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ON THE DISTRIBUTION OF THE LENGTH OF THE LONGEST
INCREASING SUBSEQUENCE OF RANDOM PERMUTATIONS

JINHO BAIK, PERCY DEIFT, AND KURT JOHANSSON

1. Introduction

Let SN be the group of permutations of 1, 2, . . . , N . If π ∈ SN , we say that
π(i1), . . . , π(ik) is an increasing subsequence in π if i1 < i2 < · · · < ik and π(i1) <
π(i2) < · · · < π(ik). Let lN (π) be the length of the longest increasing subsequence.
For example, if N = 5 and π is the permutation 5 1 3 2 4 (in one-line notation:
thus π(1) = 5, π(2) = 1, . . . ), then the longest increasing subsequences are 1 2 4
and 1 3 4, and lN (π) = 3. Equip SN with uniform distribution,

qn,N = Prob(lN ≤ n) =
fN,n

N !
,

where fN,n = #(permutations π in SN with lN ≤ n). The goal of this paper is to
determine the asymptotics of qn,N as N → ∞. This problem was raised by Ulam
in the early 60’s [Ul], and on the basis of Monte Carlo simulations, he conjectured
that the limit

c ≡ lim
N→∞

1√
N

EN (lN )(1.1)

exists. (Here EN (·) denotes the expectation value with respect to the distribu-
tion function qn,N .) The problem of proving the existence of this limit and the
computation of c has become known as “Ulam’s problem”. An argument of Erdös
and Szekeres [ES] shows that EN (lN ) ≥ 1

2

√
N − 1, so that if the limit exists, then

c ≥ 1
2 . Subsequent numerical work by Baer and Brock [BB] in the late 60’s sug-

gested that value of c is 2. The existence of the limit was rigorously established
by Hammersley [Ha] in 1972. In [LS], Logan and Shepp proved that c ≥ 2 and
simultaneously Vershik and Kerov [VK1] (see also [VK2]) showed that c = 2, thus
settling Ulam’s problem. Alternative proofs of Ulam’s problem are due to Aldous
and Diaconis [AD], Seppäläinen [Se1] and Johansson [Jo1]. Over the years, various
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conjectures have been made concerning the variance V ar(lN ) of lN , and Monte
Carlo simulations of Odlyzko and Rains beginning in 1993 indicated that

lim
N→∞

1
N1/3

V ar(lN ) = c0(1.2)

for some numerical constant c0 ∼ 0.819. Also Odlyzko and Rains computed E(lN )
to higher order and found

lim
N→∞

E(lN )− 2
√

N

N1/6
= c1,(1.3)

where c1 ∼ −1.758. Further historical information on Ulam’s problem, together
with some discussions of the methods used by various authors, can be found in
[AD] and [OR]

Before stating our results, we need to define the Tracy-Widom distribution [TW1]
(see below). Let u(x) be the solution of the Painlevé II (PII) equation,

uxx = 2u3 + xu, and u ∼ −Ai(x) as x →∞,(1.4)

where Ai is the Airy function. The (global) existence and uniqueness of this solution
was first established in [HM]: the asymptotics as x → ±∞ are

u(x) = −Ai(x) + O

(
e−(4/3)x3/2

x1/4

)
as x →∞,

u(x) = −
√
−x

2

(
1 + O

( 1
x2

))
as x → −∞

(1.5)

(see, for example, [HM], [IN], [DZ2]). Recall [AS] that Ai(x) ∼ e−(2/3)x3/2

2
√

πx1/4 as
x →∞. Define the Tracy-Widom distribution

F (t) = exp
(
−
∫ ∞

t

(x − t)u2(x)dx

)
.(1.6)

From (1.5) and (1.6), F ′(t) > 0, F (t) → 1 as t → +∞ and F (t) → 0 as t → −∞, so
that F is indeed a distribution function. Our first result concerns the convergence
of lN in distribution after appropriate centering and scaling.

Theorem 1.1. Let SN be the group of all permutations of N numbers with uniform
distribution and let lN (π) be the length of the longest increasing subsequence of
π ∈ SN . Let χ be a random variable whose distribution function is F . Then, as
N →∞,

χN ≡ lN − 2
√

N

N1/6
→ χ in distribution,

i.e.

lim
N→∞

Prob

(
χN ≡ lN − 2

√
N

N1/6
≤ t

)
= F (t) for all t ∈ R.

In order to show that the moments of χN converge to the corresponding moments
of χ we need estimates for the distribution function FN (t) of χN for large |t|.
From the large deviation formulas for lN (see below), we expect that FN (t) (resp.,
1− FN (t)) should go to zero rapidly as t → −∞ (resp., t → +∞). In fact, we will
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prove that, for M > 0 sufficiently large, there are positive constants c and C(M)
such that

FN (t) ≤ C(M)ect3(1.7)

if −2N1/3 ≤ t ≤ −M , and

1− FN (t) ≤ C(M)e−ct3/5
(1.8)

if M ≤ t ≤ N5/6 − 2N1/3. Together with Theorem 1.1 these estimates yield

Theorem 1.2. For any m = 1, 2, 3, . . . , we have

lim
N→∞

EN (χm
N ) = E(χm),

where E(·) denotes expectation with respect to the distribution function F . In par-
ticular,

lim
N→∞

V ar(lN )
N1/3

=
∫ ∞

−∞
t2dF (t)−

(∫ ∞

−∞
tdF (t)

)2

(1.9)

and

lim
N→∞

EN (lN )− 2
√

N

N1/6
=
∫ ∞

−∞
tdF (t).(1.10)

If one solves the Painlevé II equation (1.4) numerically (see [TW1]), and then
computes the integrals on the RHS of the formulae of (1.9) and (1.10), one ob-
tains the values 0.8132 and −1.7711 which agree with c0 and c1 in (1.2) and (1.3)
respectively, up to two decimal places.

The distribution function F (t) in Theorems 1.1 and 1.2 first arose in the work
of Tracy and Widom on the Gaussian Unitary Ensemble (GUE) of random matrix
theory. In this theory (see, e.g., [Me]), one considers the N ×N hermitian matrix
M = (Mij) with probability density

Z−1
N e−tr(M2)dM = Z−1

N e−tr(M2)

( N∏
i=1

dMii

) N∏
i=1

d(ReMij)d(ImMij),

where ZN is the normalization constant. In [TW1], Tracy and Widom showed that
as the size of the hermitian matrices increases, the distribution of the (properly cen-
tered and scaled) largest eigenvalue of a random GUE matrix converges precisely
to F (t)! In other words, properly centered and scaled, the length of the longest
increasing subsequence for a permutation π ∈ SN behaves statistically for large N
like the largest eigenvalue of a random GUE matrix (see the Appendix for an in-
tuitive argument). In [TW1], the authors also computed the distribution functions
of the second, third, . . . largest eigenvalues of such random matrices, and the ques-
tion arises whether such distribution functions describe the statistics of quantities
identifiable in the random permutation context.

Recall the Robinson-Schensted correspondence (see, e.g., [Sa], and also Section
5.1.4 in [Kn]) which establishes a bijection π 7→ (P (π), Q(π)) from SN to pairs
of Young tableaux with shape(P (π)) = shape(Q(π)). Under this correspondence,
the number of boxes in the first row of P (π) (equivalently Q(π)) is precisely lN (π)
(see [Sa], [Kn]). In other words, the results on lN can be rephrased as results on
the statistics of the number of boxes in the first row of Young tableaux. Monte
Carlo simulations of Odlyzko and Rains [OR] indicate that l̃N , the number of boxes
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in the second row of P (π) (equivalently Q(π)), behaves statistically for large N ,
like the second largest eigenvalue of a random GUE matrix. More precisely, their
simulations indicate that

lim
N→∞

EN (l̃N )− 2
√

N

N1/6
= −3.618

and

lim
N→∞

V ar(l̃N )
N1/3

= 0.545.

These values agree, once again, to two decimal places with the mean and variance
of the suitably centered and scaled second largest eigenvalue of a GUE matrix, as
computed in [TW1]. Presumably, the number of boxes in the third row of P (π)
should behave statistically like the third largest eigenvalue of a GUE matrix as N →
∞, etc. In recent work [BDJ], the authors have shown that this conjecture is indeed
true for the second row. Also, beautiful results of Okounkov [Ok], using arguments
from combinatorial topology, have now provided an elegant basis for understanding
the relationship between the statistics of Young tableaux and the eigenvalues of
random matrices. Over the last year, many other intriguing results have been
obtained on a variety of problems arising in mathematics and mathematical physics,
which are closely related to, or motivated by, the longest increasing subsequence
problem. We refer the reader to [TW2], [Bo], [Jo2], [Jo3] and [BR].

As in [Jo1], we consider the Poissonization φn(λ) of qn,N ,

φn(λ) ≡
∞∑

N=0

e−λλN

N !
qn,N .(1.11)

The function φn(λ) is a distribution function (in n) of a random variable L(λ)
coming from a superadditive process introduced by Hammersley in [Ha], and used
by him to show that the limit (1.1) exists. The random variable L(λ) is defined
as follows. Consider a homogeneous rate one Poisson process in the plane and
let L(λ) denote the maximum number of points in an up-right (increasing) path
through the points starting at (0, 0) and ending at (

√
λ,
√

λ). For more details see
[AD] and [Se2], and for a generalization to the non-homogeneous case see [DeZe1].
Theorems 1.1 and 1.2 hold for the random variable L(λ) as λ → ∞. Referring to
the “de-Poissonization” Lemmas 8.2 and 8.3 below, we see that it is easy to recover
the asymptotics of qn,N as N → ∞ from the knowledge of φn(λ) for λ ∼ N . In
other words, in order to compute the asymptotics of lN , we must investigate the
double scaling limit of φn(λ) when λ → ∞ and 1 ≤ n ≤ N ∼ λ, and this is the
technical thrust of the paper.

To this end we use the following representation for φn(λ),

φn(λ) = e−λDn−1(exp(2
√

λ cos θ)),(1.12)

where Dn−1 denotes the n× n Toeplitz determinant with weight function f(eiθ) =
exp(2

√
λ cos θ) on the unit circle (see, e.g., [Sz1]). The above formula follows from

work of Gessel in [Ge] using well known results about Toeplitz determinants. As
noted in [Jo1], the formula can also be proved using the following representation
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for qn,N , 1 ≤ n ≤ N , discovered by [OPWW],

qn,N =
22NN !
(2N)!

∫
[−π,π]n

( n∑
j=1

cos θj

)2N ∏
1≤j<k≤n

|eiθj − eiθk |2 dnθ

(2π)nn!
.(1.13)

In addition, an earlier result of Diaconis and Shahshahani ([DS]) shows that the
above formula (1.13) is true also in the case n > N when qn,N ≡ 1. Inserting (1.13)
into (1.11), we obtain

φn(λ) = e−λ 1
(2π)nn!

∫
[−π,π]n

exp(2
√

λ

n∑
j=1

cos θj)
∏

1≤j<k≤n

|eiθj − eiθk |2dnθ,(1.14)

which is precisely (1.12) by standard methods in the theory of Toeplitz determinants
(see [Sz1]). An additional proof of (1.12) can be found in [GWW], and also an
alternative derivation of formula (1.13) is given in [Ra]. For the convenience of the
reader we provide (yet another) proof of (1.12) in the Appendix to this paper.

Using the integral representation (1.12), Johansson ([Jo1]) proved the following
bound for φ(λ): for any given ε > 0, there exist C and δ > 0 such that

0 ≤ φn(λ) ≤ Ce−δλ if (1 + ε)n < 2
√

λ,

0 ≤ 1− φn(λ) ≤ C

n
if (1− ε)n > 2

√
λ.

(1.15)

This information and the de-Poissonization Lemma 8.2 are enough to give a new
proof ([Jo1]) that

lim
N→∞

LN/2
√

N = 1.(1.16)

The first estimate in (1.15) is a consequence of the following lower tail large devia-
tion formula for φn(λ),

lim
λ→∞

1
λ

φ[x
√

λ](λ) = −1 + 2x− 3
4
x2 − x2

2
log

2
x
≡ −U(x),(1.17)

if x < 2. For the upper tail Seppäläinen in [Se2] used the interacting particle system
implicitly introduced by Hammersley in [Ha] to show that

lim
λ→∞

1√
λ

log
(
1− φ[x

√
λ](λ)

)
= −2x cosh−1(x/2) + 2

√
x2 − 4 ≡ −I(x)(1.18)

if x > 2. We note that Hammersley’s interacting particle system was also used ear-
lier by Aldous and Diaconis in [AD]. The super-additivity of the process described
above implies that we actually have (see [Se2] and also [Ki])

1− φ[xM ](M2) ≤ e−MI(x)(1.19)

if M is a positive integer and x ≥ 2. This estimate can be used to show (1.8),
but in this paper we will give an independent proof of (1.8). The large deviation
formula (1.18) implies, via a de-Poissonization argument, that for x > 2,

lim
N→∞

1√
N

log Prob
(
lN > x

√
N
)

= −I(x).(1.20)

For the lower tail the large deviation formula for lN is not the same as for L(λ),
the Poissonized case. Deuschel and Zeitouni in [DeZe2] use combinatorial and
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variational ideas from Logan and Shepp [LS] to prove that

lim
N→∞

1
N

log Prob
(
lN < x

√
N
)

= −H(x)(1.21)

if 0 < x < 2, where

H(x) = −1
2

+
x2

8
+ log

x

2
− (1 +

x2

4
)
log
( 2x2

4 + x2

)
.(1.22)

For the lower tail we have no analogue of (1.19). The rate functions U and H are
related via a Legendre transform; see [Se2]. The above results show clearly that
the distribution function for lN is sharply concentrated in the region {(2− ε)

√
N <

lN < (2 + ε)
√

N} for any ε > 0, and they can be used to see heuristically that the
variance for lN should be of order N1/3; see [Ki].

As is well known (see [Sz1]) the Toeplitz determinant Dn−1 in (1.12) is intimately
connected with the polynomials pn(z; λ) = κn(λ)zn + · · · , which are orthonormal
with respect to the weight f(eiθ) dθ

2π = exp(
√

λ(z + z−1)) dz
2πiz on the unit circle,∫ π

−π

pn(eiθ)pm(eiθ)f(eiθ)
dθ

2π
= δn,m for n, m ≥ 0.(1.23)

The leading coefficient κ2
n(λ) can be expressed in terms of Toeplitz determinants,

κ2
n(λ) =

Dn−1(λ)
Dn(λ)

,(1.24)

where Dn(λ) = Dn(exp(2
√

λ cos θ)). But by Szegö’s strong limit theorem ([Sz2])
for Toeplitz determinants, limn→∞Dn(λ) = eλ, and hence

log φn(λ) =
∞∑

k=n

log κ2
k(λ).(1.25)

Therefore, if one can control the large k, λ behavior of κ2
k(λ) for all k ≥ n, one will

control the large n, λ behavior of φn(λ).
The key point in our analysis is that κ2

k(λ) can be expressed in terms of the
following Riemann-Hilbert Problem (RHP): Let Σ be the unit circle oriented coun-
terclockwise. Let Y (z; k + 1, λ) be the 2× 2 matrix-valued function satisfying

Y (z; k + 1, λ) is analytic in C− Σ,

Y+(z; k + 1, λ) = Y−(z; k + 1, λ)

(
1 1

zk+1 e
√

λ(z+z−1)

0 1

)
on Σ,

Y (z; k + 1, λ)z−(k+1)σ3 = I + O(1
z ) as z →∞,

(1.26)

where Y+ and Y− denote the limit from inside and outside of the circle respectively,
and σ3 =

(
1 0
0 −1

)
, so that z−(k+1)σ3 =

(
z−(k+1) 0

0 zk+1

)
. Here I is the 2 × 2 identity

matrix. This RHP has a unique solution (see (4.1) below), and the fact of the
matter is that

κ2
k(λ) = −Y21(0; k + 1, λ),(1.27)

where Y21(0; k, λ) is the (21)-entry of the solution Y at z = 0. In [DZ1] and
[DZ2], Deift and Zhou introduced a steepest descent type method to compute the
asymptotic behavior of RHP’s containing large oscillatory and/or exponentially
growing/decaying factors as in (1.26). This method was further extended in [DVZ1]
and eventually placed in a very general form by Deift, Zhou and Venakides in
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[DVZ2], making possible the analysis of the limiting behavior of a large variety of
asymptotic problems in pure and applied mathematics (see, e.g., [DIZ]). As we will
see, the application of this method to (1.26) makes it possible to control the large
k, λ behavior of κ2

k(λ). The calculations in this paper have many similarities to the
computations in [DKMVZ1], where the authors use the steepest descent method to
obtain Plancherel-Rotach type asymptotics for polynomials orthogonal with respect
to varying weights, e−NV (x)dx on the real line, and hence to prove universality for
a class of random matrix models. The Riemann-Hilbert formulation of the theory
of orthogonal polynomials on the line is due to Fokas, Its and Kitaev ([FIK]): the
RHP (1.26) is an adaptation of the construction in [FIK] to the case of an orthogonal
polynomial with respect to a weight on the unit circle.

