteration is given by

w+ = w − E [xg (w ′x)]− βw

E [g ′ (w ′x)] − β
which can be further simplified by multiplying both sides by
β − E [g ′ (w ′x)] to give

w+ = E
[
xg
(
w ′x

)]
− E

[
g ′
(
w ′x

)]
w

w+ =
w+

‖ w+ ‖
after initializing some value of w.
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FastICA: An Algorithm

Extending the algorithm to several units

Assuming W is square:

y = W′x
βi = E [yig (yi )]

D = diag (βi − E [g ′ (yi )])

so that we obtain

W + = W −W (E [yg (y)]− diag (βi )) D

and after each iteration, the outputs are decorrelated and normalized to
unit variance. The stability of the algorithm depends heavily on this
condition. ((Hyvärinen, 1999)

E
[
xx ′g ′

(
w ′x

)]
≈ E

[
xx ′
]
E
[
g ′
(
w ′x

)]
is reasonable for pre-whitened data. Other gradient methods may be
preferred without pre-whitening to avoid complicated matrix inversion.
(Cardoso, Laheld 1996)
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Application

Extracting the Independent Components of Natural Scenes
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Application

The Data

Each image was converted to grey scale byte values, and then n = 17, 595
observations were randomly sampled from the these images.Each
observation was a 12x12 pixel patch, hence xi = (xi1, xi2, . . . , xi ,144), i
= 1, . . . , n is the vector containing the grey scale values assigned to each
of the 144 pixels.
The data were centered and whitened using the filter given by

WZ = Ĉov (x)
− 1

2

and the data were transformed using the logistic measuring function:

G (y) =
1

1 + e−y
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Application

...The Punchline!

(a) The basis functions
(columns of A) given by PCA
(which are identical to the rows
of WP

−1

(b) The first 6 rows give the
ZCA filters (rows of WZ ), the
last 6 shows the corresponding
basis functions
(c) The filters learned by ICA
on the ZCA pre-whitened data
(d) The ICA filters
WI = WWZ (whitened versions
of the W-filters.)
(e) The ICA basis functions
(columns of WI

−1)

PCA ZCA W ICA A

144

109

1

5

7

11

15

22

37

60

63

89

(a) (b) (c) (d) (e)
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Application

Results

The matrix, W, of ICA
filters. Each filter is a
single row of W,
ordered from top left to
bottom right by length
of the filter vectors.

1 DC (low-pass)
filter

106 oriented filters
(35 diagonal, 34
horizontal, 37
vertical)

37 localised filters
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Application

Results

The estimated log density of a
fixed output component, ui ,
produced by ICA, ZCA, and
PCA, averaged over all filters
of each type.
The sparsest signals are
produced by ICA, as evidenced
by the kurtosis estimates for
each log histogram.
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Application

Results

(b)

(f)

(d)(c)

(a)

(e)

ICA

ZCA

PCA

f    (u  , u  )i j ujui

f (u )  f (u )i j uj
ui

The average of all bivariate
distributions of pairs of output
components produced by each
filter and the corresponding
”independent” density, the
product of the marginal
densities of each component.
We see that the ICA filters
capture best the sparseness of
each univariate distribution in
the joint densities.
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