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Introduction

Random-matrix theory gained attention during the 1950s due to work by Eugene
Wigner in mathematical physics. Specifically, Wigner wished to describe the
general properties of the energy levels (or of their spacings) of highly excited
states of heavy nuclei as measured in nuclear reactions (Wigner, 1957). Such
a complex nuclear system is represented by an Hermitian operator H (called
the Hamiltonian) living in an infinite-dimensional Hilbert space governed by
physical laws. Unfortunately, in any specific case, H is unknown. Moreover,
even if it were known, it would be much too complicated to write down and, even
if we could write it down, no computer would be able to solve its eigenequation
Hv = λv (the so-called Schrödinger equation of the physical system), where λ
and v are an eigenvalue-eigenvector pair corresponding to H.

Wigner argued that we should instead regard a specific Hamiltonian H as
behaving like a large random matrix that is a member of a large class (or
ensemble) of Hamiltonians, all of which would have similar general properties
as the H in question (Wigner, 1955). The energy levels (represented by the
eigenvalues of H) of the physical system could then be approximated by the
eigenvalues of a large random matrix. Furthermore, the spacings between energy
levels of heavy nuclei could be more easily modelled by the spacings between
successive eigenvalues of a random (n × n)-matrix as n → ∞.

Since the 1960s, Wigner and his colleagues, including Freeman Dyson and
Madan Lal Mehta, worked on random-matrix theory and developed it to the
point that it became a very powerful tool in mathematical physics (see Mehta,
2004). Dyson, in a series of papers in 1962, introduced a classification of three
types of random-matrix ensembles based upon the property of time-reversal
invariance. The matrices corresponding to these three types of random-matrix
ensembles have elements that are complex (not time-reversal invariant), real
(time-reversal invariant), or self-dual quaternion (time-reversal invariant, but
with a restriction).

During the last decade or so, we have seen more interest paid to random-
matrix theory. One of the most important early discoveries in random-matrix
theory was its connection to quantum chaos (Bohigas, Giannoni, and Schmit,
1984), which led to a random-matrix theory of quantum transport (Beenakker,
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1997). Random-matrix theory has since become a major tool in many fields, in-
cluding number theory and combinatorics, wireless communications (Tulino and
Verdú, 2004), and in multivariate statistical analysis and principal components
analysis (Johnstone, 2001). A common element in these types of situations is
that random-matrix theory has been used as an indirect method for solving
complicated problems arising from physical or mathematical systems.

Much of the recent work on random matrices has tried to establish the so-
called universality conjecture. This conjecture states that local behavior (i.e.,
fluctuation properties) of the eigenvalues of large random matrices have limits
that are independent of the probability distribution on the matrix ensembles.
Because this conjecture is not true in general, researchers have focused instead
on showing that it is true within specific families of probability distributions,
which in turn may depend upon the types of random-matrix ensembles consid-
ered.

Nomenclature

We will need the following terminology. An ensemble of random matrices is a
family (or collection) of random matrices together with a probability density p
that shows how likely it is that any member of the family can be observed.

Wigner and Dyson were most interested in approximating H by an ensemble
of finite, large, (n × n) Hermitian matrices Hn whose probability density has
the following form,

p(Hn) ∝ e−βtr[V (Hn)], (1)

where V is some function of Hn, such as a finite polynomial function of Hn,
where the highest power is even and its coefficient positive, and where the
constant of proportionality depends only on n. For example, a possible choice
of V could be

V (Hn) = aH2
n + bHn + c, (2)

where a, b, and c are real numbers and a > 0. The entries of Hn = (Hij) can be
real (β = 1), complex (β = 2), or real-quaternion (β = 4). If V (Hn) ∝ H2

n, then
tr(H2

n) =
∑

i

∑
j H2

ij , and (1) reduces to a Gaussian ensemble. For example, in
the case of a real, symmetric (2 × 2) random matrix,

Hn =

(
H11 H12

H12 H22

)
, (3)

with independent elements, we have that tr(H2
n) = H2

11 + H2
22 + 2H2

12, so that
each element is an independent Gaussian random variate and the variance of
each off-diagonal element is one-half that of the diagonal elements.

We define a “time-reversal” transformation as

Hn → UHnU−1, (4)
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where U is orthogonal (β = 1), unitary (β = 2), or symplectic (β = 4). (A
symplectic matrix is a unitary matrix with real-quaternion elements.) Time-
reversal invariance means that the time-reversal transformation leaves p(Hn)
invariant (Porter and Rosenzweig, 1960).

Gaussian Ensembles

With time reversal as a motivation, Freeman Dyson introduced the classification
of three types of Gaussian ensembles, Gaussian orthogonal ensemble, Gaussian
unitary ensemble, and Gaussian symplectic ensemble. We define these ensembles
as follows:

Gaussian Orthogonal Ensemble (GOE): A is an (n × n)-matrix whose entries
are each iid as N (0, 1). A symmetric (n × n)-matrix Hn is formed by setting
Hn = (A + Aτ )/2, where Aτ is the transpose of the matrix A. The diagonal
entries of Hn are distributed as iid N (0, 1) and the off-diagonal entries are iid
(subject to being symmetric) as N (0, 1

2 ).

Gaussian Unitary Ensemble (GUE): A is an (n × n)-matrix whose entries are
each complex-valued and iid as NC(0, 1). A Hermitian (n × n)-matrix Hn is
formed by setting Hn = (A + A∗)/2, where A∗ is the Hermitian transpose of
the complex matrix A. The diagonal entries of Hn are distributed as iid N (0, 1)
and the off-diagonal entries are iid (subject to being Hermitian) as N2(0, 1

2 ). In
other words, Hn = (H`m), where H`m = U`m + iV`m, and U`m, V`m ∼ N (0, 1

2 ),
1 ≤ ` < m ≤ n, and Hmm ∼ N (0, 1), 1 ≤ m ≤ n.

Gaussian Symplectic Ensemble (GSE): A is an (n×n)-matrix whose entries are
each real-quarternian and iid as NQ(0, 1). A self-dual (n× n)-matrix is formed
by setting Hn = (A + AD)/2, where AD denotes the dual transpose of the
quarternian matrix A. The diagonal entries of Hn are distributed as iid N (0, 1)
and the off-diagonal entries are iid (subject to being self-dual) as N4(0, 1

2 ). In
other words, if Hn = (H`m), then, H`m = U`m + iV`m + jW`m + kZ`m, where
U`m, V`m, W`m, Z`m ∼ N (0, 1

2 ), for 1 ≤ ` < m ≤ n, and Hmm ∼ N (0, 1),
1 ≤ m ≤ n.