This paper is arranged as follows. In Section 2, we discuss some of the basic
theory of RHP’s and also provide some information on the RHP associated with
the PII equation. This information will be used in the construction of an approx-
imate solution, i.e. a parametrix, for the RHP (1.26) in subsequent sections. The
appearance of the PII equation in the limiting distribution F (t) for χN originates in
this construction of the parametrix. A connection of φn(λ) to Toda lattice and the
Painlevé III equation is presented in Section 3. Section 4 is the starting point for
the analysis of the RHP (1.26). In this section, (1.26) is transformed into an equiv-
alent RHP via a so-called g-function. The role of the g-function, first introduced in
[DZ2], and then analyzed in full generality in [DVZ2], is to replace exponentially
growing terms in a RHP by oscillatory or exponentially decreasing terms. It turns
out that in the case of (1.26), as in [DKMVZ1], the g-function can be constructed
in terms of an associated equilibrium measure dµ(s) as follows,

g(z) ≡
∫

Σ

log(z − s)dµ(s).(1.28)

The measure dµ is the unique minimizer of the following variational problem:

EV = inf{IV (µ̃) : µ̃ is a probability measure on the unit circle Σ},(1.29)

where

IV (µ̃) =
∫∫

Σ×Σ

log |s− w|−1dµ̃(s)dµ̃(w) +
∫

Σ

V (s)dµ̃(s)(1.30)

and V (s) = −√λ(s+s−1). The variational problem (1.29) describes the equilibrium
configuration of electrons, say, confined to the unit circle with Coulomb interactions,
and acted on by an external field V . It turns out that the support of the equilibrium
measure depends critically on the quantity

γ =
2
√

λ

k + 1
.(1.31)

We need to distinguish these two cases, γ ≤ 1 and γ > 1. As noted by Gross and
Witten ([GW]), and also by Johansson ([Jo1]), the point 2

√
λ

k+1 = 1 corresponds to a
(third order) phase transition for a statistical system with partition function (1.14).
The first case, when γ = 2

√
λ

k+1 ≤ 1, is discussed in Section 5, and the second case,

when γ = 2
√

λ
k+1 > 1, is discussed in Section 6. The principal results of the above

two sections are summarized in Lemmas 5.1 and 6.3. We obtain full asymptotics
of κ2

n(λ) for n, λ > 0 when n, λ → ∞. In Section 7, by summing up κ2
k(λ) for all

k ≥ n, we obtain the asymptotics of φn(λ) in Lemma 7.1. The relation between
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φn(N) and qn,N (de-Poissonization) is discussed in Section 8. Finally, the proofs
of Theorems 1.1 and 1.2 are given in Section 9.

Notational remarks. The primary variables in this paper are n, N , and λ. The
letters C, c denote general positive constants. Rather than introducing many such
constants C1, C2, . . . , c1, c2, . . . , we always interpret C, c in a general way. For
example, we write |f(x)| ≤ 2C|g(x)|+ec|h(x)| ≤ C(|g(x)|+|h(x)|), etc. We will also
use certain auxiliary positive parameters M, M1, M2, . . . , M7. If a constant depends
on some of these parameters, we indicate this explicitly, for example, C(M2, M4).
In addition to the standard big O notation, we also use a notation OM . Thus
f = O( 1

n1/3 ) means |f | ≤ C
n1/3 , where C is independent of M, M1, . . . . On the other

hand, f = OM ( 1
n1/3 ) means |f | ≤ C(M,M1,... )

n1/3 , where C(M, M1, . . . ) depends on at
least one of the parameters M, M1, . . . .

In the estimates that follow we will often claim that an inequality is true “as
n →∞”. For example, in (7.3) below, we say that

| log φn(λ)| ≤ C exp
(
−c(n + 1)

(
1− 2

√
λ

n + 1
)3/2

)
,

as n → ∞. This mean that there exists a number n0, say, which may depend on
all the other relevant constants in the problem, such that the inequality is true for
n ≥ n0, etc. (For this particular inequality the only other parameter is M5, but it
turns out that the constants C, c can be chosen independent of M5 (see below).)

2. Riemann-Hilbert theory

In this section, we first summarize some basic facts about RHP’s in general, and
then discuss the RHP for the PII equation in some detail. Basic references for
RHP’s are [CG], [GK], and the material on PII is taken from [DZ2].

Let Σ be an oriented curve in the plane (see, for example, Figure 1). By con-
vention, the (+)-side (resp., (−)-side) of an arc in Σ lies to the left (resp., right)
as one traverses the arc in the direction of the orientation. Thus, corresponding to
Figure 1, we have Figure 2. Let Σ0 = Σ−{points of self-intersection}, and let v be
a smooth map from Σ0 → Gl(n, C), for some n. If Σ is unbounded, we require that
v(z) → I as z → ∞ along Σ. The RHP (Σ, v) consists of the following (see, e.g.,
[CG]): establish the existence and uniqueness of an n × n matrix valued function

Σ

Figure 1
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+
_

+
+

+

+

+

+

_
_

_
_

_

_
Σ

Figure 2

Y (z) (the solution of the RHP (Σ, v)) such that
Y (z) is analytic in C− Σ,
Y+(z) = Y−(z)v(z), z ∈ Σ0,

Y (z) → I as z →∞.
(2.1)

Here Y±(z) = limz′→z Y (z′) where z′ ∈ (±)-side of Σ. The precise sense in which
these boundary values are attained, and also the precise sense in which Y (z) → I
as z →∞, are technical matters that should be specified for any given RHP (Σ, v).
In this paper, by a solution Y of a RHP (Σ, v), we always mean that

Y (z) is analytic in C− Σ and continuous up to the boundary

(including the points in Σ− Σ0) in each component.

The jump relation Y+(z) = Y−(z)v(z) is taken in the sense of

continuous boundary values, and Y (z) → I as z →∞ means

Y (z) = I + O
( 1
|z|
)

uniformly as z →∞ in C− Σ.

(2.2)

Given (Σ, v), the existence of Y under appropriate technical assumptions on Σ and
v is in general a subtle and difficult question. However, for the RHP (1.26), and
hence for all RHP’s obtained by deforming (1.26) (see, e.g., (4.9)), we will prove
the existence of Y directly by construction (see Lemma 4.1): uniqueness, as we will
see, is a simple matter.

The solution of a RHP (Σ, v) can be expressed in terms of the solution of an
associated singular integral equation on Σ (see (2.7), (2.8) below) as follows. Let
C± be the Cauchy operators

(C±f)(z) = lim
z′→z±

∫
Σ

f(s)
s− z′

ds

2πi
, z ∈ Σ,(2.3)

where z′ → z± denotes the non-tangential limit from the ±-side of Σ respectively.
A useful reference for Cauchy operators on curves which may have points of self-
intersection is [GK]. Under mild assumptions on Σ, which will always be satisfied
for the curves that arise in this paper, the non-tangential limits in (2.3) will exist
pointwise a.e. on Σ. Furthermore, if f ∈ Lp(Σ, |dz|), 1 < p < ∞, then the bound-
ary values (appropriately interpreted at the points Σ − Σ0 of self-intersection) of∫
Σ

f(s)
s−z

ds
2πi are also taken in the sense of Lp and ‖C±f‖Lp(Σ,|dz|) ≤ cp‖f‖Lp(Σ,|dz|).
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A simple calculation shows that

C+ − C− = 1.(2.4)

Let

v = b−1
− b+ ≡ (I − w−)−1(I + w+)(2.5)

be any factorization of v. We assume b±, and hence w±, are smooth on Σ0, and if
Σ is unbounded, we assume b±(z) → I as z →∞ along Σ. Define the operator

Cw(f) ≡ C+(fw−) + C−(fw+).(2.6)

By the above discussion, if w± ∈ L∞(Σ, |dz|), then Cw is bounded from L2(Σ, |dz|)→
L2(Σ, |dz|). Suppose that the equation

(1− Cw)µ = I on Σ(2.7)

has a solution µ ∈ I + L2(Σ), or more precisely, suppose µ− I ∈ L2(Σ) solves

(1− Cw)(µ− I) = CwI = C+(w−) + C−(w+),(2.8)

which is a well-defined equation in L2(Σ) provided that w± ∈ L∞ ∩ L2(Σ, |dz|).
Then the solution of the RHP (2.1) is given by (see [CG], [BC])

Y (z) = I +
∫

Σ

µ(s)(w+(s) + w−(s))
s− z

ds

2πi
, z /∈ Σ.(2.9)

Indeed for a.e. z ∈ Σ, from (2.7) and (2.4),

Y+(z) = I + C+(µ(s)(w+(s) + w−(s)))

= I + Cw(µ) + (C+ − C−)(µw+)
= µ + µw+

= µ(z)b+(z),

and similarly Y−(z) = µ(z)b−(z), so that Y+(z) = Y−(z)b−1
− (z)b+(z) = Y−(z)v(z)

a.e. on Σ. Under the appropriate regularity assumptions on Σ and v, one then
shows that Y (z) solves the RHP (Σ, v) in the sense of (2.2).

As indicated, the above approach to the RHP goes through for any factorization
v = (I−w−)−1(I +w+). Different factorizations may be used at different points in
the analysis of any given problem (see, e.g., [DZ1]). However, in this paper we will
always take w− = 0, so that v = (I + w+). Thus Cw always denotes the operator
C−
(·(v − I)

)
.

In this paper we will not develop the general theory for the solution of RHP’s,
giving conditions under which (2.7) has a (unique) solution, etc. Rather, for the
convenience of the reader who may not be familiar with Riemann-Hilbert theory,
we will use the above calculations and computations as a guide, and verify all the
steps directly as they arise.

We now consider the RHP for the PII equation ([FN], [JMU]: see also [IN], [FZ],
[DZ2]). We will consider two equivalent versions of the RHP for PII. These two
RHP’s will be used in the later sections for the construction of parametrices for the
solution of (1.26).

Let ΣPII denote the oriented contour consisting of 6 rays in Figure 3. Thus
ΣPII =

⋃6
k=1{ΣPII

k = ei(k−1)π/3R+}, with associated jump matrix vPII : ΣPII →
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0

1  r

0  1

1  0

p  1

1  q

0  1

1  0

q  1

1  p

0  1

1  0

r  1

Figure 3. vPII and ΣPII

M2(C), where the monodromy data p, q and r are complex numbers satisfying the
relation

p + q + r + pqr = 0.(2.10)

For x ∈ R and z ∈ ΣPII − {0}, set

vPII
x (z) = e−iθPIIσ3vPIIeiθPIIσ3

≡ e−iθPIIadσ3vPII ,
(2.11)

where

θPII ≡ 4z3

3
+ xz.(2.12)

The contour ΣPII consists precisely of the set Re(i4z3/3) = 0. This implies, in
particular, that vPII

x (z)− I /∈ L2(ΣPII). For example, as z → +∞ along the real
axis, vPII

x (z)− I is oscillatory (on the other rays, ΣPII
k , k = 1, 2, 4, 5, vPII

x (z)− I
could grow), and so we cannot expect that the RHP (ΣPII , vPII

x ) has a solution
in the sense of (2.2). However, if we rotate ΣPII in the clockwise direction by any
angle θ0, 0 < θ0 < π/3, ΣPII → ΣPII

θ0
≡ e−iθ0ΣPII , then it is easy to see that

vPII
x (z)− I ∈ L2 ∩ L∞(ΣPII

θ0
), and we may expect that the RHP (ΣPII

θ0
, vPII

x ) has
a solution in the sense of (2.2). Moreover, as vPII

x (z) is analytic, it is clear that if
one can solve (ΣPII

θ0
, vPII

x ) for some 0 < θ0 < π/3, then one can solve (ΣPII
θ̃0

, vPII
x )

for any other 0 < θ̃0 < π/3, and the solution of the θ̃0-problem can be obtained
from the θ0-problem by an analytic continuation, and vice versa. So suppose that
for some fixed 0 < θ0 < π/3, and for x ∈ R, mPII

θ0
(z; x) is a (2× 2 matrix) solution

of the RHP (ΣPII
θ0

, vPII
x ),

mPII
θ0

(z) analytic in C− ΣPII
θ0

,(
mPII

θ0

)
+
(z) =

(
mPII

θ0

)
−(z)vPII

x (z), 0 6= z ∈ ΣPII
θ0

,

mPII
θ0

(z) → I as z →∞,

(2.13)
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in the sense of (2.2). Let mPII
1 (x) denote the residue at ∞ of mPII

θ0
(z), given by

mPII
θ0

(z; x) = I +
mPII

1 (x)
z

+ O(
1
z2

)

as z →∞. Then

u(x) ≡ 2imPII
1,12(x) = −2imPII

1,21(x)(2.14)

solves PII (see [FN], [JMU]),

uxx = 2u3 + xu, x ∈ R,

where mPII
1,12(x) (resp., mPII

1,21(x)) denotes the (12)-entry (resp, (21)-entry) of
mPII

1 (x). It is easy to see that mPII
1 (x), and hence u(x) in (2.14), is indepen-

dent of the choice of θ0 ∈ (0, π/3)
A solution of the RHP (ΣPII

θ0
, vPII

x ) for some θ0, hence for all θ0 ∈ (0, π/3), may
not exist for all p, q, r satisfying (2.10) and x ∈ R. A sufficient condition (see [FZ])
for the RHP to have a unique solution (in the sense of (2.2)) for all x ∈ R, is that

|q − p̄| < 2 and r ∈ R.

In this paper, we need the singular case

p = −q = 1 and r = 0.(2.15)

The latter condition r = 0 implies that there is no jump across the rays±ei(2π/3−θ0),
and we may replace ΣPII

θ0
by ΣPII,1

θ0
as in Figure 4 (note that the orientations across

the rays e−iθ0 , ei(2π/3−θ0) have been reversed). As noted in [DZ2], a unique solution
in the sense of (2.2) still exists in this singular case for all x ∈ R: a proof of this
fact is not given in [DZ2], but can be found in [DKMVZ3, nonregular case, Case
II]. In addition, the solution has the property that

mPII,1
θ0

(z; x) and its inverse are uniformly bounded

for (z, x) ∈ (C− ΣPII,1
θ0

)× [−M, M ],
(2.16)

for any fixed M > 0. As mPII,1
θ0

(z; x) solves (2.13) in the sense of (2.2), we see in
particular that (2.16) holds up to the boundary in each sector.

θ0

1  0

1  1

1 -1

0  1

Ω
PII,1

1

Ω
PII,1

3

Ω
PII,1

4

Ω
PII,1

2

1 -1

0  1

1  0

1  1

0

π/3

Figure 4. p = −q = 1, r = 0 case; ΣPII,1
θ0

and vPII,1
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The asymptotics of u(x) = 2imPII,1
1,12 (x) given in (1.5) is computed in [DZ2] via

the above RHP and from the proof in [DZ2], one learns that

mPII,1
1,22 (x) = O

(
e−(4/3)x3/2

x1/4

)
as x →∞,

mPII,1
1,22 (x) ∼ i

8
x2 as x → −∞,

(2.17)

where mPII,1
1,22 denotes the (22)-entry of mPII

1 . Also, using the methods in [DZ2],
for example, one obtains the relation

d

dx
2imPII,1

1,22 (x) = u2(x),(2.18)

and verifies directly that 2imPII,1
1,22 (x) is real-valued.