For the GOE, U in (4) is orthogonal with real entries; for the GUE, U

is unitary with complex entries; and for the GSE, U is symplectic with self-
dual quaternion entries. See Table 1. It can be shown that the GOE is for
systems that are time-reversal invariant, the GUE for systems that are not
time-reversal invariant, and GSE for systems that are time-reversal invariant,
but do not have spin-rotational symmetry. From a quantum-mechanical view,
time-reversal invariance is the most realistic property, and, hence, the GOE is
the most natural ensemble. If all three types of ensembles are time-reversal
invariant and all elements of Hn are statistically independent, then the form of
p(Hn) is automatically restricted to have V (Hn) = aH2

n + bHn + c, with a, b,
and c real and a > 0 (Porter and Rosenzweig, 1960).
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Table 1: Dyson’s classification of Gaussian ensembles. The Hermitian matrix
Hn = (Hij) and its matrix of eigenvectors U are classified by the parameter
β ∈ {1, 2, 4}, depending upon the presence or absence of time-reversal invari-
ance (TRI) and spin-rotational symmetry (SRS). NA means ‘not appropriate.’
(Adapted from Table 1 in Beenakker, 1996.)

β Ensemble TRI SRS Hij U

1 GOE Yes Yes real orthogonal
2 GUE No NA complex unitary
4 GSE Yes No real-quaternion symplectic

Spectrum of Random Matrices

Of particular interest is the stochastic behavior of the bulk and the extremes
(or edges) of the spectrum of large random matrices. The bulk deals with most
of the eigenvalues of a given matrix and the extremes refer to the largest and
smallest of those eigenvalues. Note that regardless of which ensemble we study,
the eigenvalues of Hn are all real and can, therefore, be rank-ordered. The
extremes (and especially the smallest eigenvalue) of the spectrum are important
in determining the stability and invertability of a square matrix. Recent work
has shown that there are differences between the statistics of the bulk of the
spectrum and those of the extreme eigenvalues at the edge of the spectrum.

One of the main features of all three random matrix ensembles is the idea of
repulsion, that any two (correlated) eigenvalues obtained from a GOE (or GUE
or GSE) matrix are unlikely to be close together; that is, the probability that
adjacent eigenvalues are close together is small, and the probability quickly
goes to zero as a power of the distance between them. Hence, the spacings
distribution precludes near-zero spacings. This property is related to certain
aspects of quantum chaos (Kiecherbauer, Marklof and Soshnikov, 2001).

Bulk of the Spectrum

Gaussian Case: The Wigner Matrix

Wigner originally studied a real symmetric (n × n)-matrix Hn = (Hij) where
the diagonal entries were each 0 and the off-diagonal entries (subject to the sym-
metric constraint) were independently ±1 with probability 1

2 . He later realized
that his results for this matrix would continue to hold more generally.

Let A be an (n×n)-matrix filled with independent and identically distributed
standard Gaussian deviates,

Aij ∼ N (0, 1), i, j = 1, 2, . . . , n, (5)
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where we assume n is large. Then,

Hn =
1

2
(A + Aτ ) (6)

is a symmetric (i.e., Hn = Hτ
n) random (n×n)-matrix, also known as a Wigner

matrix, where the ijth entry is given by

Hij ∼ N (0, σij) , σij =
1

2
(1 + δij), (7)

δij = 1 if i = j and 0 otherwise. Thus, the diagonal entries of a Wigner
matrix are distributed as N (0, 1), while the off-diagonal entries are distributed
as N (0, 1

2 ). The Wigner matrix (7) is a member of the Gaussian Orthogonal
Ensemble. Studying the behavior of Wigner matrices forms a large part of
random-matrix theory.

Remark: The Gaussian assumption for the Wigner matrix is not necessary,
unless it is required to be a member of the GOE. In general, it could be replaced
by a distribution having the same independence properties and same variance
as the Gaussian.

Finite n: Exact Distribution

Let λ1 > λ2 > · · · > λn be the ordered eigenvalues of Hn and let U be the matrix
of associated eigenvectors. Then, Hn = UΛUτ , where Λ = diag{λ1, . . . , λn}.
Now, tr[V (Hn)] =

∑n
j=1 V (λj) depends only on the eigenvalues. Thus, the

distribution p(Hn) in (1) is independent of the eigenvectors, which can be viewed
as being uniformly distributed over the members of each matrix ensemble. The
exact joint probability distribution of the eigenvalues of an (n×n) Wigner matrix
is then found by multiplying p(Hn) by the Jacobian of the transformation from
the matrix to its eigenvalues and eigenvectors.

The exact distribution of the eigenvalues, therefore, has the form,

p(λ1, . . . , λn) = cn

n∏

j=1

[w(λj)]
1/2

∏

1≤j<k≤n

|λj − λk|, (8)

where
w(λ) = e−λ2

, λ ∈ <, (9)

is the weight function for the Hermite family of orthogonal polynomials (Abro-
mowitz and Stegun, 1970, Table 22.2) and cn is a normalizing constant depen-
dent upon n.

For general β-Gaussian-Hermite ensembles, where β = 1 (GOE), 2 (GUE),
or 4 (GSE), the joint probability density of the eigenvalues of Hn is given by

pβ(λ1, · · · , λn) = c′n,β

n∏

j=1

[wβ(λj)]
1/2

∏

1≤j<k≤n

|λj − λk |β , (10)
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where
wβ(λ) = e−βλ2

, (11)

and c′n,β is a normalizing constant,

c′n,β = (2π)−n/2βn/2+βn(n−1)/4
n∏

i=1

Γ(1 + β
2 )

Γ(1 + βj
2 )

, (12)

dependent upon n and β (Mehta, 2004, p. 58).

Large n: Wigner’s Semi-Circle Law

Next, consider the limiting probability distribution of the eigenvalues of a Wigner
matrix Hn as n tends to infinity. We define the empirical distribution function
of the eigenvalues, λ1, λ2, . . . , λn, of Hn as

1

n
#{i : λi ≤ λ} =

1

n

n∑

i=1

I[λi≤λ], (13)

where IA is the indicator function of the event A (IA = 1 if A is true and
0 otherwise) and #{·} denotes the number of elements in the set indicated.
Wigner’s result says that the empirical distribution (13) of the eigenvalues of
Hn converges a.s. to a nonrandom limiting distribution G(λ),

1

n
#{i : λi ≤ λ} a.s.→ G(λ), n → ∞, (14)

with density,

g(x) =
1

2π

√
4− λ2, |λ| ≤ 2, (15)

and zero for |λ| > 2. This limiting density is a semi-circle with radius 2 (Wigner,
1955, 1958).

Remark: For (14) and (15) to hold, we only need the existence of second mo-
ments for the off-diagonal entries; we do not need such a moment requirement
for the diagonal entries.

Remark: Wigner’s semi-circle law still holds if the Gaussian assumption (7) in
the definition of Wigner’s matrix Hn is replaced by any symmetric distribution
(discrete or continuous) with mean zero, finite variance σ2, and finite higher
moments. Under symmetry, all odd moments are zero.

Figure 1 shows an illustration of the convergence to Wigner’s semi-circle law
for a single (n × n) Wigner matrix. We sampled n = 1, 000 (left panel) and
n = 25, 000 (right panel) iid standard Gaussian deviates, computed A and then
Hn, and found the eigenvalues of Hn. The histograms of the eigenvalues of Hn

for both cases are given in Figure 1.
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Figure 1: Illustration of the convergence to Wigner’s Semi-Circle Law. Normal-
ized histograms of the eigenvalues from a single (n × n) Wigner matrix. Left
panel: n = 1, 000. Right panel: n = 25, 000. For each n, there are 100 bins.

Single Wishart Matrix

In multivariate statistical analysis, we are often interested in a random r-vector
X that is distributed with mean vector µ and covariance matrix Σ, where

µ = E{X}, Σ = E{(X− µ)(X − µ)τ}. (16)

We may sometimes need to assume that X is also Gaussian. Many topics in
multivariate analysis, (e.g., principal component analysis, factor analysis, and
multidimensional scaling) deal with the study of functions of Σ, such as its
eigenvalues and associated eigenvectors.

Typically, Σ is unknown, and so has to be estimated using a sample of data.
Given a set of independent random r-vectors, Xi, i = 1, 2, . . . , n, drawn from
the same underlying distribution as X, the usual estimate of Σ is given by

Σ̂ =
1

n

n∑

i=1

(Xi − X̄)(Xi − X̄)τ =
1

n
XcX τ

c , (17)

where the sample mean vector, X̄ = n−1
∑n

i=1 Xi, is an estimator of the pop-
ulation mean vector µ. In (17), X = (X1, · · · ,Xn) and Xc = X (In − n−1Jn),

where Jn = 1n1τ
n and 1n is an n-vector of 1s. We can make Σ̂ an unbiased

estimator of Σ by replacing 1/n by 1/(n−1) in the averaging operation in (17).

We are interested in studying the behavior of the eigenvalues of Σ̂ as estimators
of the population eigenvalues of Σ. Here, we consider the distribution of the
eigenvalues of Σ̂ under different assumptions on the number of variables r and
the number of observations n.

A Distributional Result

We will need the following result below. Let A be an (r × r) positive-definite
matrix with density function p(A). The joint density of the eigenvalues λ1 >
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λ2 > · · · > λr of A is given by (Muirhead, 1982, Theorem 3.2.17)

p(λ1, . . . , λr) =
πr2/2

Γr(r/2)

∏

1≤j<k≤r

|λj − λk|
∫

O(r)

p(QLQτ )(dQ), (18)

where (dQ) is the Haar invariant measure on the set O(r) of (r × r) orthogonal
matrices, normalized so that

∫
O(r)(dQ) = 1. In (18), the function Γr is a

multivariate gamma function defined by (Muirhead, 1982, Section 2.1.2)

Γr(x) = πr(r−1)/4
r∏

j=1

Γ

(
x − j − 1

2

)
, Re(x) >

r − 1

2
. (19)

The product in (18) involving the pairwise differences of eigenvalues is the Ja-
cobian term, and is the determinant of the Vandermonde matrix,

Vr =




1 λ1 λ2
1 · · · λr−1

1

1 λ2 λ2
2 · · · λr−1

2

1 λ3 λ2
3 · · · λr−1

3
...

...
...

. . .
...

1 λn λ2
n · · · λr−1

n




; (20)

the determinant of (20) is also known as the Vandermonde determinant (see,
e.g., Bellman, 1960, p. 193).

Fixed r, Finite n, and r < n: Exact Distributions

Prior to the public availability of high-speed computation and large data storage
facilities, the number of variables r was kept reasonably small and the number
of observations n, though larger than r, was still small by modern standards.
Distribution theory was either exact (fixed r and finite n) or asymptotic with a
fixed r and n → ∞. These are the two cases we deal with first.

Without loss of generality, suppose µ = 0. Suppose also that Xi
iid∼ Nr(0,Σ),

i = 1, 2, . . . , n, and set X = (X1, · · · ,Xn). Then,

nΣ̂ = S = XX τ ∼ Wr(n,Σ) (21)

(Wishart, 1928). If Σ = Ir, then this is the so-called real white Wishart distri-
bution.

When S ∼ Wr(n,Σ), we substitute the form of the Wishart density,

p(S|n,Σ) = cr,n|Σ|−n/2|S|(n−r−1)/2e−
1
2
tr(Σ−1S), (22)

where

c−1
r,n = 2nr/2πr(r−1)/4

r∏

i=1

Γ

(
n − i + 1

2

)
, (23)
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into (18) to obtain the exact joint distribution of the eigenvalues, λ1 > λ2 >
· · · > λr, of S (James, 1964),

p(λ1, . . . , λr) = cr,n

r∏

j=1

λ
(n−r−1)/2
j

∏

1≤j<k≤r

|λj −λk|
∫

O(r)

e−
1
2
tr(Σ−1QLQτ )(dQ),

(24)
where L = diag{λ1, · · · , λr}, |L| =

∏r
j=1 λj , (dQ) is the Haar invariant measure

on the set O(r) of (r×r) orthogonal matrices, normalized so that
∫
O(r)

(dQ) = 1,

and cr,n is the normalization constant,

cr,n =
πr2/2

2nr/2|Σ|n/2Γr(r/2)Γr(n/2)
. (25)

The integral in (24) over the orthogonal group O(r) is difficult to evaluate in the
case of general Σ. Some efforts in this direction have been made using infinite
series expansions in zonal polynomials, but these have not yielded practical
results.

If µ 6= 0, then the sample covariance matrix S = n−1XcX τ
c has the Wishart

distribution Wr(n − 1, n−1Σ). In this case, the previous results, (24) and (25),
for the eigenvalue density can be modified by substituting n − 1 for n and nλi

for λi.