1  0

1  1

1 -1

0  1

Ω
PII,2

4

Ω
PII,2

2

Ω
PII,2

1

Ω
PII,2

3 0

π/3

θ0

Figure 5. ΣPII,2 and vPII,2

For the first of the two equivalent RHP’s advertised above, we consider Figure 5,
which consists of the real axis (the dotted line), ΣPII,1

θ0
for some fixed, small θ0 >

0 (the dashed lines), and a contour ΣPII,2 consisting of a pair of curved solid
lines. The contour ΣPII,2 is of the general shape indicated in the figure, with
one component in C+ and one component in C−, and we require that ΣPII,2 is
asymptotic to straight lines lying strictly within the region {|argz| < π/3}∪{2π/3 <
argz < 4π/3}. Together with the line {xe−iθ0 : x ∈ R}, these contours divide the
complex plane into 4 open regions, ΩPII,2

k , k = 1, 2, 3, 4, as shown in Figure 5. Let
vPII,2 be the jump matrix on ΣPII,2 which is given by

(
1 0
1 1

)
in C+ and by

(
1 −1
0 1

)
in C−. We define

mPII,2 = mPII,1
θ0

e−i(θPII )adσ3
(

1 0
1 1

)−1 in ΩPII,2
1 ∩ ΩPII,1

2 ,

mPII,2 = mPII,1
θ0

e−i(θPII )adσ3
(

1 0
1 1

)
in ΩPII,2

2 ∩ ΩPII,1
1 ,

mPII,2 = mPII,1
θ0

e−i(θPII )adσ3
(

1 −1
0 1

)−1 in ΩPII,2
3 ∩ ΩPII,1

4 ,

mPII,2 = mPII,1
θ0

e−i(θPII )adσ3
(

1 −1
0 1

)
in ΩPII,2

4 ∩ ΩPII,1
3 ,

mPII,2 = mPII,1
θ0

otherwise,

where the regions ΩPII,1
k , k = 1, 2, 3, 4, are defined in Figure 4. A straightforward

calculation with the jump relations for mPII,1
θ0

shows that mPII,2 solves the new
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RHP 
mPII,2 is analytic in C− ΣPII,2,

mPII,2
+ = mPII,2

− vPII,2
x on ΣPII,2,

mPII,2 → I as z →∞,

(2.19)

where vPII,2
x = e−i(θPII )adσ3vPII,2 and vPII,2 is given in Figure 5. This deformed

RHP is clearly equivalent to the original RHP for mPII,1
θ0

in the sense that a solution
of the one RHP yields a solution of the other RHP, and vice versa. Also we have

(mPII,1
θ0

)1 = mPII,2
1 ,(2.20)

for the residues of mPII,1
θ0

(resp., mPII,2) at ∞. From (2.16), we see that for any
fixed M > 0,

mPII,2(z; x) and its inverse are uniformly bounded

for (z, x) ∈ (C− ΣPII,2)× [−M, M ].
(2.21)

A particular choice of contour ΣPII will be made in Section 5 (see below).
The second of the equivalent RHP’s is restricted to the case x < 0, and we

consider Figure 6, which consists of the real axis (the dotted line), ΣPII,1
θ0

for some
fixed small θ0 > 0 (the dashed lines) and a contour ΣPII,3 =

⋃5
k=1 ΣPII,3

k consisting
of 5 straight lines, one finite and four infinite. The regions ΩPII,3

k , 1 ≤ k ≤ 4, are
the components of C− ΣPII,3.

Figure 6. ΣPII,3

The infinite lines make an angle strictly between 0 and π/3 with the real axis.
Set

gPII(z) =
4
3
(
z2 +

x

2
)3/2(2.22)
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which is defined to be analytic in C− [−
√

−x
2 ,
√

−x
2 ], and behaves like 4

3z3 + xz +
x2

8z + O( 1
z3 ) = θPII(z) + O(1

z ) as z →∞. Therefore for any M > 0,

ei(gP II (z)−θPII(z)) is bounded for (z, x) ∈ (C− [−
√
−x

2
,

√
−x

2
])× [−M, 0]

(2.23)

and

ei(gP II(z)−θPII (z)) → 1 as z →∞ uniformly for −M ≤ x ≤ 0.(2.24)

We define mPII,3 by



mPII,1
θ0

[e−i(θP II)adσ3
(

1 0
1 1

)−1]ei(gP II (z)−θPII(z))σ3 in ΩPII,3
1 ∩ (ΩPII,1

2 ∪ΩPII,1
3 ),

mPII,1
θ0

[e−i(θP II)adσ3
(

1 0
1 1

)
]ei(gP II(z)−θPII (z))σ3 in ΩPII,3

3 ∩ΩPII,1
1 ,

mPII,1
θ0

[e−i(θP II)adσ3
(

1 −1
0 1

)−1]ei(gP II(z)−θPII (z))σ3 in ΩPII,3
2 ∩ΩPII,1

4 ,

mPII,1
θ0

[e−i(θP II)adσ3
(

1 −1
0 1

)
]ei(gP II(z)−θPII (z))σ3 in ΩPII,3

4 ∩ (ΩPII,1
2 ∪ ΩPII,1

3 ),
mPII,1

θ0
otherwise.

Then from the jump relations for mPII,1
θ0

, we see that mPII,3 solves the new RHP
(ΣPII,3, vPII,3

x ) in the sense of (2.2),
mPII,3 is analytic in C− ΣPII,3,

mPII,3
+ = mPII,3

− vPII,3
x on ΣPII,3,

mPII,3 → I as z →∞,

(2.25)

where vPII,3
x is given by

(
1 0

e2igP II

1

)
on ΣPII,3

1 , ΣPII,3
2 ,(

1 −e−2igP II

0 1

)
on ΣPII,3

3 , ΣPII,3
4 ,(

e−2igP II
− −1

1 0

)
on ΣPII,3

5 .

(2.26)

Also we have

mPII
1 = mPII,3

1 − ( ix2

8
)
σ3,(2.27)

for the respective residues of mPII,1
θ0

and mPII,3 at ∞. Finally, from (2.16) and
(2.23), we see that, for any fixed M ∈ R

mPII,3(z; x) and its inverse are uniformly bounded

for (z, x) ∈ (C− ΣPII,3)× [−M, 0].
(2.28)

3. Connection to the Toda lattice and the Painlevé III equation

In this section, we discuss the connection of the RHP (1.26) for κ2
k and the

RHP for the Toda lattice and the Painlevé III equation. In the RH context, the
connection results from the specific form of the weight, e

√
λ(z+z−1). Connections can

also be seen from the Toeplitz determinant/orthogonal polynomial point of view as
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in [PS], [Hi] and [Wi]. The purpose of this short section is purely to establish the
various connections, but we do not use the results in the sequel.

Write q = k + 1 in (1.26). We define

mTL(z; q) =


(

0 −1
1 0

)
Y (z; q)

(
z−qe

√
λz−1

0

0 zqe−
√

λz−1

)(
0 1−1 0

)
, |z| > 1,(

0 −1
1 0

)
Y (z; q)

(
e
√

λz 0

0 e−
√

λz

)
, |z| < 1.

(3.1)

A simple calculation shows that mTL solves the following RHP:
mTL(z) is analytic in C− Σ,

mTL
+ (z) = mTL

− (z)

(
0 −z−qe−

√
λ(z−z−1)

zqe
√

λ(z−z−1) 1

)
,

mTL(z) → I as z →∞.

(3.2)

Once again, the RHP for Y is equivalent to the RHP for mTL in the sense that a
solution of one problem yields a solution of the other problem.

Recall that the RHP related to the Toda lattice problem, for −∞ < m < ∞,
dam

dt
= 2(b2

m − b2
m−1),

dbm

dt
= bm(am+1 − am),

(3.3)

under initial data decaying at infinity is the following (see, e.g., [Ka]). Suppose
that there are no solitons and denote the reflection coefficient by r(z), z ∈ Σ. Then
we find Q(z) such that

Q(z) is analytic in C− Σ,

Q+(z) = Q−(z)

(
1− |r(z)|2 −r̄(z)z2me−t(z−z−1)

r(z)z−2met(z−z−1) 1

)
,

Q(z) → I as z →∞.

(3.4)

When q is even, if we set
√

λ = t and q = −2m in (3.2), then the RHP is identical
with the above RHP with r(z) ≡ 1.

For the connection to the Painlevé III equation, define

mPIII(z) =

{
(−1)qmTL(z), |z| < 1,

mTL(z), |z| > 1.
(3.5)

Note in (3.2),

(−1)q

(
0 −z−qe−

√
λ(z−z−1)

zqe
√

λ(z−z−1) 1

)

= (−1)qe−
√

λ
2 (z−z−1)adσ3z−

q
2 adσ3

(
1 1
−1 0

)−1

,

(3.6)

where z
q
2 is analytic in C− (−∞, 0] and real-valued for real z. If we set

√
λ = −ix,

then this is the same RHP for the particular Painlevé III equation (see [FMZ] for
results and notations)

uxx =
u2

x

u
− 1

x
ux +

1
x

(−4qu2 + 4(1− q)
)

+ 4u3 +
−4
u
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with monodromy data
θ∞ = −θ0 = q,

a0 = b0 = a∞ = b∞ = 0,

E =
(

1 1−1 0

)
.

In the RHP (1.26), we are interested directly in the quantity −Y21(0; k + 1, λ),
or by (3.1), mTL

11 (0; q). On the other hand, for the Toda lattice and the PIII
equation, one is interested in quantities other than mTL

11 (0; q) which are related
to the respective RHP’s. For example, the solution u(x) of the PIII equation
is given by u(x) = −ix(mPIII

1 )12 where mPIII = I + mP III
1
z + O(1

z ), which is
clearly different from (−1)qmPIII

11 (0; q). However, the importance of the connection
of (1.26) to the RHP’s for the Toda lattice and the PIII equation lies precisely in
the fact that (am, bm) (resp., u(x)) solve differential-difference (resp., differential)
equations which in turn imply that the coefficients of the generating function φn(λ),
2
√

λ = −ix, must satisfy a certain class of identities. We plan to investigate these
relations in a later publication.

Finally, note that for PIII, the interesting asymptotic question is to evaluate the
limit x = i

√
λ → ∞, with q fixed. In this paper, as in the Toda lattice, we are

interested in the double limit when λ → ∞ and q is allowed to vary (note that in
[Ka], the singular case r(z) ≡ 1 is not considered). When λ → ∞, 2

√
λ

q ∼ 1, we
are in a region where the solution of the PIII equation degenerates to a solution of
the PII equation, and this explains the appearance of PII in the parametrix for the
solution of Y of the RHP (1.26).

4. Equilibrium measure and the g-function

In this section, the equilibrium measure is explicitly calculated for each γ > 0
(Lemma 4.3) and, using this equilibrium measure, the g-function (4.8) is introduced
in order to convert the RHP (1.26) into a RHP which is normalized to be I at ∞.

Let Σ denote the unit circle oriented counterclockwise, and let f(eiθ) = f(z) be
a non-negative, periodic, smooth function on Σ. Let pq(z) = κqz

q + · · · be the
q-th normalized orthogonal polynomial with respect to the weight f(eiθ) dθ

2π on the
unit circle. Define the polynomial p∗q(z) ≡ zqp̄q(1/z) = zqpq(1/z̄) (see [Sz1]). We
consider the following RHP: Let Y (z) be the 2×2 matrix-valued function satisfying

Y (z) is analytic in C− Σ,

Y+(z) = Y−(z)

(
1 1

zk+1 f(z)
0 1

)
on Σ,

Y (z)z−(k+1)σ3 = I + O(1
z ) as z →∞.

(4.1)

The following lemma is the starting point of our calculations.

Lemma 4.1 (cf. [FIK], [DKMVZ1]). The RHP (4.1) has a unique solution

Y (z) =

(
1

κk+1
pk+1(z) 1

κk+1

∫
Σ

pk+1(s)
s−z

f(s)ds
2πisk+1

−κkp∗k(z) −κk

∫
Σ

p∗k(s)
s−z

f(s)ds
2πisk+1

)
.

Proof. Existence: Using the property of Cauchy operator C+ − C− = I, where
Ch(z) ≡ ∫

Σ
h(s)
s−z ds, it is a straightforward calculation to show that the above ex-

pression for Y satisfies the jump condition. The asymptotics at∞ codes in precisely
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the fact that the pk’s are the normalized orthogonal polynomials for the weight
f(eiθ)dθ.

Uniqueness: Suppose that there is another solution Ỹ of RHP. Noting

det
(

1 1
zk+1 f(z)

0 1

)
= 1,

we have that det Ỹ is entire, and → 1 as z →∞. Therefore by Liouville’s theorem,
det Ỹ ≡ 1. In particular, Ỹ is invertible. Now set Z = Y Ỹ −1. Then it has no jump
on Σ, hence is entire. Also, Z → I as z →∞, and therefore Z ≡ I.

From this lemma, we have

κ2
k = −Y21(0).(4.2)

Therefore the RHP (1.26) has a unique solution and (1.27) is verified.
Again set q = k + 1 and

γ =
2
√

λ

q
.(4.3)

We are interested in the case when q and 2
√

λ are of the same order, or more
precisely, γ → 1. In this section, and also in Sections 5 and 6, we consider the
RHP (1.26) with parameter γ and q,

Y (z; q) analytic in C− Σ,

Y+(z; q) = Y−(z; q)

(
1 1

zq e
qγ
2 (z+z−1)

0 1

)
on Σ,

Y (z; q) =
(
I + O(1

z )
)
zqσ3 as z →∞,

(4.4)

rather than λ and q. With γ fixed, the RHP (4.4) is of the Plancherel-Rotach
type with varying exponential weight e

qγ
2 (z+z−1) on the unit circle (see [Sz1],

[DKMVZ1]). A similar problem on the real line is analyzed in [DKMVZ1] without
double scaling limit (γ is kept fixed). Our goal is to find the large q behavior of
Y21(0; q) for all γ > 0.

Let dµ(s) be a probability measure on the unit circle. Define

g(z) ≡
∫

Σ

log(z − s)dµ(s),(4.5)

where for each θ, the branch is chosen such that log(z − eiθ) is analytic in C −
(−∞,−1] ∪ {eit : −π ≤ t ≤ θ} (see Figure 7) and log(z − eiθ) ∼ log z for real
z →∞. The following lemma is based on related calculations in [DKM].

Lemma 4.2. Suppose dµ(z) = u(θ)dθ is an absolutely continuous probability mea-
sure on the unit circle and u(θ) = u(−θ). Then g(z) has the following properties:

(i) g is analytic in C− Σ ∪ (−∞,−1).
(ii) On (−∞,−1), g+(z)− g−(z) = 2πi.
(iii) g(z) = log z + O(1

z ) as z →∞.

(iv) eqg(z) is analytic in C− Σ.
(v) eqg(z) = zq(1 + O(1

z )) as z →∞.
(vi) g(0) = πi.
(vii) g+(z) + g−(z) = 2

∫ π

−π log |z − s|dµ(s) + i(φ + π) on z ∈ Σ where φ = arg(z).
(viii) g+(z)− g−(z) = 2πi

∫ π

φ dµ(s) on z ∈ Σ.
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e i θ

-1

0

θ 1

Figure 7. Branch cut of log(z − eiθ)

Proof. (i)–(v) are trivial. For (vi),

g(0) =
∫ π

−π

log (0 − eiθ)u(θ)dθ =
∫ π

−π

i(θ + π)u(θ)dθ = πi

using the evenness of u(θ).
For (vii), fix z = eiφ ∈ Σ. Then arg(z − eiθ) is analytic if −π < θ < φ and

g+(z)=
∫ π

−π

log |z − eiθ|dµ(z) + i

∫ φ

−π

arg(z − eiθ)dµ(z) + i

∫ π

φ

arg+(z − eiθ)dµ(z),

g−(z)=
∫ π

−π

log |z − eiθ|dµ(z) + i

∫ φ

−π

arg(z − eiθ)dµ(z) + i

∫ π

φ

arg−(z − eiθ)dµ(z).

Note that for φ < θ < π,

arg+(eiφ − eiθ)− arg−(eiφ − eiθ) = 2π.

This yields

g+(z) + g−(z)

= 2
∫ π

−π

log |z − eiθ|dµ(z) + 2i

∫ π

−π

arg+(eiφ − eiθ)dµ(z)− i

∫ π

φ

2πdµ(z).

Set

F (φ) = 2
∫ φ

−π

arg(eiφ − eiθ)dµ(z) + 2
∫ π

φ

arg+(eiφ − eiθ)dµ(z)− 2π

∫ π

φ

dµ(z)− φ.

If we show F (φ) ≡ π, then (vii) is proved. Note that (a) arg(eiφ − eiφ−) = φ + π
2 ,

(b) arg+(eiφ− eiφ+) = φ + 3π
2 and (c) d

dφarg(eiφ− eiθ) ≡ 1
2 . This gives us F ′(φ) =

2arg(eiφ−eiφ−)u(φ)−2arg+(eiφ−eiφ+)u(φ)+2πu(φ) ≡ 0. But F (π) = π. Therefore
F (φ) ≡ π.

For (viii),

g+(z)− g−(z) = i

∫ π

φ

[arg+(eiφ − eiθ)− arg−(eiφ − eiθ)]dµ(z)

= i

∫ π

φ

2πdµ(z).
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Let M be the set of probability measures on Σ. The equilibrium measure dµV (z)
for potential V (z) = − γ

2 (z + z−1) on the unit circle is defined by the following
minimization problem:

inf
µ∈M

∫∫
Σ×Σ

log |z − w|−1dµ(z)dµ(w) +
∫

Σ

V (z)dµ(z).(4.6)

The infimum is achieved uniquely (see, e.g., [ST]) at the equilibrium measure. Let
J denote the support of dµV . The equilibrium measure and its support are uniquely
determined by the following Euler-Lagrange variational conditions:

there exists a real constant l such that

2
∫

Σ

log |z − s|dµV (s)− V (z) + l = 0 for z ∈ J̄ ,

2
∫

Σ

log |z − s|dµV (s)− V (z) + l ≤ 0 for z ∈ Σ− J̄ .

(4.7)

In Lemma 4.3 below, we find dµV , its support and l explicitly from this variational
condition with the aid of Lemma 4.2. Let

g(z) = gV (z) ≡
∫

Σ

log(z − s)dµV (s),(4.8)

where dµV is the equilibrium measure. Following [DKMVZ1], we define

m(1)(z) ≡ e
ql
2 σ3Y (z)e−qg(z)σ3e−

ql
2 σ3 .

Then m(1) solves the following new RHP,
m(1)(z) is analytic in C− Σ,

m
(1)
+ (z) = m

(1)
− (z)v(1) on Σ,

m(1)(z) = I + O(1
z ) as z →∞,

(4.9)

where v(1) =
(

eq(g−−g+) 1
zq eq(g++g−−V +l)

0 eq(g+−g−)

)
, and

κ2
q−1 = −Y21(0; q) = −m

(1)
21 (0)eqleqg(0) = −(−1)qm

(1)
21 (0)eql,(4.10)

from Lemma 4.2 (vi).
Once again we note that this RHP for m(1) is equivalent to the RHP for Y in

the sense that a solution of one RHP yields a solution of the other RHP, and vice
versa. Using Lemma 4.2, the jump matrix v(1) is given by

inside the support of dµV ,(
e−2qπi

∫ π
φ

dµV (θ) (−1)q

0 e2qπi
∫

π
φ

dµV (θ)

)
,

outside the support of dµV ,(
e−2qπi

∫
π
φ

dµV (θ) (−1)qeq
[
2
∫

π
−π

log |z−eiθ|dµV (θ)−V (z)+l
]

0 e2qπi
∫ π
φ

dµV (θ)

)
.

(4.11)

As indicated in the Introduction, the purpose of the g-function is to turn exponen-
tially growing terms in the jump matrix for the RHP into oscillatory or exponen-
tially decaying terms: this can be seen explicitly in (4.11), using (4.7).
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We have explicit formulae for the equilibrium measure and l. For 0 < γ ≤ 1, the
equilibrium measure has the whole circle as its support but for γ > 1, a gap opens
up. See also [GW] and [Jo1].

Notation. χB(θ) denotes the indicator function of the set B ⊂ Σ.

Lemma 4.3. For the weight V (z) = −γ
2 (z + z−1), the equilibrium measure and l

are given as follows:
(i) If 0 ≤ γ ≤ 1, then

dµV (θ) =
1
2π

(1 + γ cos θ)dθ(4.12)

and l = 0.
(ii) If γ > 1, then

dµV (θ) =
γ

π
cos(

θ

2
)

√
1
γ
− sin2(

θ

2
)χ[−θc,θc](θ)dθ(4.13)

and

l = −γ + log γ + 1,(4.14)

where sin2 θc

2 = 1
γ , 0 < θc < π. In this case, the inequality in the variational

condition (4.7) is strict.

Proof. (i) First, it is easy to check that dµV (θ) defined above in (4.12) is a positive
probability measure. We set

g(z) =
∫ π

−π

log(z − eiθ)
1
2π

(1 + γ cos θ)dθ.

Then

g′(z) =
1

2πi

∫
Σ

1
z − s

(1 +
γ

2
(s + s−1))

ds

s
.

Using a residue calculation with g(z) = log z + O(1
z ) as z → ∞ and g(0) =

1
2π

∫ π

−π
log ei(θ+π)(1 + γ cos θ)dθ = πi, we have

g(z) =

{
log z − γ

2z , |z| > 1, z /∈ (−∞,−1),
−γ

2 z + πi, |z| < 1.
(4.15)

Therefore we have

g+(z) + g−(z) = log z − γ

2
(z + z−1) + πi.

From Lemma 4.2 (vii), we have

2
∫ π

−π

log |z − eiθ| 1
2π

(1 + γ cos θ)dθ +
γ

2
(z + z−1) = 0

for any z = eiφ with l = 0 as log z = iφ.
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(ii) It is straightforward to check that the above measure (4.13) is a positive
probability measure. For g(z) defined as before, we have

g′(z) =
∫ θc

−θc

1
z − eiθ

γ

π
cos(

θ

2
)

√
1
γ
− sin2 θ

2
dθ

=
γ

4πi

∫ θc

−θc

1
z − s

s + 1
s2

√
(s− ξ)(s− ξ̄)ds,

where ξ = eiθc , and the branch is chosen to be analytic in C− {eiθ : θc ≤ |θ| ≤ π}
and

√
(s− ξ)(s− ξ̄) > 0 for real s >> 0. From a residue calculation, we obtain

g′(z) =
1
2z
− γ

4
(1− z−2) +

γ

4
z + 1
z2

√
(z − ξ)(z − ξ̄).

Integrating, we have for |z| > 1, z /∈ (−∞,−1),

g(z) =
1
2

log z − γ

4
(z + z−1) +

γ

2
+

γi

4

∫ z

1+0

s + 1
s

√
(s− ξ)(s− ξ̄)

ds

si
+ g−(1)

and for |z| < 1, z /∈ (−1, 0],

g(z) =
1
2

log z − γ

4
(z + z−1) +

γ

2
+

γi

4

∫ z

1−0

s + 1
s

√
(s− ξ)(s− ξ̄)

ds

si
+ g+(1),

where g+, g− denote the limit from inside and outside each and 1+0, 1−0 denote
the outside and inside limits.

(a) For |φ| ≤ θc,

g+(z) + g−(z) = log z − γ

2
(z + z−1) + γ + g+(1) + g−(1).

From Lemma 4.2 (vii), we obtain

g+(1) + g−(1) = 2
∫ θc

−θc

log |1− eiθ|γ
π

cos
θ

2

√
1
γ
− sin2 θ

2
dθ + i(0 + π)

=
4γ

π

∫ θc

0

log(2| sin θ

2
|) cos

θ

2

√
1
γ
− sin2 θ

2
dθ + πi

= 2 log 2− log γ +
8
π

∫ π
2

0

log(sin θ) cos2 θdθ + πi

= 2 log 2− log γ − 1 +
4
π

∫ π
2

0

log(sin θ)dθ + πi,

after a simple change of variables and integration by parts. But we have∫ π
2

0

log(sin θ)dθ = −π

2
log 2
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from

2
∫ π

2

0

log(sin θ)dθ =
∫ π

2

0

log(sin θ)dθ +
∫ π

2

0

log(cos θ)dθ =
∫ π

2

0

log(
1
2

sin 2θ)dθ

= −π

2
log 2 +

∫ π
4

0

log(sin 2θ)dθ +
∫ π

2

π
4

log(sin 2θ)dθ

= −π

2
log 2 +

∫ π
2

0

log(sin θ)dθ.

Therefore

g+(z) + g−(z) = log z − γ

2
(z + z−1) + γ − log γ − 1 + πi.

From Lemma 4.2 (vii), we obtain the desired result for |φ| ≤ θc, z = eiφ,

2
∫ π

−π

log |z − eiθ|dµV (θ) +
γ

2
(z + z−1)− γ + log γ + 1 = 0.

(b) for θc < φ < π (the −π < φ < −θc case is similar),

g+(z) + g−(z) = log z − γ

2
(z + z−1) + g+(1) + g−(1)

+
γ

2

∫ φ

θc

s + 1
s2

√
(s− ξ)(s− ξ̄)ds.

But

γ

2

∫ φ

θc

s + 1
s2

√
(s− ξ)(s− ξ̄)ds = −γ

2

∫ φ

θc

cos
θ

2

√
sin2 θ

2
− 1

γ
dθ < 0.

Therefore, using Lemma 4.2 (vii) and calculations in (a), we obtain for |φ| > θc,

2
∫ π

−π

log |z − eiθ|dµV (θ) +
γ

2
(z + z−1)− γ + log γ + 1 < 0.

In the following sections, we distinguish the two cases γ ≤ 1 and γ > 1 due to
the difference of the supports of their equilibrium measures.

5. 0 ≤ γ ≤ 1

From (4.15), we have the explicit formula for the g-function:

g(z) =

{
log z − γ

2z , |z| > 1, z /∈ (−∞,−1),
−γ

2 z + πi, |z| < 1.

With this g, l = 0 from Lemma 4.3 (i), and our RHP (4.9), or equivalently (4.11),
becomes

m(1) analytic in C− Σ,

m
(1)
+ = m

(1)
−

(
(−1)qzqe

qγ
2 (z−z−1) (−1)q

0 (−1)qz−qe
−qγ
2 (z−z−1)

)
on Σ,

m(1) = I + O(1
z ) as z →∞

(5.1)

and κ2
q−1 = −(−1)qm

(1)
21 (0) from (4.10).
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We define m(2) in terms of m(1) as follows:
for even q,{

m(2) ≡ m(1), |z| > 1,

m(2) ≡ m(1)
(

0 −1
1 0

)
, |z| < 1.

for odd q,{
m(2) ≡ ( 1 0

0 −1

)
m(1)

(
1 0
0 −1

)
, |z| > 1,

m(2) ≡ ( 1 0
0 −1

)
m(1)

(
0 −1
−1 0

)
, |z| < 1.

(5.2)

Then we have a new equivalent RHP{
m

(2)
+ = m

(2)
− v(2) on Σ,

m(2) = I + O(1
z ) as z →∞,

(5.3)

where v(2) =

(
1 −(−1)qzqe

qγ
2 (z−z−1)

(−1)qz−qe
−qγ
2 (z−z−1) 0

)
and κ2

q−1 = m
(2)
22 (0).

Introduce Σ(3) = Σ(3)(γ) = Σ(3)
in ∪ Σ(3)

out (see Figure 8) as follows. For fixed
π/2 < |θ| ≤ π,

F (ρ) ≡ F (ρ, θ) = Re
(γ
2
(z − z−1) + log z

)
=

γ

2
(ρ− ρ−1) cos θ + log ρ,(5.4)

where z = ρeiθ, 0 < ρ ≤ 1, has the minimum at

ρ = ρθ ≡ 1−
√

1− γ2 cos2 θ

−γ cos θ
(5.5)

and F (ρθ) < 0. (Note that ρθ < 0 for |θ| < π/2.) For 1
2 ≤ γ ≤ 1, we take

Σ(3)
in = {ρθe

iθ : 3π/4 ≤ |θ| ≤ π} ∪ {ρ3π/4e
iθ : |θ| ≤ 3π/4},

Σ(3)
out = {ρ−1

θ eiθ : 3π/4 ≤ |θ| ≤ π} ∪ {ρ−1
3π/4e

iθ : |θ| ≤ 3π/4}.
(5.6)

Orient Σ(3) as in Figure 8. And finally, for 0 ≤ γ ≤ 1
2 , set Σ(3)(γ) = Σ(3)(1

2 ).

-1
Ω

Ω

Ω
Ω

1

2

3

4

Σ
Σ

Σ

in

out

(3)

(3)

(3)

(3)

(3)

(3)0

Figure 8. Σ(3) and Ω(3)
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Of course, Σ(3) varies with γ ∈ [0, 1]. However, using estimates from [GK], it
is not difficult to show that the Cauchy operators C± on L2(Σ(3)) are uniformly
bounded,

‖C±‖L2(Σ(3))→L2(Σ(3)) ≤ C < ∞(5.7)

for all 0 ≤ γ ≤ 1. Observe also that in the limit γ → 1, Σ(3) takes the form of the
cross

y = ±|x + 1| for z = x + iy near −1.(5.8)

Apart from the neighborhood of z = −1, there is considerable freedom in the
choice of Σ(3). For example, 3π/4 could be replaced by any angle between π/2 and
π. Also the form of the contour for |θ| < 3π/4 is not critical, as long as it has the
general shape drawn in Figure 8: all that we really need is that the jump matrix
v(3) below has the property sup{z∈Σ(3):|arg(z)|<3π/4} |v(3) − I| → 0 exponentially as
q →∞.

Using the factorization

v(2) =
(

1 0
(−1)qz−qe

−qγ
2 (z−z−1) 1

)(
1 −(−1)qzqe

qγ
2 (z−z−1)

0 1

)
≡ (b(2)

− )−1b
(2)
+ ,

we define 
m(3) = m(2)(b(2)

+ )−1 in Ω(3)
2 ,

m(3) = m(2)(b(2)
− )−1 in Ω(3)

3 ,

m(3) = m(2) in Ω(3)
1 , Ω(3)

4 .

Then m(3) solves the RHP (Σ(3), v(3)), where
v(3) =

(
1 −(−1)qzqe

qγ
2 (z−z−1)

0 1

)
on Σ(3)

in ,

v(3) =

(
1 0

(−1)qz−qe
−qγ
2 (z−z−1) 1

)
on Σ(3)

out,

(5.9)

and

κ2
q−1 = m

(3)
22 (0).(5.10)

As q →∞, v(3)(z) → I. Set Σ∞ = Σ(3). The RHP{
m∞

+ = m∞
− I on Σ∞,

m∞ = I + O(1
z ) as z →∞(5.11)

has, of course, the unique solution m∞(z) ≡ I.
Let 0 ≤ γ ≤ 1− δ1 for some 0 < δ1 < 1. From the choice of Σ(3),

‖v(3) − I‖L∞(Σ(3)) = sup
3π/4≤θ≤5π/4

|eF (ρθ,θ)| ≤ sup
3π/4≤θ≤5π/4

|eF (ρπ ,θ)|

≤ eF (ρπ,π) = eq(
√

1−γ2+log 1−
√

1−γ2
γ ).

(5.12)

But, for 0 < γ ≤ 1, a straightforward estimate shows that√
1− γ2 + log(1−

√
1− γ2)− log γ ≤ −2

√
2

3
(1− γ)3/2(5.13)
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so that

‖w(3)‖∞ = ‖v(3) − I‖∞ ≤ e−
2
√

2
3 δ

3/2
1 q → 0 as q →∞.(5.14)

Since ‖Cw(3)‖L2→L2 ≤ C‖w(3)‖∞, for some constant C independent of γ (see (5.7)),
(I − Cw(3))−1 is invertible for large q and the solution for the RHP (Σ(3), v(3)) is
given by (see (2.9))

m(3)(z) = I +
∫

Σ(3)

((I − Cw(3))−1I)(s)(v(3)(s)− I)
s− z

ds

2πi
, z /∈ Σ(3),(5.15)

and (see (5.10))

κ2
q−1 = m

(3)
22 (0) = 1 +

(∫
Σ(3)

((I − Cw(3))−1I)(s)(v(3)(s)− I)
s

ds

2πi

)
22

.(5.16)

Now from the fact that the length of Σ(3) is uniformly bounded and dist(0, Σ) ≥
c > 0 for all γ ∈ [0, 1], we obtain,

|κ2
q−1 − 1| ≤ C‖v(3) − I‖∞ ≤ Ce−

2
√

2
3 δ

3/2
1 q.(5.17)

The above calculation also applies to the case when γ → 1 slowly. Indeed,
suppose 1

2 ≤ γ ≤ 1 − M1
21/3q2/3 , where M1 > 0 is a fixed, sufficiently large number.