In the white Wishart case (i.e., Σ = Ir), the integral over the orthogonal

group O(r) is easily evaluated to be e
− 1

2

∑
j

λj . The resulting density (24)
reduces to

p(λ1, . . . , λr) = cr,n

r∏

j=1

[wn,r(λj)]
1/2

∏

1≤j<k≤r

|λj − λk|, (26)

where
wn,r(λ) = λn−r−1e−λ, λ ∈ [0,∞), n > r, (27)

is the weight function for a generalized Laguerre family of orthogonal polyno-
mials (Abromowitz and Stegun, 1970, Table 22.2), and cr,n is a normalizing
constant dependent upon r and n. For a proof, see Anderson (1984, Section
13.3). The second product in (26) involving the pairwise differences of eigenval-
ues is, as before, the Jacobian term, and is the determinant of the Vandermonde
matrix (10). The eigenvalue density (26) was found independently and simulta-
neously by Fisher, Girshick, Hsu, and Roy in 1939, and in 1951 independently
by Mood.

For general β-Wishart-Laguerre ensembles, where β = 1, 2, or 4 for real,
complex, or quaternian Gaussian entries of X , respectively, the joint probability
density of the eigenvalues of S is given by

pβ(λ1, · · · , λr) = c′n,r,β

r∏

j=1

[wn,r,β(λj)]
1/2

∏

1≤j<k≤r

|λj − λk|β , (28)
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where
wn,r,β(λ) = λβ(n−r+1)−2e−βλ, λ ∈ [0,∞), (29)

and c′n,r,β is a normalizing constant,

c′n,r,β = 2−βnr/2
n∏

i=1

Γ(1 + β
2 )

Γ(1 + βi
2 )Γ(β

2 (r − n + i))
, (30)

which is dependent upon n, r, and β.

In the case of general Σ, when the population eigenvalues are not all equal,
the exact joint distribution of the sample eigenvalues is known (James, 1960)
but is extremely complicated, involving zonal polynomials (i.e., power-series
expansions in hypergeometric functions). For large n, the zonal polynomial
series converges very slowly, and so the results have very limited practical value
(James, 1964).

Fixed r, Large n

For fixed r and large n, and X ∼ Nr(µ,Σ), the sample eigenvalues, λ̂j , j =

1, 2, . . . , r, of Σ̂ are jointly asymptotically independently distributed according
to √

n(λ̂j − λj)
D⇒ N (0, 2λ2

j ), as n → ∞, j = 1, 2, . . . , r, (31)

where the {λj} are the distinct eigenvalues of Σ (Anderson, 1963). This result

shows that the jth sample eigenvalue, λ̂j is a consistent estimator of the jth
population eigenvalue, λj , j = 1, 2, . . . , r.

Large r, Large n: The Marc̆enko–Pastur’s Quarter-Circle Law

One of the most important results of random-matrix theory for use in multi-
variate analysis is the Marc̆enko–Pastur Law, which is an analogue of Wigner’s
Semi-Circle Law. The Marc̆enko–Pastur Law gives the limiting distribution of
the eigenvalues of a sample covariance matrix (as the size of the matrix grows
without bound) in the null case when S ∼ Wr(n, Ir). In the null case, all the
eigenvalues of the population covariance matrix Ir are equal to one. Although
Σ̂ is a good approximation to Σ for fixed r and large n, that does not hold when
r and n are both large.

If we let r → ∞ and n → ∞ in such a way that the matrix aspect ratio
converges to a non-zero constant, i.e., r/n → γ ∈ (0,∞), then the empirical

distribution of the eigenvalues, λ̂i, i = 1, 2, . . . , r, of Σ̂ follows the Marc̆enko–
Pastur Law:

1

r
#{i : λ̂i ≤ x} a.s.→ G(x), (32)

where G(x) has density g(x) = G′(x) and

g(x) =
1

2πγx

√
(b+ − x)(x − b−) I[b

−
,b+](x), b± = (1 ±√

γ)2, (33)
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where I[b
−

,b+](x) is the indicator function that is equal to 1 for b− < x < b+ and
0 otherwise (Marc̆enko and Pastur, 1967). This is the so-called Quarter-Circle
Law. Note that the limiting density only depends upon γ. If γ ∈ (0, 1), then
r < n; in this case, the spectra of XX τ and X τX differ by n−r zero eigenvalues,
and so there is an additional point mass at the origin x = 0 with weight 1 − γ.
Except for this point mass at the origin, the results given here for the nonzero
eigenvalues hold regardless of whether r or n is larger.

The largest sample eigenvalue, λ̂1, converges a.s. to the right-hand support
point b+ = (1 +

√
γ)2, and the smallest sample eigenvalue, λ̂r converges a.s. to

the left-hand support point b− = (1 −√
γ)2. See also Geman (1980), who first

proved the convergence result for the largest sample eigenvalue. However, λ̂1

is not a consistent estimator of λ1. For example, in the case when r = n (i.e.,
γ = 1) and Σ = Ir, the largest population eigenvalue λ1 = 1, while the largest

sample eigenvalue, λ̂1, of S converges to the value 4. If r > n, then λ̂n+1 =

· · · = λ̂r = 0. The results (32) and (33), unfortunately, remained obscure for a
while (see, e.g., Wachter, 1978, who derived similar results apparently unaware
of the Marc̆enko-Pastur paper).

A visual representation of the Marc̆enko–Pastur Law is given in Figure 2,
where we have separated the values of γ by γ ≤ 1 (left panel) and γ ≥ 1 (right
panel). We see that even though all the population eigenvalues are equal to 1,
the spread of the sample eigenvalues varies directly with the ratio γ = r/n: the
larger the ratio (i.e., the bigger r is relative to n), the more spread out are the
sample eigenvalues. For example, when γ = 1/4, the density is supported on
the interval [ 14 , 9

4 ], when γ = 1 (i.e., n = r), the density is supported on [0, 4],
and when γ = 4, the density is supported on [1, 9].

The a.s. result is fascinating, but for statistical inference purposes we would
also like to have some insight into second-order information (i.e., variability)
about the bulk of the sample eigenvalues, especially the largest eigenvalue, which
is of importance in principal component analysis.