(The lower bound 1
2 is chosen for convenience. Any fixed number between 0 and 1

would work.) From (5.13), (5.14), for some constant C which is independent of γ,

‖Cw(3)‖L2→L2 ≤ Ce−
2
√

2
3 q(1−γ)3/2 ≤ Ce−

2
√

2
3 M

3/2
1 ≤ 1

2
< 1,(5.18)

if M1 is sufficiently large. For convenience, we only consider M1 ≥ 1. From (5.15),

m(3) = I +
1

2πi

∫
Σ(3)

[(I − Cw(3))−1I](s)w(3)(s)
s− z

ds

= I +
1

2πi

∫
Σ(3)

w(3)(s) + [(I − Cw(3))−1Cw(3)I](s)w(3)(s)
s− z

ds

and, as diag(w(3)) = 0,

κ2
q−1 = m

(3)
22 (0) = 1 +

( 1
2πi

∫
Σ(3)

[(I − Cw(3))−1Cw(3)I](s)w(3)(s)
ds

s

)
22

.(5.19)

Hence, we have

|κ2
q−1 − 1| ≤ ‖(I − Cw(3))−1Cw(3)I‖L2‖w(3)(s)

2πis
‖L2

≤ ‖(I − Cw(3))−1‖L2→L2‖Cw(3)I‖L2‖w(3)(s)
2πis

‖L2

≤ C‖w(3)‖2L2

≤ C‖w(3)‖L∞‖w(3)‖L1

≤ Ce−
2
√

2
3 q(1−γ)3/2‖w(3)‖L1 ,

(5.20)

where the (final) constant C is independent of γ, q and M1 (sufficiently large),
provided that 0 ≤ γ ≤ 1− M1

21/3q2/3 .

Since the length of Σ(3) is bounded, we have ‖w(3)‖L1 ≤ Ce−
2
√

2
3 q(1−γ)3/2

, which
is the same estimation (5.17) as in the case γ < 1− δ1. But for future calculations
(see (7.2) below), we need a sharper result. We estimate ‖w(3)‖L1 as follows: Focus
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on Σ(3)
in . For Σ(3)

out, similar computations apply. Only the 12-component of w(3) is
non-zero. Set θ̃ = 1

q1/3 log q.∫
Σ

(3)
in

|zqe
qγ
2 (z−z−1)||dz| = (1) + (2),

where (1) is an integration over |θ| ≤ π − θ̃ and (2) covers the remainder. Note
from (5.8) that |dz| ≤ Cdθ. Substituting ρθ (5.5) into F (ρ, θ) (5.4), we obtain on
Σ(3)

in ,

|zqe
qγ
2 (z−z−1)| ≤ eq

(√
1−γ2 cos2 θ+log(1−

√
1−γ2 cos2 θ)−log(−γ cos θ)

)
.(5.21)

Setting γ → −γ cos θ in (5.13), we obtain for z ∈ Σ(3)
in ,

|zqe
qγ
2 (z−z−1)| ≤ e−

2
√

2q
3 (1+γ cos θ)3/2 ≤ e−Cq(π−|θ|)3.(5.22)

Hence, adjusting the constants C if necessary, we have

(1) ≤ Ce−Cqθ̃3 ≤ C

q1/3

and

(2) ≤ C

∫ θ̃

0

e−Cqθ3
dθ ≤ C

∫ log q

0

e−Ct3 dt

q1/3
≤ C

q1/3
.

Therefore,

‖w(3)‖L1 ≤ C

q1/3
(5.23)

and we obtain

|κ2
q−1 − 1| ≤ C

q1/3
e−

2
√

2
3 q(1−γ)3/2

.(5.24)

Let M2 > 0 be a fixed number and consider 1 − M2
21/3q2/3 ≤ γ ≤ 1. For this

case, as q → ∞, γ → 1 and ρθ=π → 1. We need to devote special attention to the
neighborhood of z = −1, where we will introduce a parametrix for the RHP, which
is related to the special solution of the Painlevé II (PII) equation (1.4) given in
Section 2. For a discussion of parametrices in RHP’s, see, e.g., [DZ2], [DKMVZ1].
Set γ = 1 − t

21/3q2/3 . The region above corresponds to 0 ≤ t ≤ M2. Let O be a
small neighborhood of size ε around z = −1, where ε > 0 is a fixed number which
is small enough so that first,

the map u defined below is a bijection from O,(5.25)

and second,

the inequality (5.32) below is satisfied.(5.26)

The goal is to solve the RHP for m(3) explicitly in this small region.
Let u = 1

2 (z − z−1) in O. As noted above, we choose and fix ε > 0 sufficiently
small (in fact, any number 0 < ε < 1 would do) so that z → u(z) is a bijection from
O onto some open neighborhood of 0 in the u-plane: under the bijection, Σ ∩ O
becomes a part of the imaginary axis. Set

λ(z) =
q1/3u(z)

i24/3
=

q1/3

i24/3

1
2
(z − z−1).
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Figure 9. The map z → λ(z)

Note that with ε fixed, there are constants c1, c2 > 0 such that

c1q
1/3 ≤ |λ(z)| ≤ c2q

1/3,(5.27)

for all z ∈ ∂O. Under the map z → λ(z) (see Figure 9), Σ ∩ O now becomes part
of the real axis and

λ(Σ(3) ∩O) = {x + iy : y2 =
q2/3

28/3 (1 − γ2) + x2

1 + 28/3γ2x2

q2/3

, |x| ≤ cq1/3},(5.28)

where c is a fixed small number. As q2/3

28/3 (1 − γ2) = t
4

(
1 − t

24/3q2/3

)
, 0 ≤ t ≤ M2,

we see that the contour λ(Σ(3) ∩O) makes an angle ≤ π/4 and uniformly bounded
away from zero as q →∞, hence has the general shape of the contour in Figure 5,
Section 2, within the ball λ(O). We define

ΣPII,2 ∩ λ(O) ≡ λ(Σ(3) ∩ O)(5.29)

and extend ΣPII,2 smoothly outside λ(O) in such a way that it is asymptotic to
straight lines making angles between 0 and π/3 with the real axis. It is clear from
the estimation in Section 2, and the preceding calculations, that for such a contour
ΣPII,2, the bound (2.21) for the solution mPII,2(z, t) of (ΣPII,2, vPII,2

t )

is uniform for γ, q satisfying the relation 1− M2

21/3q2/3
≤ γ ≤ 1.(5.30)

Introduce the parametrix around z = −1 as follows. Define{
mp(z) = mPII,2(λ(z), t) in O − Σ(3),

mp(z) = I in Ōc − Σ(3).

As q →∞, |λ(z)| → ∞ for z ∈ ∂O, and we have for vp(z) ≡ vPII,2
t (λ(z)),

mp(z) is analytic in C− (Σ(3) ∪ ∂O),
mp+(z) = mp−(z)vp(z) on O ∩ Σ(3),

mp+(z) = mp−(z)I on Oc ∩ Σ(3),

mp+(z) = I + mPII,2
1 (t)
λ(z) + O( 1

λ(z)2 ) on ∂O as q →∞.

(5.31)

The key fact is that vp is an approximation to v(3) with error of order 1
q2/3 .

We compare, for example, the 12-components of v(3) and vp on Σ(3). We focus on
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O ∩ Σ(3)
in . Using the u variable, the 12-entries of v(3) and vp are

− exp(q[γu + log(
√

1 + u2 − u)])

and

− exp(q[γu− u +
1
6
u3])

respectively. By (5.21) and (5.22), we have for z ∈ O ∩Σ(3)
in ,

|eq[γu+log(
√

1+u2−u)]| = |zqe
qγ
2 (z−z−1)| ≤ e−

2
√

2q
3 (1+γ cos θ)3/2

.

From the Taylor expansion of the odd function log(
√

1 + u2 − u),

log(
√

1 + u2 − u) = −u +
1
6
u3 + u5r(u),

where r(0) = − 3
40 and r(u) is bounded for small u, say |u| ≤ 1

2 . Set ĉ =
sup|u|≤ 1

2
|r(u)|. Note that for z = ρθe

iθ ∈ O ∩ Σ(3)
in (see (5.5)), as q → ∞, we

have |u| ≤ c̃(1 + γ cos θ)1/2 ≤ c̃(c′ε)1/2. Therefore, if we have chosen ε > 0 small
enough so that

−2
√

2
3

+ ĉ(c̃)5c′ε ≤ −1
2
,(5.32)

we obtain, as q →∞,

|eq[γu+log(
√

1+u2−u)] − eq[γu−u+ 1
6 u3]|

= |eq[γu+log(
√

1+u2−u)]||1− e−qu5r(u)|
≤ e−

2
√

2q
3 (1+γ cos θ)3/2 × q|u|5‖r‖L∞({|u|≤ 1

2})e
qĉ(c̃)5(1+γ cos θ)5/2

≤ Cq(1 + γ cos θ)5/2eq(− 2
√

2
3 +ĉ(c̃)5c′ε)(1+γ cos θ)3/2

≤ Cq(1 + γ cos θ)5/2e−
q
2 (1+γ cos θ)3/2

≤ C

q2/3
,

(5.33)

where we have used the basic inequality |1− ez| ≤ |z|e|z| and the fact that

‖x5/3e−x3/2‖L∞(0,∞)
≤ C.

Since

v(3)v−1
p =

(
1 −eq[γu+log(

√
1+u2−u)] + eq[γu−u+ 1

6 u3]

0 1

)
on O ∩ Σ(3)

in ,

we have

‖v(3)v−1
p − I‖

L∞(O∩Σ
(3)
in )

= O(
1

q2/3
).

For O∩Σ(3)
out, we have a similar estimation. On the other hand, for Oc, the error is

exponentially small; ‖v(3)v−1
p − I‖L∞(Oc∩Σ(3)) = ‖v(3) − I‖L∞(Oc∩Σ(3)) = O(e−cq).
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Now define R(z) = m(3)m−1
p . The ratio is analytic in C − (Σ(3) ∪ ∂O) and the

above calculations show that the jump matrix vR = mp−v(3)v−1
p m−1

p− satisfies
‖vR − I‖∞ ≤ C(M2)

q2/3 on O ∩Σ(3),

‖vR − I‖∞ ≤ Ce−cq on Oc ∩ Σ(3),

vR = v−1
p = m−1

p+ = I − mP II,2
1 (t)
λ(z) + OM2(

1
λ(z)2 ) on ∂O, as q →∞.

(5.34)

In (5.34), we have used the fact that mPII,2(z, t), and hence mp, is invertible and
bounded for (z, t) ∈ C× [0, M2] (see (5.30)).

From (5.34) and (5.27), we see that ‖vR−I‖∞ = ‖wR‖∞ ≤ C(M2)
q1/3 . In particular,

(I − CwR) is invertible for large q and by (2.9), R is given by

R(z) = I +
1

2πi

∫
Σ(3)∪∂O

µ(s)(vR − I)
s− z

ds,

where µ solves (I − CwR)µ = I. As ‖vR − I‖∞ ≤ C(M2)
q1/3 , we have ‖µ − I‖L2 =

OM2(
1

q1/3 ), and also

R22(0) = 1 +
1

2πi

∫
Σ(3)∪∂O

(vR − 1)22(s)
ds

s
+ OM2(

1
q2/3

).

Thus, using ‖vR − I‖∞ ≤ C(M2)
q2/3 in (5.34) for the second equality, and mPII,2

1 =

mPII,1
1 (see (2.20)) for the last equality, we obtain

κ2
q−1 = R22(0)

= 1 +
1

2πi

∫
∂O

(vR − 1)22(z)
dz

z
+ OM2(

1
q2/3

)

= 1− 1
2πi

∫
∂O

mPII,2
1,22 (t)
λ(z)

dz

z
+ OM2(

1
q2/3

)

= 1− mPII,2
1,22 (t)
2πi

∫
u(∂O)

1

−i q1/3

24/3 u

du

(−√u2 + 1)
+ OM2(

1
q2/3

)

= 1 +
i24/3

q1/3
mPII,2

1,22 (t) + OM2(
1

q2/3
)

= 1 +
i24/3

q1/3
mPII,1

1,22 (t) + OM2(
1

q2/3
).

(5.35)

Note that error in (5.35) is uniform for 0 ≤ t ≤ M2.
We summarize as follows.

Lemma 5.1. Let M1 > 0 be a fixed number which is sufficiently large so that (5.18)
is satisfied. Also let M2 > 0 and 0 < δ1 < 1 be fixed numbers. As q →∞, we have
the following results.

(i) If 0 ≤ γ ≤ 1− δ1, then, for some constants C, c which may depend on δ1,

|κ2
q−1 − 1| ≤ Ce−cq.

(ii) If 1
2 ≤ γ ≤ 1 − M1

21/3q2/3 , then, for some constant C which is independent of
M1 satisfying (5.18),

|κ2
q−1 − 1| ≤ C

q1/3
e−

2
√

2
3 q(1−γ)3/2

.
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(iii) If 1− M2
21/3q2/3 ≤ γ ≤ 1,

∣∣κ2
q−1 − 1− i24/3

q1/3
mPII

1,22(t)
∣∣ ≤ C(M2)

q2/3
,

where t is defined by γ = 1− t
21/3q2/3 .

6. γ > 1

Let θc be as given in Lemma 4.3, sin2 θc

2 = 1
γ , 0 < θc < π. Decompose Σ = C1∪C2

where C1 = {eiθ : θc < |θ| ≤ π} and C2 = Σ − C1. Note that on the support

of the measure dµV in (4.13), dµV (θ) = γ
π cos( θ

2 )
√

1
γ − sin2( θ

2 )χ[−θc,θc](θ)dθ =
γ

4πi
s+1
s2

√
(s− ξ)(s− ξ−1)ds for s = eiθ.

C
~

inside

Ω
(3)

outside

Ω(3)

(3)

3
2

1

ξ-1

~
C

Ω

1

4

Ω

C

(3)

ξ

C

C

0

ξ

ξ

2

1

−1

0

Figure 10. Σ and Σ(3)

Lemma 6.1. Define α(z) = − γ
4

∫ z

ξ
s+1
s2

√
(s− ξ)(s− ξ−1)ds, where ξ = eiθc and

the branch is chosen to be analytic in C − C1 and
√

(s− ξ)(s− ξ−1) > 0 for real
s > 0. Then

(i) e2α is independent of the path in C− (C̄1 ∪ {0}).
(ii) exp

(−2πi
∫ φ

θc
dµV (θ)

)
= exp

(
2α(z)

)
for z = eiφ, |φ| < θc.

(iii) exp
(
2
∫ π

−π
log |z−eiθ|dµV (θ)−V (z)+l

)
= exp

(−2α−(z)
)

for z = eiφ, |φ| >
θc.

Proof. Property (i) follows from a standard residue calculation: the change in α(z)
around the point at 0 is −πi, and the change in α(z) around C1 is 0. Property (ii)
follows from the definition of α(z). For (iii), set

F (φ) = 2
∫ π

−π

log |eiφ − eiθ|dµV (θ) + γ cosφ + l + 2α−(eiφ)
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for z = eiφ, |φ| > θc. From the variational condition (4.7), we have F (θc) = 0.
Differentiating,

F ′(φ) =
∫ θc

−θc

i
[ 2eiφ

eiφ − eiθ
− 1
]
dµV (θ) − γ

2i

(
eiφ − e−iφ

)
− iγ

2
eiφ + 1

eiφ

√
(eiφ − ξ)(eiφ − ξ−1)−

=
γ

2π

∫
C2

z

z − s

s + 1
s2

√
(s− ξ)(s− ξ−1)ds

− i− γ

2i
(z − z−1)− iγ

2
z + 1

z

√
(z − ξ)(z − ξ−1)−.

A residue calculation similar to that in (i) now shows that F ′(φ) = 0. Therefore
we have F (φ) ≡ 0.

Note that e2qπi
∫

π
φ

dµV (θ) = 1 for φ outside the support of dµV , i.e. for |φ| > θc.
By (4.11) and the above lemma, our RHP becomes

m(1)(z) is analytic in C− Σ,

m
(1)
+ = m

(1)
−

(
e−2qα (−1)q

0 e2qα

)
on C2,

m
(1)
+ = m

(1)
−

(
1 (−1)qe−2qα−

0 1

)
on C1,

m(1) = I + O(1
z ) as z →∞

(6.1)

and κ2
q−1 = −(−1)qm

(1)
21 (0)eql = −(−1)qeq(−γ+log γ+1)m

(1)
21 (0) by (4.10) and (4.14).

We use the same conjugation (5.2) for m(1) as in the case γ ≤ 1. Then our new
jump matrices for m(2) are

v(2) =

(
1 −e−2qα

e2qα 0

)
on C2,

v(2) =

(
e−2qα− −1

1 0

)
on C1

(6.2)

and κ2
q−1 = eq(−γ+log γ+1)m

(2)
22 (0).

Set Σ(3) = C1 ∪ C̃inside ∪ C̃outside where C̃inside and C̃outside are open arcs as

chosen below. Note the factorization v(2) =
(

1 0
e2qα 1

)(
1 −e−2qα

0 1

)
on C2. Set

Reα = R, Imα = I so that α = R + iI. Recall the Cauchy-Riemann equations in
polar coordinates (r, θ),

r
∂R

∂r
=

∂I

∂θ
, r

∂I

∂r
= −∂R

∂θ
.

For z = eiθ ∈ C2, α(z) = −πi
∫ θ

θc
dµV (θ′) is purely imaginary and

∂I

∂θ
=

∂

∂θ
(−iα) = −π

γ

π
cos(

θ

2
)

√
1
γ
− sin2(

θ

2
) < 0.
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Hence

R = 0 and
∂R

∂r
=

∂I

∂θ
< 0 on C2.

Therefore for fixed θ, eiθ ∈ C2, there is ε1 = ε1(θ) > 0 such that R = Reα > 0
(resp. < 0) for z = reiθ with 1− ε1 < r < 1 (resp. 1 < r < 1+ ε1). We take C̃inside

(resp. C̃outside) such that |e−2α| < 1 (resp. |e2α| < 1) on C̃inside (resp. C̃outside).
Clearly there exist 0 < ρ1, ρ2 < 1 such that |e−2α| < ρ1 (resp. |e2α| < ρ2), for all
z ∈ C̃inside (resp. z ∈ C̃outside), apart from a small neighborhood of the endpoints.
Introduce the regions Ω(3)

k , k = 1, 2, 3, 4, as in Figure 10. Define m(3) as follows,
m(3) = m(2)

(
1 −e−2qα

0 1

)−1

in Ω(3)
2 ,

m(3) = m(2)

(
1 0

e2qα 1

)
in Ω(3)

3 ,

m(3) = m(2) in Ω(3)
1 , Ω(3)

4 .

Then v(3) is given by 

(
1 −e−2qα

0 1

)
on C̃inside,(

1 0
e2qα 1

)
on C̃outside,(

e−2qα− −1
1 0

)
on C1,

and

κ2
q−1 = eq(−γ+log γ+1)m

(3)
22 (0).(6.3)

From Lemma 6.1 (iii) and the second variational condition in (4.7), we have, for
any z ∈ C1,

e−2qα− → 0 as q →∞.

(Recall that the inequality in (4.7) is strict from Lemma 4.3 (ii).) Also from the
choice of C̃inside and C̃outside,

e−2qα → 0, e2qα → 0 as q →∞

on C̃inside, C̃outside, respectively. Therefore v(3) → v∞ as q →∞,
v∞ =

(
1 0
0 1

)
on C̃inside ∪ C̃outside,

v∞ =

(
0 −1
1 0

)
on C1.

(6.4)

The following result can be verified by direct calculation.
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Lemma 6.2. RHP (C1, v
∞) can be solved explicitly.

m∞ =

 1
2 (β + β−1) 1

2i (β − β−1)

− 1
2i (β − β−1) 1

2 (β + β−1)

 ,(6.5)

where β(z) ≡ ( z−ξ
z−ξ−1 )1/4, is analytic in C− C̄1 such that β ∼ +1 as z →∞.

Hence from (6.3) we expect κ2
q−1 ∼ eq(−γ+log γ+1) 1√

γ , because m∞
22(0) = 1√

γ .

Our goal now is to show that indeed m(3) → m∞ as q →∞. As in Section 5, we
must control the behavior of the solution of the RHP for m(3) near the endpoints,
where the rate of exponential convergence v(3) → v∞ becomes smaller and smaller.

Let δ3, M4 > 0 be fixed numbers, let 0 < δ4 < 1 be a fixed, sufficiently small
number satisfying (6.35) below, and let M3 > 0 be a fixed, sufficiently large number
satisfying (6.32) and (6.39) below. We consider 3 cases for γ:

(i) 1 + δ3 ≤ γ.
(ii) 1 + M3

21/3q2/3 ≤ γ ≤ 1 + δ4.
(iii) 1 ≤ γ ≤ 1 + M4

21/3q2/3 .

Calculations similar to those that are needed for the asymptotics of the orthog-
onal polynomial on the real line (see [DKMVZ1]) show that for γ > 1 + δ3,

κ2
q−1 = eq(−γ+log γ+1) 1√

γ
(1 + O(

1
q
)).(6.6)

The error is uniform for 1 + δ3 ≤ γ ≤ L for any fixed L < ∞. However, we will
not use this result, utilizing instead (stronger) estimates from [Jo1] (see the next
section).

ξ

ξ−1

−1 u0-u 0 0

Σ
,

5

Σ2

,
Σ1

,

Σ4

,

3

,
Σ

0 (-x/2)
1/2(-x/2)

1/2
-

q1/3
2

4/3/u

Figure 11. The map z → q1/3

24/3 u(z)

We consider case (iii). Set γ = 1 + t
21/3q2/3 with 0 ≤ t ≤ M4 and u0 = sin θc =

2
γ

√
γ − 1. In defining Σ(3) above, there is some freedom in the choice of C̃inside

and C̃outside. We make the following choice (see (6.11) below). Set x = − q2/3u2
0

25/3 =
−t(1 + t

21/3q2/3 )−2 ∼ −t < 0 as q → ∞, and let ΣPII,3 be the contour defined in

Figure 6 for this specific x. Let Σ′ = {u = 24/3

q1/3 λ : λ ∈ ΣPII,3} =
⋃5

k=1 Σ′k, and
let ε′ > 0 be small and fixed (see (6.7), (6.10) below). For definiteness, we can and
do assume that the rays Σ′1, . . . , Σ

′
4 make an angle of π/6 with the real axis (see
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Figure 11). Consider O′ = {u : |u| < ε′}. If q is large enough, then u0 ∈ O′. Set
u = u(z) = 1

2i(z − z−1). We choose ε′ such that (cf. (5.25))

u is a bijection from an open neighborhood of z = −1 onto O′.(6.7)

Clearly there are constants c1, c2 > 0 such that c1 ≤ |z(u)| ≤ c2 for all u ∈ ∂O′.
Under u−1, the points u0,−u0 are mapped into ξ, ξ̄ respectively, and u−1(Σ′5) =

C1. Consider a point z ∈ u−1(Σ′4 ∩ O′), the inverse image of a point u ∈ Σ′4 ∩ O.
Changing variables twice, v = 1

2i(s− s−1) and w = v2,

−2α(z) =
iγ

2

∫ z

ξ

(√
s +

√
s
−1)√(s + s−1)− (ξ + ξ−1)

ds

is

= −iγ

∫ u

u0

(√
1− u2

0 −
√

1− v2

)1/2
√

1−√1− v2

√
1− v2

dv

=
−iγ

2

∫ u

u0

(
v2 − u2

0

1 + k(u2
0) + k(v2)

)1/2

v
(
1 + h(v2)

)
dv

= − iγ

4

∫ u2

u2
0

(w − u2
0)

1/2
[
1 + (h(w) − h(u2

0)) + h(u2
0)
]
dw

− iγ

4

∫ u2

u2
0

(w − u2
0)

1/2

[
(k(u2

0)− k(w)) − 2k(u2
0)
]
(1 + h(w))dw

(1 + k(u2
0) + k(w))1/2

[
1 + (1 + k(u2

0) + k(w))1/2
]

=
−iγ

6
(u2 − u2

0)
3/2 + O

(
|u2 − u2

0|5/2

)
+ O

(
|u2 − u2

0|3/2u2
0

)
,

(6.8)

where
√

u2 − u2
0 is defined to be analytic in C − [−u0, u0] and positive for real

u > u0; h(w) =
√

2
√

1−√1−w√
w
√

1−w
− 1, which is analytic in |w| ≤ ε′ and h(0) = 0;

k(w) = 1
2 (
√

1− w − 1), which is also analytic in |w| ≤ ε′ and k(0) = 0. Since Σ′4 is
a straight ray of angle −π

6 at u0, Re(−i(u2−u2
0)

3/2) ≤ − 1
2 |u2−u2

0|3/2, which yields

| exp(−2α(z))| ≤ exp
(− 1

24
|u2 − u2

0|3/2
)

< 1,(6.9)

provided ε′ is sufficiently small so that

O(|u2 − u2
0|5/2) + O(|u2 − u2

0|3/2u2
0) ≤ c|u2 − u2

0|3/2(|u2 − u2
0|+ u2

0)

≤ 1
24
|u2 − u2

0|3/2
(6.10)

for u ∈ Σ′4 ∩ O′, where the terms on the LHS are given in (6.8). The same choice
of ε′ gives rise to the same result for z ∈ u−1(Σ′3 ∩ O′), and also | exp(2α(z))| ≤
exp(− 1

24 |u2−u2
0|3/2) < 1 for z ∈ u−1((Σ′1∪Σ′2)∩O′). We thus fix Σ(3) by choosing

Σ(3) ≡ u−1(Σ′ ∩O′) inside O′,(6.11)

and extending it to a contour of the general shape C̄1 ∪ C̃inside ∪ C̃outside as in
Figure 10.

Define {
mp(z) = mPII,3

(
q1/3

24/3 u(z), x
)

in O − Σ(3),

mp(z) = I in Ōc − Σ(3),
(6.12)
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where mPII,3(z, x) solves the RHP of the Painlevé II equation given by (2.25)
and (2.26). Then mp solves the RHP on Σ(3) ∪ ∂O in which the jump matrix vp(z)
is given by 

vPII,3( q1/3

24/3 u(z)), z ∈ Σ(3) ∩ O,

I, z ∈ Σ(3) ∩ Oc,

mp+(z), z ∈ ∂O,

(6.13)

where vPII,3 is given in (2.26).
We compare v(3) and vp. First, let z ∈ Σ(3) ∩ O such that u(z) ∈ Σ′4 ∩ O′.

The 12-entries of v(3) and vp are − exp(−2qα(z)) and − exp(−2igPII( q1/3

24/3 u(z))) =
− exp(− iq

6 (u2 − u2
0)

3/2), respectively. With ε′ chosen small as above, using

Re(−i(u2 − u2
0)

3/2) ≤ −1
2
|u2 − u2

0|3/2,

u2
0 ≤

4M4

q2/3
,

‖x5/2e−x3/2‖L∞[0,∞) ≤ C,

γ − 1 ≤ M4

21/3q2/3
,

we obtain from (6.8),

|e−2qα(z) − e
−2igP II ( q1/3

24/3 u(z))|

≤ eRe(− iq
6 (u2−u2

0)
3/2)|e−2qα(z)+2igP II ( q1/3

24/3 u(z)) − 1|
≤ Ce−

q
24 |u2−u2

0|3/2[
q|u2 − u2

0|3/2(|u2 − u2
0|+ u2

0 + (γ − 1))
]

≤ C(M4)
q2/3

.

(6.14)

In a similar manner, for z such that u(z) ∈ Σ′3 ∩ O′, the same result holds and for
z ∈ C̃outside ∩ O, the difference of the 21-entries of v(3) and vp satisfies

|e2qα(z) − e
2igP II( q1/3

24/3 u(z))| ≤ C(M4)
q2/3

.

For z ∈ C1, Re(−i(u2 − u2
0)

3/2
− ) = −|u2 − u2

0|3/2. Again by (6.8), the difference of
the 11-entries of v(3) and vp satisfies

|e−2qα−(z) − e
−2igP II

− ( q1/3

24/3 u(z))| ≤ C(M4)
q2/3

.

Therefore, we have

‖v(3)v−1
p − I‖L∞(Σ(3)∩O) ≤

C(M4)
q2/3

.(6.15)

Secondly, for z ∈ Σ(3) ∩ Oc, |z − ξ|, |z − ξ−1| ≥ c > 0 implies exponential decay
for e−2qα(z) and e2qα(z) for z ∈ C̃inside ∩ Oc and z ∈ C̃outside ∩ Oc, respectively.
Therefore we have

‖v(3)v−1
p − I‖L∞(Σ(3)∩Oc) ≤ Ce−cq.(6.16)
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Finally, for z ∈ ∂O, |u(z)| = ε′ and

mp+(z) = mPII,3
(q1/3

24/3
u(z), x

)
= I +

mPII,3
1 (x)

q1/3

24/3 u(z)
+ OM4(

1
q2/3

),(6.17)

by (2.25). Here the error is uniformly for 0 ≤ x ≤ 2M4.
Now as in the case γ ≤ 1, define R(z) = m(3)m−1

p . Then the jump matrix for R

is given by vR = mp−v(3)v−1
p m−1

p−. From (6.15), (6.16) and (6.17), and also (2.28),
we have 

‖vR − I‖L∞(Σ(3)∩O) ≤ C(M4)

q2/3 on O ∩Σ(3),

‖vR − I‖L∞(Σ(3)∩Oc) ≤ Ce−cq on Oc ∩ Σ(3),

vR = m−1
p+ = I − 24/3mPII,3

1 (x)

q1/3u(z)
+ OM4(

1
q2/3 ) on ∂O.

(6.18)

As in (5.35) for the case γ ≤ 1, using mPII
1,22 = mPII,3

1,22 + (ix2/8) from (2.27),

m
(3)
22 (0) = R22(0)

= 1 +
i24/3

q1/3
mPII,3

1,22 (x) + OM4(
1

q2/3
)

= 1 +
i24/3

q1/3

[
mPII

1,22(x)− it2

8
(
1 +

t

21/3q2/3

)−4
]

+ OM4(
1

q2/3
)

= 1 +
i24/3

q1/3
mPII

1,22(x) +
t2

25/3q1/3
+ OM4(

1
q2/3

).

(6.19)

Therefore, from (6.3) using x = −t(1 + t
21/3q2/3 )−2 = −t + OM4 (

1
q2/3 ) and the fact

that d
dtm

PII
1,22(t) is bounded for 0 ≤ t ≤ M4 (this follows, for example, from (2.18)

and the boundedness of u(x) = 2imPII
1,12; alternatively statements like (2.28) are

true also for all the x-derivatives of mPII,3(z; x), etc.),

κ2
q−1 = eq(−γ+log γ+1)m

(3)
22 (0)

= eq(−γ+log γ+1)

(
1 +

i24/3

q1/3
mPII

1,22(x) +
t2

25/3q1/3
+ OM4(

1
q2/3

)
)

=
(

1− t2

25/3q1/3
+ OM4 (

1
q
)
)(

1 +
i24/3

q1/3
mPII

1,22(x) +
t2

25/3q1/3
+ OM4 (

1
q2/3

)
)

= 1 +
i24/3

q1/3
mPII

1,22(x) + OM4(
1

q2/3
)

= 1 +
i24/3

q1/3
mPII

1,22(−t) + OM4(
1

q2/3
).

(6.20)

Finally we consider the case (ii), 1 + M3
21/3q2/3 ≤ γ ≤ 1 + δ4. We conjugate m(2)

with jump matrix v(2) given by (6.2), as follows:{
m(4) ≡ m(2), |z| > 1,

m(4) ≡ m(2)
(

0 1−1 0

)
, |z| < 1.

(6.21)

Define α̃(z) = −πi
∫ z

ξ
γ

4πi
s+1
s2

√
(s− ξ)(s− ξ−1)ds, where α̃(z) is the same as α(z)

in Lemma 6.1, but now we choose the branch so that
√

(s− ξ)(s − ξ−1) is analytic



1156 JINHO BAIK, PERCY DEIFT, AND KURT JOHANSSON

C 1

C
~

outside

ξ

ξ

0 C
C
~

inside

2

-1

Ω
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Figure 12

in C− C̄2, and
√

(s− ξ)(s− ξ−1) ∼ +s as s →∞. Then the jump matrix v(4) for
m(4) is given by 

v(4) =

(
e2qα̃+ 1

0 e2qα̃−

)
on C2,

v(4) =

(
1 e−2qα̃

0 1

)
on C1

(6.22)

and κ2
q−1 = −eq(−γ+log γ+1)m

(4)
21 (0). Noting the factorization v(4) =

(
1 0

e2qα̃− 1

)
(

0 1
−1 0

) (
1 0

e2qα̃+ 1

)
on C2, we define (see Figure 12)


m(5) = m(4)

(
1 0

e2qα̃ 1

)−1

in Ω(5)
2 ,

m(5) = m(4)

(
1 0

e2qα̃ 1

)
in Ω(5)

3 ,

m(5) = m(4) in Ω(5)
1 ∪ Ω(5)

4 ,

so that 

v(5) =

(
0 1
−1 0

)
on C2,

v(5) =

(
1 e−2qα̃

0 1

)
on C1,

v(5) =

(
1 0

e2qα̃ 1

)
on C̃inside ∪ C̃outside.
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As in the case of α, we have |e−α̃(z)| < 1 for z ∈ C1 and |eα̃(z)| < 1 for z ∈
C̃inside ∪ C̃outside. Therefore taking q →∞, we have

v(5,∞) =

(
0 1
−1 0

)
on C2,

v(5,∞) =

(
1 0
0 1

)
on C1.