Two Wishart Matrices

Fixed r, Finite n: Exact Distribution

Real case. Let Xi ∼ Nr(µ,Σ), i = 1, 2, . . . , m, and let X = (X1, · · · ,Xm) be
an (r × m)-matrix. Then, A = XX τ ∼ Wr(m,Σ). Suppose we have another
(r×r)-matrix B ∼ Wr(n,Σ) that is independent of A. Because we are interested
in the eigenvalues of B−1A and because the distribution of those eigenvalues
does not depend upon Σ, without loss of generality, we can take Σ = Ir.

So, suppose we have two independent white Wishart matrices, A ∼ Wr(m, Ir)
and B ∼ Wr(n, Ir). If m, n ≥ r, then both A and B are invertable as is also
their sum A + B. We are interested in solving (for λ) the following generalized
eigenvalue problem,

|A − λ(A + B)| = 0. (34)

11
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Figure 2: Density of eigenvalues from the Marc̆enko-Pastur Law. Left panel:
γ = 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64, 0.81, 1 (i.e., r ≤ n). Right panel: γ =
1, 1.5, 2, 3, 4 (i.e., r ≥ n).

That is, we are interested in the eigenvalues of (A + B)−1A. Because B is
positive definite, 0 < λ < 1. The eigenequation (34) can be reexpressed as

|A− θB| = 0, (35)

and, in this form, we are interested in the eigenvalues of B−1A. The eigenvalues
λ and θ are related by λ = θ/(1 + θ) or θ = λ/(1 − λ).

The exact joint distribution of the eigenvalues of the generalized eigenequa-
tion (34) is given by

p(λ1, . . . , λr) = cm,n,r

∏

i

[wa,b(λi)]
1/2

∏

i<j

|λi − λj |, (36)

where
wa,b(λ) = λa(1 − λ)b, a = m − r − 1, b = n − r − 1, (37)

is a weight function for the Jacobi family of orthogonal polynomials (Abro-
mowitz and Stegun, 1970, Table 22.2), and c is a normalizing constant that
depends upon m, n, and r.

The general β-form of (36) is given by

pβ(λ1, . . . , λr) = cm,n,r,β

∏

i

[wr,m,n,β(λi)]
1/2

∏

i<j

|λi − λj |β , (38)

where

wr,m,n,β(λ) = λa(1 − λ)b, a = β(m − r + 1) − 2, b = β(n − r + 1) − 2, (39)

and cm,n,r,β is a normalizing constant that depends upon m, n, r, and β. As
before, β = 1 for the real case, β = 2 for the complex case, and β = 4 for the
quaternion case.

12



Setting λi = θi/(1 + θi), the joint distribution of the eigenvalues of the
generalized eigenequation (35) is given by

p(θ1, . . . , θr) = cm,n,r

∏

i

[wa,b(θi)]
1/2

∏

i<j

|θi − θj |, (40)

where
wa,b(θ) = θa(1 + θ)b, a = m − r − 1, b = m + n. (41)

Proofs of these results can be found in Anderson (1984, Section 13.2).

If we carry out a change of variable in (40) and (41) by setting λ = (1+x)/2,
we obtain the Jacobi orthogonal ensemble,

p(x1, · · · , xr) = cm,n,r

∏

i

[wa,b(xi)]
1/2

∏

i<j

|xi − xj |, (42)

where

wa,b(x) = (1 − x)a(1 + x)b, a = m − r − 1, b = n − r − 1, (43)

is the weight function for the Jacobi family of orthogonal polynomials (Abro-
mowitz and Stegun, 1970, Table 22.2).

Complex case. We write X ∼ NC
r (µ,Σ), for a complex-valued random r-

vector having a multivariate Gaussian distribution with mean µ and covariance
matrix Σ. This complex-valued random vector X has 2r real components given
by (Re(X), Im(X))τ with distribution (Brillinger, 1975, Section 4.2)

N2r

((
Re(µ)
Im(µ)

)
,
1

2

(
Re(Σ) −Im(Σ)
Im(Σ) Re(Σ)

))
. (44)

If Xi ∼ NC
r (µ,Σ), i = 1, 2, . . . , n, then XX ∗ =

∑n
i=1 XiX

∗
i ∼ WC

r (n,Σ), where
X ∗ denotes the complex-conjugate transpose of X = (X1, · · · ,Xn).

Suppose now that we have two independent complex-Wishart (r×r) random
matrices, A ∼ WC

r (m, Ir) and B ∼ WC
r (n, Ir). Then, the exact joint density of

the eigenvalues 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 of (A + B)−1A is given by

p(λ1, · · · , λr) = cm,n,r

∏

i

w(λi)
∏

i<j

|λi − λj |2. (45)

where
wa,b(λ) = λa(1 − λ)b, a = m − r, b = n − r. (46)

Application to Multivariate Regression

The eigenproblem (35) is of interest in multivariate reduced-rank regression,
which includes as special cases canonical variate and correlation analysis, and

13



Table 2: Families of orthogonal polynomials and their weight functions w(x).

Case w(x) Interval OrthoPoly

Gaussian e−x2

(−∞,∞) Hermite
Wishart xae−x [0,∞) Laguerre

Two Wisharts xa(1 − x)b (0, 1) Jacobi

linear discriminant analysis. Suppose Xc is an (r × n)-matrix and Yc is an
(s×n)-matrix, where the subscript c indicates that both X and Y are centered
(by subtracting out row means from each row), and where we assume s ≤ r.

Set SXX = XcX τ
c , SY Y = YcYτ

c , and SXY = XcYτ
c = Sτ

Y X . Then set
A = SY XS−1

XXSXY to be the variation due to the multivariate regression and
B = SY Y − SY XS−1

XXSXY to be the residual variation, so that A + B = SY Y .
We have that A ∼ Ws(r,ΣY Y ) and B ∼ Ws(n−r−1,ΣY Y ). The eigenequation
(34), thus, boils down to the following:

|SY XS−1
XXSXY − λSY Y | = 0, (47)

so that we are interested in the eigenvalues of S−1
Y Y SY XS−1

XXSXY , or of its sym-

metric version, S
−1/2
Y Y SY XS−1

XXSXY S
−1/2
Y Y . The joint distribution of the eigen-

values of the generalized eigenequation (34) is given by

p(λ1, . . . , λs) = cn,r,s

s∏

i=1

[wa,b(λi)]
1/2

s∏

i<j

|λi − λj |, (48)

where
wa,b(λ) = λa(1 − λ)b, (49)

a = r − s − 1, b = n − r − s − 2, (50)

and c is a normalizing constant that depends upon n, r, and s (Anderson, 1984,
Section 13.4).