(6.23)

This RHP can be solved explicitly as in Lemma 6.2, and we find

m(5,∞) =

(
1
2 (β̃ + β̃−1) 1

2i(β̃ − β̃−1)
− 1

2i (β̃ − β̃−1) 1
2 (β̃ + β̃−1)

)
,(6.24)

where β̃(z) ≡ ( z−ξ
z−ξ−1 )1/4 is now analytic in C − C̄2 and β̃ ∼ +1 as z → ∞.

From (6.24), we have m
(5,∞)
21 (0) = − 1√

γ and κ2
q−1 ∼ eq(−γ+log γ+1) 1√

γ as q → ∞.
Again, we need to construct parametrices around ξ and ξ−1 in order to prove that
indeed m(5) → m(5,∞). Note that det m(5,∞) = 1: this follows either by direct
calculation or by a general argument as det v(5,∞) = 1.

Let Σ′′ be the contour Σ′′ = R ∪ R+e2πi/3 ∪ R+e4πi/3 shown in Figure 13. Let
ω = e2πi/3 and set (see [DZ2])

Ψ(s) =

(
Ai(s) Ai(ω2s)
Ai′(s) ω2Ai′(ω2s)

)
e−

iπ
6 σ3, 0 < args < 2π

3 ,

Ψ(s) =

(
Ai(s) Ai(ω2s)
Ai′(s) ω2Ai′(ω2s)

)
e−

iπ
6 σ3

(
1 0
−1 1

)
, 2π

3 < args < π,

Ψ(s) =

(
Ai(s) −ω2Ai(ωs)
Ai′(s) −Ai′(ωs)

)
e−

iπ
6 σ3

(
1 0
1 1

)
, π < args < 4π

3 ,

Ψ(s) =

(
Ai(s) −ω2Ai(ωs)
Ai′(s) ωAi′(ωs)

)
e−

iπ
6 σ3,

4π
3 < args < 2π,

(6.25)

where Ai(s) is the Airy function. Then Ψ satisfies the jump conditions

Ψ+ = Ψ−

(
1 1
0 1

)
, z ∈ R+,

Ψ+ = Ψ−

(
0 1
−1 0

)
, z ∈ R−,

Ψ+ = Ψ−

(
1 0
1 1

)
, z ∈ R+e2πi/3, R+e4πi/3.

(6.26)

Let Oξ and Oξ̄ be neighborhoods around ξ and ξ̄ of size ε′′
√

γ − 1, respectively,
where ε′′ > 0 is a small, fixed number chosen to satisfy (6.27), (6.29) below. Since
1
2 |ξ − ξ̄| = 2

γ

√
γ − 1 > ε′′

√
γ − 1, Oξ and Oξ̄ have no intersection, provided

0 < ε′′ < 1.(6.27)

For definiteness we assume that ∂Oξ and ∂Oξ̄ are oriented counterclockwise. In
Oξ, a simple substitution shows that α̃(z) = 2

3 (z − ξ)3/2G(z), where G is analytic
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Figure 13. Σ′′ and vΨ

,,
(γ−1)

1/2
ε

Ο ξ

λ

ξ 0

(γ−1)~

Figure 14. The map z → (z − ξ)(G(z))2/3

and G(ξ) = (γ − 1)3/4e−i( 3
2 θc+

3
4 π). Here (z − ξ)3/2 = |z − ξ|3/2e

3
2 iarg(z−ξ) and

θc − π/2 < arg(z − ξ) < θc + 3π/2. Define (see Figure 14)

λ(z) ≡ (z − ξ)(G(z))2/3,(6.28)

where (G(z))2/3 is analytic in Oξ and (G(z))2/3 → (γ − 1)1/2e−i(θc+π/2) as z → ξ.
Of course, λ3/2 = 3

2 α̃. It is a simple calculus question to verify that we may choose
ε′′ sufficiently small so that

z → λ(z) is a bijection from Oξ onto an open neighborhood

of 0 in the λ-plane, of radius ∼ (γ − 1).
(6.29)

Define Σ(5) ∩ Oξ ≡ {z ∈ Oξ : λ(z) ∈ Σ′′}. As in the construction in [DZ2], set
(cf. (4.34) in [DZ2])

E(z) =
(

1 −1
−1 −1

)√
πeiπ/6q

σ3
6

(
(z − ξ̄)(G(z))2/3

)σ3
4

,(6.30)

and for z ∈ Oξ − Σ(5), define the parametrix for m(5) by

mp(z) = E(z)Ψ(q2/3λ(z))eqα̃(z)σ3 .(6.31)

Then mp satisfies the same jump conditions on Σ(5) ∩Oξ as m(5); mp+ = mp−v(5).
And if q becomes large, then for z ∈ ∂Oξ, |q2/3λ(z)| ≥ cq2/3(γ − 1) ≥ cM3/21/3.
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Therefore,

if M3 is sufficiently large so that the leading terms dominate

in the asymptotics for the Airy functions in Ψ(q2/3λ(z)) (see, e.g., [AS]),
(6.32)

then by the explicit choice of E(z) in (6.30), we find for z ∈ ∂Oξ,

mp+ = m(5,∞)(z)
(

I + O
( 1
qλ3/2(z)

))
= m(5,∞)(z)

(
I + O

( 1
q(γ − 1)3/2

))
.(6.33)

Noting the symmetry m(5) = m(5)(z̄), define Σ(5) ∩ Oξ̄ ≡ Σ(5) ∩ Oξ, and for
z ∈ Oξ̄ −Σ(5) set mp(z) = mp(z̄). We now extend Σ(5) ∩ (Oξ ∪Oξ̄) to Σ(5) to have
the same general shape as in Figure 12. Finally, for z ∈ C− (Oξ ∪Oξ̄ ∪Σ(5)), define
mp(z) = m(5,∞).

Set O = Oξ ∪Oξ̄. Then R̃ ≡ m(5)m−1
p solves a RHP on Σ(5)∪∂O with the jump

matrix vR̃ = mp−v(5)v−1
p m−1

p−,

vR̃ = I on (Σ(5) ∩ O) ∪ C2,

vR̃ = m(5,∞)

(
1 e−2qα̃

0 1

)
(m(5,∞))−1 on C1 ∩ Ōc,

vR̃ = m(5,∞)

(
1 0

e2qα̃ 1

)
(m(5,∞))−1 on (C̃inside ∪ C̃outside) ∩ Ōc,

vR̃ = I + O( 1
q(γ−1)3/2 ) on ∂O.

(6.34)

Let ε1 > 0 be a fixed, small number: for example, we may take ε1 = ε′ satisfy-
ing (6.7), (6.10) above. Choose δ4 sufficiently small so that

ξ, ξ̄ ∈ {z : |z + 1| ≤ ε1}(6.35)

for 1 ≤ γ ≤ 1 + δ4. By calculations similar to (6.8) and (6.9), Re(2α̃(z)) ≤
−c(γ − 1)3/2 for z ∈ (C̃inside ∪ C̃outside) ∩ {|z + 1| ≤ ε1} ∩ Ōc (in fact the estimate
is true on the full set (C̃inside ∪ C̃outside) ∩ {|z + 1| ≤ ε1}) and also |e2qα̃(z)| ≤ e−cq

for z ∈ (C̃inside ∪ C̃outside) ∩ {|z + 1| > ε1}. Thus, |e2qα̃(z)| ≤ e−cq(γ−1)3/2
for

z ∈ (C̃inside ∪ C̃outside)∩Oc. Also, by calculations similar to (6.8) and (6.9) again,
Re(−2α̃(z)) ≤ −c(γ − 1)3/2 for z ∈ C1 ∩ Oc. Therefore we have L∞ estimation

‖vR̃ − I‖L∞(Σ(5)∩Oc) ≤ Ce−cq(γ−1)3/2
.(6.36)

Furthermore, from calculations similar to (5.23), on C̃inside ∩Oc ∩{Im(z) ≥ 0},
using |u + u0| ≥ |u− u0| on the integration contour for the second inequality,∫

|e−2qα̃(z)||dz| ≤
∫
{u=u0+xe−iπ/3:x≥c

√
γ−1}

Ce−qc|u2−u2
0|3/2

du + Ce−cq

≤
∫ ∞

c
√

γ−1

Ce−qcx3
dx + Ce−cq

≤ C

q(γ − 1)
.

(6.37)
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The same calculations apply to the other part of C̃inside ∩Oc and also to C̃outside∩
Oc, so that ‖vR̃−I‖L1((C̃inside∪C̃outside)∩Oc)≤ C

q(γ−1) . On the other hand, length(∂O)
≤ C

√
γ − 1 and length(C1 ∩ Oc) ≤ C

√
γ − 1, and hence, by the above L∞ esti-

mates, ‖vR̃ − I‖L1(∂O) ≤ C/(q(γ − 1)) and ‖vR̃ − I‖L1(C1∩Oc) ≤ C/(q(γ − 1)).
Thus

‖vR̃ − I‖L1(Σ(5)∪∂O) ≤
C

q(γ − 1)
.(6.38)

Using the choice of Oξ and Oξ̄, direct calculation shows that m(5,∞), hence
(m(5,∞))−1 (as det m(5,∞) = 1), are uniformly bounded for γ in the region 1 +

M3
21/3q2/3 ≤ γ ≤ 1 + δ4, for z ∈ Oc − Σ(5). On the other hand, even though the
contour Σ(5)∪∂O varies with γ and q, the length of Σ(5)∪∂O is uniformly bounded
for 1+ M3

21/3q2/3 ≤ γ ≤ 1+δ4. Also a simple scaling argument shows that the Cauchy
operators C± on L2(Σ(5)∪∂O) are uniformly bounded for 1+ M3

21/3q2/3 ≤ γ ≤ 1+δ4.
Therefore,

‖Cw
R̃
‖L2(Σ(5)∪∂O)→L2(Σ(5)∪∂O) ≤ C‖wR̃‖L∞(Σ(5)∪∂O)

≤ C

q(γ − 1)3/2
+ Ce−Cq(γ−1)3/2

≤ C

M
2/3
3

+ Ce−CM
3/2
3

≤ 1
2

< 1

(6.39)

provided that M3 is sufficiently large.
From (2.9) and (6.38), we have

|R̃22(0)− 1| =
∣∣∣∣ 1
2πi

∫
Σ(5)∪∂O

(
wR̃ − [(I − Cw

R̃
)−1Cw

R̃
I](z)wR̃(z)

z
ds

)
22

∣∣∣∣
≤ C(‖wR̃‖L1(Σ(5)∪∂O) + ‖wR̃‖2L2(Σ(5)∪∂O))

≤ C‖wR̃‖L1(Σ(5)∪∂O), as ‖wR̃‖L∞(Σ(5)∪∂O) is bounded,

≤ C

q(γ − 1)
,

and

|R̃21(0)| ≤ C

q(γ − 1)
.

Therefore, from m
(5)
21 (0) = R̃22(0)m(5,∞)

21 (0) + R̃21(0)m(5,∞)
11 (0), we obtain

κ2
q−1 = −eq(−γ+log γ+1)m

(5)
21 (0) = eq(−γ+log γ+1) 1√

γ

(
1 + O

( 1
q(γ − 1)

))
.(6.40)

Note that this is consistent with the result (6.6) for case (i) where γ − 1 ≥ δ3.
Summarizing, we have proven the following results.

Lemma 6.3. Let δ3, M4 > 0 be fixed numbers. Let δ4 > 0 be a fixed sufficiently
small number satisfying (6.35), and let M3 > 0 be a fixed, sufficiently large number
satisfying (6.32) and (6.39). As q →∞, we have the following asymptotics.



LONGEST INCREASING SUBSEQUENCE 1161

(i) If 1 + δ3 ≤ γ,

κ2
q−1 = eq(−γ+log γ+1) 1√

γ

(
1 + O

(1
q

))
,

where the error is uniform for 1 + δ4 ≤ γ ≤ L for any fixed L < ∞.
(ii) If 1 + M3

21/3q2/3 ≤ γ ≤ 1 + δ4,

κ2
q−1 = eq(−γ+log γ+1) 1√

γ

(
1 + O

( 1
q(γ − 1)

))
,

where the error is uniform in the region.
(iii) If 1 < γ ≤ 1 + M4

21/3q2/3 ,

∣∣κ2
q−1 − 1− i24/3

q1/3
mPII

1,22(−t)
∣∣ ≤ C(M4)

q2/3
,

where t is defined by γ = 1 + t
21/3q2/3 , 0 ≤ t ≤ M4.

Note that, comparing Lemma 6.3 (iii) with Lemma 5.1 (iii), we have the same
result everywhere in the region 1− M

21/3q2/3 ≤ γ ≤ 1 + M
21/3q2/3 ,

∣∣κ2
q−1 − 1− i24/3

q1/3
mPII

1,22(t)
∣∣ ≤ C(M)

q2/3
,(6.41)

where t is defined by γ = 1− t
21/3q2/3 , and M is any fixed positive number.

Also note from Lemma 6.3 (ii), that as q →∞,

log κ2
q−1 ≤ q(−γ + log γ + 1) +

C#

q(γ − 1)
,(6.42)

where C# is independent of M3 and is fixed once δ4 satisfying (6.35) is determined.

7. Asymptotics of φn(λ) as n →∞
In this section, using Lemmas 5.1 and 6.3, we obtain the large n behavior

of φn(λ). In the following, δ5, δ6, δ7 are fixed numbers between 0 and 1, and
M5, M6, M7 are fixed and positive. These numbers are free apart from the fol-
lowing requirements:

(a) δ6 satisfies (6.35),

(b) M5 ≥ 1 satisfies (5.18),

(c)
1
2
M6 ≥ 1 satisfies (5.18), and

(d) M7 ≥ 1 satisfies (6.32), (6.39) and condition (7.8) below.

We consider the following five cases for λ > 0 and n:

(i) 0 ≤ 2
√

λ
n+1 ≤ 1− δ5.

(ii) 1
2 ≤ 2

√
λ

n+1 ≤ 1− M5

21/3(n+1)2/3 .

(iii) 1− M6

21/3(n+1)2/3 ≤ 2
√

λ
n+1 ≤ 1 + M6

21/3(n+1)2/3 .

(iv) 1 + M7

21/3(n+1)2/3 ≤ 2
√

λ
n+1 ≤ 1 + δ6.

(v) 1 + δ7 ≤ 2
√

λ
n+1 .
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Consider case (i). For any k ≥ n, 2
√

λ
k+1 ≤ 1 − δ5. From Lemma 5.1 (i), we have

as n →∞,

| log φn(λ)| = ∣∣ ∞∑
k=n

log κ2
k(λ)

∣∣ ≤ ∞∑
k=n

Ce−ck ≤ Ce−cn.(7.1)

Consider case (ii). We split the sum into two pieces:

log φn(λ) =
∞∑

k=n

log κ2
k(λ)

=
∑
(1)

log κ2
k(λ) +

∑
(2)

log κ2
k(λ),

where (1) and (2) represent the regions

(1) n + 1 ≤ k + 1 ≤ 4
√

λ,

(2) 4
√

λ < k + 1.

For (1), 1
2 ≤ 2

√
λ

k+1 ≤ 1 − M5
21/3(k+1)2/3 . From Lemma 5.1 (ii), for some constant C,

independent of M5 satisfying (5.18),

∣∣log κ2
k(λ)

∣∣ ≤ C
e−

2
√

2
3 (k+1)(1− 2

√
λ

k+1 )
3/2

(k + 1)1/3
.