Edges of the Spectrum

Perhaps the most exciting results to have been derived from random-matrix
theory are the Tracy–Widom laws for the distribution of the appropriately-
normalized largest eigenvalue of a random matrix.

Largest Eigenvalue: Gaussian Ensembles

For the GUE, Tracy–Widom (1994) showed that the largest eigenvalue has the
limiting distribution,

lim
n→∞

P

{
λ̂1 − 2

√
n

n1/6
≤ t

}
= F2(t), (51)
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Table 3: Percentage points of the Tracy–Widom distributions for β = 1, 2, 4.
Tabulated is the value of x such that Fβ(x) = P{Wβ < x} = p. (Adapted from
Table 1 of Bejan, 2004.)

β 0.005 0.025 0.05 0.95 0.975 0.99 0.995 0.999

1 –4.1505 –3.5166 –3.1808 0.9703 1.4538 2.0234 2.4224 3.2724

2 –3.9139 –3.4428 –3.1945 –0.2325 0.0915 0.4776 0.7462 1.3141

4 –4.0531 –3.6608 –3.4556 –1.0904 –0.8405 –0.5447 –0.3400 0.0906

where F2 is the Tracy–Widom law of order 2 with distribution function,

F2(t) = exp

(
−

∫ ∞

t

(x − t)[q(x)]2dx

)
, (52)

and q uniquely solves the Painlevé II ordinary differential equation,

q′′(x) = xq(x) + 2[q(x)]3, q(x) ∼ Ai(x) as x → ∞ (53)

for all x, where Ai(x) is the Airy function,

Ai′′(x) = x · Ai(x), (54)

with the boundary condition,

Ai(x) ∼ e−
2
3

x3/2

2
√

πx1/4
as x → ∞. (55)

In (53), q(x) ∼ Ai(x) as x → ∞ means that limx→∞
q(x)
Ai(x) = 1 (Tracy and

Widom, 1996). Table 2 gives the percentage points of the Tracy–Widom distri-
butions for β = 1, 2, 4.

Largest Eigenvalue: Wishart–Laguerre Ensembles

Fill an (r × n)-matrix X with iid N (0, 1) deviates. Then, S = XX τ has the
white Wishart distribution Wr(n, Ir) and represents the null case (i.e., Σ = Ir).
The eigenvalues of S are real and nonnegative. Denote the largest eigenvalue of
S by λ̂1.

Fixed r, Finite n: Exact Distribution

The exact distribution of λ̂1 in the null case was found by Constantine (1963)
and is expressed as an infinite expansion in zonal polynomials (i.e., hypergeo-
metric functions of two matrix arguments). See Muirhead (1982, Chapter 7) for
a detailed exposition of zonal polynomials. Unfortunately, such a series repre-
sentation, which converges very slowly, is impractical for numerical computation
and statistical usage.
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Large r, Large n: The Tracy–Widom Laws

The development of random-matrix theory has provided us with the following
useful results concerning the limiting distribution of the largest eigenvalue when
the dimensions n and r of the matrix X are both very large.

Real case. Let
µnr = (

√
n − 1 +

√
r)2, (56)

and

σnr = (
√

n − 1 +
√

r)

(
1√

n − 1
+

1√
r

)1/3

(57)

be centering and scaling factors, respectively. Suppose both r and n are large
and that r/n → γ ∈ (0,∞). Johnstone (2001, 2006) showed that under the null
model,

λ̂1 − µnr

σnr

D⇒ W1 ∼ F1, (58)

where F1 is the Tracy–Widom law of order 1 and has distribution function,

F1(t) = [F2(t)]
1/2exp

(
−1

2

∫ ∞

t

q(x)dx

)
. (59)

From (58), we write TW1(n, r) for the Tracy–Widom F1 distribution of µnr +

σnrW1, which can be used to approximate the distribution of λ̂1. Johnstone
showed that the asymptotic distribution result (58) is still useful for n and r as
small as 10.

Remark: The assumption r/n → γ ∈ (0,∞) has been extended to include γ = 0
and γ = ∞ (El Karoui, 2003). The extension to γ = ∞ is important in that it
allows applications where p � n.

Remark: If the Gaussian assumption on the elements of X is replaced by an
assumption that n−r = O(r1/3) and an assumption that the elements of the ma-
trix X are symmetrically distributed with finite even moments and sufficiently
light tails (i.e., a subGaussian distribution), then the Tracy–Widom Law (58)
still holds (Soshnikov, 2002; Péché, 200x).

Tracy and Widom (2000) and Johnstone (2001) show that F1 has the follow-
ing properties: (1) the F1 distribution does not depend upon any parameters
and, therefore, its role can be viewed in the same light as the role of the standard
Gaussian distribution in the central limit theorem, (2) the F1 density function
is not symmetric, but is unimodal with mean approximately −1.21, standard
deviation approximately 1.27, and different decay rates as x → −∞ or x → +∞,
(3) the standard deviation, σnr, increases with n as n1/2, (4) approximately 83%
of the distribution is less than µnr, (5) approximately 95% of the distribution is
less than µnr + σnr, and (6) approximately 99% of the distribution is less than
µnr + 2σnr.

The limiting distribution F1 was discovered by Tracy and Widom to be one
of a family of distributions, Fβ , where β = 1 (real case), 2 (complex case), and
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4 (real-quaternion case), Computation in S-Plus and Matlab of the Tracy-
Widom distributions is slow and cubic spline approximations are preferred (Be-
jan, 2005).

Complex case. The asymptotic distribution of the largest eigenvalue of
a symmetric (r × r) complex Wishart matrix was actually found (Johansson,
2000) before the real-case result given by Johnstone. Johansson showed that,
for a Hermitian (e.g., complex Wishart) matrix,

λ̂1 − µnr

σnr

D⇒ W2 ∼ F2, (60)

where F2 is the Tracy-Widom law of order 2 given by (52) and

µnr = (
√

n +
√

r)2 (61)

and

σnr = (
√

n +
√

r)

(
1√
n

+
1√
r

)1/3

. (62)

In other words,

P

{
λ̂1 − µnr

σnr
≤ x

}
→ F2(x), as r → ∞, x ∈ <. (63)

The real case with limiting distribution F1 was found by Johnstone (2001) by
using an independent approach with a different construction than was used in
the complex case.

Remark: Ramı́rez, Rider, and Virág (2008) extended the Tracy–Widom Laws
to all β > 0.

Largest Eigenvalue: Two Wishart Matrices

The problem of approximating the distribution of either the largest eigenvalue
λ of (A + B)−1A or the largest eigenvalue θ of B−1A when A and B are
both (r × r)-matrices and m, n, and r are large has been studied in detail by
Johnstone (2008). Johnstone shows that with appropriate centering and scaling
of the logit transform of λ, the Tracy-Widom laws F1 and F2 continue to hold,
F1 for the real case and F2 for the complex case, as in the single-Wishart case
above.

Large r, Large m and n: The Tracy–Widom Laws

Real case. Suppose A ∼ Wr(m, Ir) and B ∼ Wr(n, Ir) are independent white
Wishart matrices. Assume that n ≥ r. Then, A is positive definite. If λ1r is
the largest eigenvalue of (A + B)−1A, then, 0 < λ1r < 1. The following results
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have been proved for r even only, but empirical results indicate that they may
also hold for general r.

Let

µr = 2 log tan

(
φ + γ

2

)
(64)

and

σ3
r =

16

(m + n − 1)2
1

sin2(φ + γ) sinφ sin γ
(65)

be centering and scaling factors, respectively, for

Wr = logit(λ1r) = log

(
λ1r

1 − λ1r

)
, (66)

where the angle parameters, γ and φ, are defined by

sin2
(γ

2

)
=

min(r, m) − 1/2

m + n − 1
(67)

sin2

(
φ

2

)
=

max(r, m) − 1/2

m + n − 1
, (68)

respectively. If m = mr, n = nr → ∞ as r → ∞ in such a way that
limr→∞ min(r, m)/(m + n) > 0 and r/n → ξ < 1, then,

Wr − µr

σr

D⇒ Z1 ∼ F1, (69)

where F1 is the Tracy-Widom law of order 1 given by (59).

A more precise convergence result can be made: As mr, nr → ∞ as r → ∞
through the even integers, then there exists a constant C > 0 depending upon
(φ, γ) such that for large x,

∣∣∣∣P
{

Wr − µr

σr
≤ x

}
− F1(x)

∣∣∣∣ ≤ Cr−2/3e−x/2. (70)

Complex case. Suppose that we have two independent complex-Wishart
random matrices, A ∼ WC

s (m, Is) and B ∼ WC
s (n, Is). We are interested in

the distribution of the largest eigenvalue of (A + B)−1A.

Let

W C = logit(λC
r ) = log

(
λC

r

1 − λC
r

)
. (71)

Assume that mr, nr → ∞ as r → ∞ in the same way as for the real case.
Defining µC

r and σC
r as appropriate centering and scaling constants, Johnstone

(2008) showed that
W C

r − µC
r

σC
r

D⇒ Z2 ∼ F2, (72)
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where F2 is the Tracy-Widom distribution of order 2 given by (52). The cen-
tering and scaling constants are given by

µC =
τ−1
N uN + τ−1

N−1uN−1

τ−1
N + τ−1

N−1

(73)

1

σC
=

1

4
(τ−1

N + τ−1
N−1), (74)

where

uN = 2 log tan

(
φN + γN

2

)
(75)

τ3
N =

16

(2N + α + β + 1)2
1

sin2(φN + γN) sin φN sin γN

, (76)

sin2
(γN

2

)
=

N + 1/2

2N + α + β + 1
(77)

sin2

(
φN

2

)
=

N + β + 1/2

2N + α + β + 1
, (78)

and
N = min(m, r), α = n − r, β = |m − r|. (79)

Moreover, for large enough x, there exists a constant C depending upon (φ, γ)
such that

∣∣∣∣P
{

W C
r − µC

r

σC
r

≤ x

}
− F2(x)

∣∣∣∣ ≤ Cr−2/3e−x/2. (80)

Applications of the Tracy–Widom Laws

The Tracy-Widom Laws turn out to be the limiting distributions for many
different problems. Examples of diverse problems for which the Tracy-Widom
laws hold are:

1. The length of the longest increasing subsequence of a random permutation of
n objects as n → ∞.

Consider a permutation π of the first n integers {1, 2, . . . , n}. We can write
π as {π1, π2, . . . , πn}. Then, π has an increasing subsequence `n(π) of length k
if there exist indices 1 ≤ ii < i2 < · · · < ik ≤ n such that πi1 < πi2 < · · · < πik

.
(By switching the directions of the inequality signs, a similar definition can be
given for a decreasing subsequence of length k.)

Assume the n! permutations each of length n are equally likely. For each such
permutation, find the length Ln = `n(π) of the longest increasing subsequence.
For example, let n = 8 and consider the permutation π = {2, 5, 1, 3, 4, 8, 6, 7};
the length of the longest increasing subsequence is L8 = 5, given by {2, 3, 4, 6, 7}
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and {1, 3, 4, 6, 7}. Thus, Ln is a random variable, but the actual subsequence
may not be unique. The main questions are: what is the distribution of Ln,
and what is its mean, E{Ln}, and its variance, var{Ln}, for large n?

It has been shown that limn→∞
1√
n
E{Ln} exists (Ulam, 1961; Hammersley,

1972) and has the value 2 (Vershik and Kerov, 1977). Thus, for large n, E(Ln) ∼
2
√

n. Recent work has also showed that

lim
n→∞

E{Ln} − 2
√

n

n1/6
∼ −1.711 (81)

and

lim
N→∞

var{Ln}
n1/3

∼ 0.902, (82)

where the limiting constants on the rhs of (81) and (82) were obtained by Baik,
Deift, and Johansson (1999). Furthermore, the large-n distribution of Ln has
been shown (Baik, Deift, and Johansson, 1999) to be

P

{
Ln − 2

√
n

n1/6
≤ x

}
→ F2(x), as n → ∞, x ∈ <, (83)

where F2 is the Tracy–Widom law. Thus, for large n, the distribution of the
length of the longest increasing subsequence of a permutation π of {1, 2, . . . , n},
appropriately centered and scaled, is identical to the distribution of the largest
eigenvalue of a random GUE matrix.

2. Patience-Sorting card game.

Patience sorting is a one-person card game in Britain (called solitaire in the
United States). As explained by Aldous and Diaconis (1999), the game starts
out with a “deck” of cards labelled 1, 2, 3, . . . , n, and then the deck is shuffled
and a card is drawn from the top of the deck and placed into a “pile” according
to the following rule. A newly turned-up card can be placed on a card at the top
of an existing pile only if its value is lower than that of the top card; otherwise,
the new card starts another pile to the right of all existing piles. For example,
a 3 can be placed on top of a 5, but a 6 starts a new pile. The game continues
until all cards are dealt and placed into piles. The objective is to complete the
game with as few piles as possible.

Consider the eight cards in the same order as above: 2, 5, 1, 3, 4, 8, 6, 7.
Start the first pile with the 2; the 5 is bigger than the 2, so the 5 starts a new
pile; the 1 goes on top of the 2, and the 3 goes on top of the 5; the 4 starts a
new pile; the 8 starts a new pile; the 6 goes on top of the 8; and the 7 starts a
new pile. The piles are as follows:

1 3 6

2 5 4 8 7

This “greedy” strategy, which places each card on top of the most-leftwise pile
possible, is the optimal strategy. In this example, we obtained five piles, which
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is the same result we obtained above for the longest increasing subsequence of
the given permutation. In general, the number of piles using the optimal greedy
strategy will always equal the length of the longest increasing subsequence.

Note that the top cards in the resulting piles (shown above in boldface) will
not necessarily be in permutation order and, hence, will not be an increasing
subsequence. For example, consider the sequence 8, 6, 1, 3, 4, 7, 5, 2. The piles
are:

1

6 2 5

8 3 4 7

Clearly, the boldface numbers 1, 2, 4, 5 do not form an increasing subsequence
of the original sequence. However, the number of piles (4) is equal to the length
(4) of the subsequences 1, 3, 4, 5 or 1, 3, 4, 7.

This correspondence between patience sorting and the length of the longest
increasing subsequence yields a very efficient algorithm for computing Ln =
`n(π).

3. The spacings of consecutive zeroes of the Riemann zeta function.

Riemann’s zeta function is defined by adding up inverse powers of the posi-
tive integers:

ζ(s) =

∞∑

n=1

n−s = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · (84)

If we set s = 2, for example, we have that ζ(2) = π2/6, a result discovered by
Leonhard Euler. Euler showed that the zeta function could also be reexpressed
as a product over the prime numbers:

ζ(s) =
∏

p

(1 − p−s)−1 =
1

(1 − 1
2s )(1 − 1

3s )(1 − 1
5s )(1 − 1

7s ) · · · (85)

This is known as the Euler product formula. Thus, the zeta function has prop-
erties that are intimately connected to the distribution of prime numbers. How-
ever, more is true. Riemann showed that the zeta function could be written as
a product over its zeroes in the complex plane:

ζ(s) = f(s)

(
1 − s

ρ1

) (
1 − s

ρ2

) (
1 − s

ρ3

)
· · · , (86)

where ρ1, ρ2, . . . are the complex numbers for which ζ(s) = 0, and f(s) is a
simple “fudge factor.”

The zeta function has “trivial” zeroes at the negative even integers (i.e.,
at s = −2,−4,−6, . . .). Riemann showed that all the nontrivial zeroes can
be found in an infinite “critical” strip lying above and below the unit interval
0 < Re(s) < 1 in the complex plane. Moreover, the zeroes are symmetrically
located: each zero lying above the unit interval has a mirror-image zero lying
below the unit interval. The Riemann Hypothesis says that all the zeroes of the
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zeta function lie on the vertical line through Re(s) = 1
2 , in which case a zeta

zero can be written as ρn = 1
2 ± iγn, for an ordered sequence of real, positive

constants {γn}, where γn ∼ 2πn/(log n) as n → ∞.

Attempts have been made to check the Riemann Hypothesis using numerical
methods. Andrew Odlyzko developed extremely efficient algorithms for comput-
ing zillions of zeroes in the critical strip, and showed that they all satisfy the
Riemann Hypothesis (Odlyzko, 1992). Odlyzko further showed that the spac-
ings between consecutive zeroes of the zeta function behave, statistically, like
the spacings between consecutive eigenvalues of large, random matrices from
the GUE (Odlyzko, 1987). In other words, the zeroes of the zeta function can
be viewed as having a “spectral” interpretation, which agrees with the belief
(by physicists) that the zeroes of the zeta function can be interpreted as energy
levels in some quantum chaos system. In fact, Hilbert and Polya had conjec-
tured that the Riemann Hypothesis is true precisely because the zeroes of the
zeta function correspond to eigenvalues of a positive linear (Hermitian) opera-
tor. For special cases of the zeta function that have been proved, the statistical
properties of the eigenvalue spacings and the spacings of the zeroes of the zeta
function turn out to be identical.

Other applications for which the Tracy–Widom laws hold include the fol-
lowing: the positions at any given intermediate time of N independent 1–D
Brownian motion paths with time in [0, 1] that start and end at the same point
but do not intersect at any intermediate time; the last-passage time of a certain
last-passage percolation model; and the height fluctuations of a certain random
growth model. Some of these problems and other fascinating examples (such as
the distances between parked cars in London, waiting times for buses in Cuer-
navaca, Mexico, and an airline boarding problem) are explained in detail by
Deift (2006).

Each of these quantities behaves statistically like either the eigenvalues or
the spacings between consecutive eigenvalues of a random (n × n)-matrix as
n → ∞. In fact, the Tracy-Widom laws have been found to be of such great
importance in random-matrix theory that they have been said to play a similar
role as that of the Gaussian distribution in classical statistical theory (see, e.g.,
Diaconis, 2003).

Software

Matlab 7.0 software for computing Tracy–Widom distributions and simula-
tion of random matrices can be found at Momar Dieng’s website,
math.arizona.edu/~momar/research.htm

There is also N. Raj Rao’s RMTool, a publicly available Matlab symbolic tool-
box, which is used to compute the limiting spectral density of a large class of
random matrices and can be downloaded from the website
www.mit.edu/~raj/rmtool
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S-Plus software for computing Marc̆enko–Pastur “semi-circle”-type laws, cu-
mulative distribution functions, quantiles, Wishart-matrix simulations, eigen-
values of a white Wishart matrix, Tracy–Widom distributions, quantiles, simu-
lations, and cubic-spline interpolations, can be found at Andrei Bejan’s website,
www.vitrum.md/andrew/MScWrwck/codes.txt
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Laguerre ensembles and Wishart matrices and their important roles in mathe-
matical statistics. The book by Porter (1965) is a collection of all the important
papers published on random matrix theory prior to 1965. Another recent mono-
graph is Guionnet (2008).

An excellent historical account of random-matrix theory can be found in
Forrester, Snaith, and Verbaarschot (2003), which is acually a Preface to an
special issue of the Journal of Physics on random-matrix theory. For a more
technical review of random-matrix theory, see Bai (1999). See also Edelman
and Rao (2005) for an excellent survey of the field.
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