Using the fact that f(x) = 1
x1/3 e−

2
√

2
3 x(1− 2

√
λ

x )3/2
is monotone decreasing in the

second inequality below, we have, as n →∞,

∣∣∑
(1)

log κ2
k(λ)

∣∣ ≤ C
∑
(1)

e−
2
√

2
3 (k+1)(1− 2

√
λ

k+1 )3/2

(k + 1)1/3

≤ C

∫ 4
√

λ

n+1

e−
2
√

2
3 x(1− 2

√
λ

x )3/2 dx

x1/3
+ C

e−
2
√

2
3 (n+1)(1− 2

√
λ

n+1 )3/2

(n + 1)1/3

≤ C(2
√

λ)2/3

∫ 1

(n+1)
2
√

λ
−1

e
− 4

√
2λy3/2

3(1+y)1/2 dy

(1 + y)1/3
+ Ce−

1
2 (n+1)(1− 2

√
λ

n+1 )3/2

≤ C(2
√

λ)2/3

∫ 1

(n+1)
2
√

λ
−1

e−
√

λy3/2
dy + Ce−

1
2 (n+1)(1− 2

√
λ

n+1 )3/2

≤ C

∫ ∞
√

λ( (n+1)
2
√

λ
−1)3/2

e−s ds

s1/3
+ Ce−

1
2 (n+1)(1− 2

√
λ

n+1 )3/2

≤ Ce
−√λ( (n+1)

2
√

λ
−1)3/2

+ Ce−
1
2 (n+1)(1− 2

√
λ

n+1 )3/2

≤ C exp
(
−1

2
(n + 1)

(
1− 2

√
λ

n + 1
)3/2

)
.

(7.2)

We use the change of variable y = x
2
√

λ
− 1 for the integral in the third line. The

fifth inequality is obtained from the substitution s =
√

λy3/2, and at the end, we
have used 2

√
λ

n+1 ≤ 1.
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For (2), 2
√

λ
k+1 ≤ 1

2 . Therefore, from Lemma 5.1 (i), we have

∣∣∑
(2)

log κ2
k(λ)

∣∣ ≤ ∞∑
k+1=[4

√
λ]

Ce−ck ≤ Ce−cn.

Summing up the above two calculations, we have, for case (ii),

| log φn(λ)| ≤ C exp
(
−c(n + 1)

(
1− 2

√
λ

n + 1
)3/2

)
,(7.3)

as n →∞. Note again that the constants C, c can be taken independent of M5.
Consider case (iii). Set

2
√

λ

n + 1
= 1− t

21/3(n + 1)2/3
(7.4)

so that −M6 ≤ t ≤ M6. We divide the sum into three pieces:

log φn(λ) =
∞∑

k=n

log κ2
k(λ)

=
∑
(1)

log κ2
k(λ) +

∑
(2)

log κ2
k(λ) +

∑
(3)

log κ2
k(λ),

where (1), (2) and (3) indicate the following regions:

(1) n + 1 ≤ k + 1 ≤ (n + 1) +
(M6 − t)

21/3
(n + 1)1/3

,

(2) (n + 1) +
(M6 − t)

21/3
(n + 1)1/3

< k + 1 <
3
2
(n + 1)− t

21/3
(n + 1)1/3,

(3)
3
2
(n + 1)− t

21/3
(n + 1)1/3 ≤ k + 1.

For (1), as n →∞,

1− 6M6

21/3(k + 1)2/3
≤ 2

√
λ

k + 1
≤ 1 +

2M6

21/3(k + 1)2/3
.

Hence from (6.41), we have as k ≥ n →∞,

log κ2
k(λ) =

i24/3

(k + 1)1/3
mPII

1,22

(
2

1
3 (k + 1)

2
3 (1− 2

√
λ

k + 1
)
)

+ OM6

( 1
k2/3

)
.
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This leads to

∑
(1)

log κ2
k(λ)

=

[(n+1)+
(M6−t)

21/3 (n+1)1/3]∑
k+1=n+1

[
i24/3

(k + 1)1/3
mPII

1,22(2
1
3 (k + 1)

2
3 (1− 2

√
λ

k + 1
)) + OM6

( 1
k2/3

)]

=
∫ (n+1)+

(M6−t)

21/3 (n+1)1/3

(n+1)

i24/3

x1/3
mPII

1,22(2
1/3x2/3(1− 2

√
λ

x
))dx + OM6

( 1
n1/3

)
=
∫ (M6−t)

21/3

0

i24/3mPII
1,22

(
21/3(n + 1)2/3(1 +

2s

3(n + 1)2/3
+ · · · )

(
1− (n + 1)− t

21/3 (n + 1)1/3

(n + 1) + s(n + 1)1/3

)) ds

(1 + s
3(n+1)2/3 + · · · ) + OM6

( 1
n1/3

)
=
∫ (M6−t)

21/3

0

i24/3mPII
1,22

(
(t + 21/3s)(1− s

3(n + 1)2/3
+ · · · )

)
(1− s

3(n + 1)2/3
+ · · · )ds + OM6

( 1
n1/3

)
=
∫ (M6−t)

21/3

0

i24/3mPII
1,22(t + 21/3s)ds + OM6

( 1
n1/3

)
=
∫ M6

t

2imPII
1,22(y)dy + OM6

( 1
n1/3

)
.

The fourth equation is obtained using the change of variable x = (n + 1) +
s(n + 1)1/3, and for the sixth equation, we use the fact that d

dtm
PII
1,22(t) is uni-

formly bounded for −M6 ≤ t ≤ M6 (see the remark below (6.19)). To pass from
the second to the third line, note that for integers b > a,

|
b−1∑
n=a

f(x)−
∫ b

a

f(x)| ≤
b−1∑
n=a

sup{|f(α)− f(β)| : n ≤ α, β ≤ n + 1}

≤ ‖f ′‖L∞(a,b)(b− a).

(7.5)

For the case at hand, a simple calculation shows that

‖f ′‖
L∞
(
n+1,[(n+1)+

(M6−t)

21/3 (n+1)1/3]
) ≤ C(M6)/n2/3.

Also, the contribution to the integral from the interval
(
(n+1)+ (M6−t)

21/3 (n + 1)1/3,

[(n + 1) + (M6−t)
21/3 (n + 1)1/3] + 1

)
is OM6(1/n1/3).

For (2),

1
2
≤ 2

√
λ

k + 1
≤ 1−

1
2M6

21/3(k + 1)2/3
as k ≥ n →∞.
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As n → ∞, by a calculation similar to the case (ii), again using the monotonicity
of f(x) = 1

x1/3 e−
2
√

2
3 x(1− 2

√
λ

x )3/2
for the second inequality, we have

∣∣∑
(2)

log κ2
k(λ)

∣∣ ≤ C
∑
(2)

e−
2
√

2
3 (k+1)(1− 2

√
λ

k+1 )3/2

(k + 1)1/3

≤ C

∫ 3
2 (n+1)− t

21/3 (n+1)1/3

(n+1)+
(M6−t)

21/3 (n+1)1/3
e−

2
√

2
3 x(1− 2

√
λ

x )3/2 dx

x1/3
+ Ce−(

M6
2 )3/2

≤ C(2
√

λ)2/3

∫ (n+1)
4
√

λ

M6(n+1)1/3

24/3√λ

e−
4
√

2λ
3 ( y3

1+y )1/2 dy

(1 + y)1/3
+ Ce−(

M6
2 )3/2

≤ C(2
√

λ)2/3

∫ (n+1)
4
√

λ

M6(n+1)1/3

24/3√λ

e−
√

λy3/2
dy + Ce−(

M6
2 )3/2

≤ C

∫ ∞

( n+1
2
√

λ
)
1
2 (

M6
2 )

3
2

e−s ds

s1/3
+ Ce−(

M6
2 )3/2

≤ C

∫ ∞

1
4 M

3/2
6

e−s

s1/3
ds + Ce−(

M6
2 )3/2

≤ Ce−
1
4 M

3/2
6 + Ce−(

M6
2 )3/2 ≤ Ce−

1
4 M

3/2
6 .

The first inequality follows from Lemma 5.1 (ii) (note that, by assumption, 1
2M6

satisfies (5.18)). For the second line, in order to control the contribution to the
integral from the interval [[(n + 1) + (M6−t)

21/3 (n + 1)1/3], (n + 1) + (M6−t)
21/3 (n + 1)1/3],

we use the inequality 1 + M6−t
21/3(n+1)2/3 ≤ 1 + 22/3M6

(n+1)2/3 ≤ 32
9 for large enough n. For

the third line, we use the change of variable y = x
2
√

λ
− 1, and for the fourth line,

we use the inequality 4
√

λ
(n+1)δ ≥ 1 − M6

21/3(n+1)2/3 ≥ 9
23 for sufficiently large n. The

fifth equation is obtained from the substitution s =
√

λy3/2, and for the sixth line,
we have used the inequality 2

√
λ

n+1 ≤ 1 + M6
21/3(n+1)2/3 ≤ 2 for sufficiently large n.

For (3), as n →∞, 0 ≤ 2
√

λ
k+1 ≤ 3

4 , which yields, from Lemma 5.1 (i),∣∣∑
(3)

log κ2
k(λ)

∣∣ ≤ Ce−cn.

Summing up all these calculations, for 2
√

λ
n+1 = 1 − t

21/3(n+1)2/3 with −M6 ≤ t ≤
M6, we have, as n →∞,∣∣log φn(λ)−

∫ M6

t

2imPII
1,22(y)dy

∣∣ ≤ C(M6)
n1/3

+ Ce−
1
4 M

3/2
6 ,

for a constant C(M6) which depends on M6, and for a constant C which is inde-
pendent of M6. Using the asymptotics of mPII

1,22(x) as x → +∞ (see (2.17)), we
have (recall 1

2M6 ≥ 1)∣∣log φn(λ) −
∫ ∞

t

2imPII
1,22(y)dy

∣∣ ≤ C(M6)
n1/3

+ Ce−
1
4 M

3/2
6 .(7.6)
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Now we consider case (iv), 1 + M7

21/3(n+1)2/3 ≤ 2
√

λ
n+1 ≤ 1 + δ6. We write

log φn(λ) =
∑
(1)

log κ2
k +

∑
(2)

log κ2
k,

where (1), (2) indicate the following regions:

(1) n + 1 ≤ k + 1 ≤ 2
√

λ− M7

21/3
(n + 1)1/3,

(2) 2
√

λ− M7

21/3
(n + 1)1/3 ≤ k + 1.

For (1), we have for n sufficiently large, 1+ M7
21/3(k+1)2/3 ≤ 2

√
λ

k+1 ≤ 1+δ6. Therefore,
using (6.42), we obtain

∑
(1)

log κ2
k(λ)

≤
[2
√

λ− M7
21/3 (n+1)1/3]∑

k+1=n+1

(k + 1)
(
−1

4
(

2
√

λ

k + 1
− 1)2

)
+

C#

2
√

λ− (k + 1)

≤ −1
4

∫ 2
√

λ− M7
21/3 (n+1)1/3

n+1

x
(2√λ

x
− 1
)2

dx +
∫ 2

√
λ− M7

21/3 (n+1)1/3

n+1

C#

2
√

λ− x
dx + C(M7)

≤ −1
4

∫ 1− M7
21/3(n+1)2/3

n+1
2
√

λ

n+1
2
√

λ

(2
√

λ)2
(1− y)2

y
dy + C# log

(
2
√

λ− (n + 1)
(n + 1)1/3

)
+ C(M7)

≤ −1
4

∫ 1− M7
21/3(n+1)2/3

n+1
2
√

λ

n+1
2
√

λ

(2
√

λ)2(1− y)2dy + C# 2
√

λ− (n + 1)
(n + 1)1/3

+ C(M7)

≤ 1
4

∫ M7
21/3(n+1)2/3

n+1
2
√

λ

1−n+1
2
√

λ

(2
√

λ)2z2dz + C#(n + 1)2/3(
2
√

λ

n + 1
− 1) + C(M7)

≤ 1
12

(2
√

λ)2
[
(

M7

21/3(n + 1)2/3

n + 1
2
√

λ
)3 − (1− n + 1

2
√

λ
)3
]

+ C#(n + 1)2/3(
2
√

λ

n + 1
− 1) + C(M7)

≤ M3
7

24
(
n + 1
2
√

λ
)− n + 1

24
√

λ
(n + 1)2(

2
√

λ

n + 1
− 1)3 + C#(n + 1)2/3(

2
√

λ

n + 1
− 1) + C(M7)

≤ − 1
48

[
21/3(n + 1)2/3(

2
√

λ

n + 1
− 1)

]3
+ C#(n + 1)2/3(

2
√

λ

n + 1
− 1) + C(M7)

≤ − 1
96

[
21/3(n + 1)2/3(

2
√

λ

n + 1
− 1)

]3
+ C(M7).

(7.7)

The first line follows from the inequality −γ + log γ + 1 ≤ − (γ−1)2

4 for 1 ≤ γ ≤ 2
(note from (6.42) that C# is independent of M7). In the second line, we use
the monotonicity of x(2

√
λ

x − 1)2 and of (2
√

λ − x)−1 in the region n + 1 ≤ x ≤
2
√

λ− M7
21/3 (n+1)1/3. In the succeeding lines, we have used the changes of variables
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x = 2
√

λy, 1− y = z and 2
√

λz3/2 = s. For the last line, note that

21/3(n + 1)2/3(
2
√

λ

n + 1
− 1) ≥ M7,

and we require

M7 ≥
√

96C#.(7.8)

Remark. In estimating the sum in the second line of (7.7) by an integral, the
monotonicity of the integrand plays a crucial role: we cannot, for example, use an
estimate of the form (7.5), as the derivative is not sufficiently small.

For (2), we have 2
√

λ
k+1 ≤ 1 + 2M7

21/3(k+1)2/3 . Calculations similar to the previous
cases (i), (ii) and (iii) show that∑

(2)

log κ2
k(λ) ≤ ∣∣∫ ∞

−2M7

2imPII
1,22(y)dy

∣∣+ C(M7)
n1/3

+ Ce−M7 ≤ C(M7).

The result follows by splitting the sum
∑

(2) into the following regions: 2
√

λ −
M7
21/3 (n+1)1/3 ≤ k +1 ≤ 2

√
λ+ M7

21/3 (n+1)1/3, 2
√

λ+ M7
21/3 (n+1)1/3 < k +1 < 3

√
λ

and 3
√

λ ≤ k + 1: we leave the details to the reader.
Therefore, for 1 + M7

21/3(n+1)2/3 ≤ 2
√

λ
n+1 ≤ 1 + δ6, we have

log φn(λ) ≤ − 1
96

[
21/3(n + 1)2/3(

2
√

λ

n + 1
− 1)

]3
+ C(M7).(7.9)

For case (v), we use the estimation of [Jo1] given in Lemma 7.1 (v) below.

Summarizing, we have

Lemma 7.1. Let 0 < δ5, δ6, δ7 < 1 and M5, M6, M7 > 0 be fixed numbers. Suppose
that δ6, M5, M6 and M7 satisfy conditions (a), (b), (c) and (d) given at the beginning
of this section, respectively. Set

t = 21/3(n + 1)2/3
(
1− 2

√
λ

n + 1
)

so that
2
√

λ

n + 1
= 1− t

21/3(n + 1)2/3
.(7.10)

We have the following estimates for the large n behavior of φn(λ):

(i) If 0 ≤ 2
√

λ
n+1 ≤ 1− δ5, ∣∣log φn(λ)

∣∣ ≤ C exp(−cn),

for some constants C, c which may depend on δ5.
(ii) If 1

2 ≤ 2
√

λ
n+1 ≤ 1− M5

21/3(n+1)2/3 ,∣∣log φn(λ)
∣∣ ≤ C exp(−ct3/2),

for constants C,c independent of M5.
(iii) If 1− M6

21/3(n+1)2/3 ≤ 2
√

λ
n+1 ≤ 1+ M6

21/3(n+1)2/3 , so that −M6 ≤ t ≤ M6, there is a
constant C(M6) which depends on M6, and a constant C which is independent
of M6, such that∣∣log φn(λ) −

∫ ∞

t

2imPII
1,22(y)dy

∣∣ ≤ C(M6)
n1/3

+ Ce−
1
4 M

3/2
6 .
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(iv) If 1 + M7

21/3(n+1)2/3 ≤ 2
√

λ
n+1 ≤ 1 + δ6,

log φn(λ) ≤ 1
96

t3 + C(M7),

for a constant C(M7).
(v) [Jo1] If 1 + δ7 ≤ 2

√
λ

n+1 ,

φn(λ) ≤ Ce−Cλ ≤ Ce−cn2
.

The really new results in this lemma are (iii) and (iv). Indeed, (i) and (ii) can
also be obtained from (1.19), and as indicated, (v) is given in [Jo1].

8. De-Poissonization lemmas

In this section, we present two lemmas which show that φn(N) is a good approx-
imation of qn,N = fN,n/N !.

We need a lemma showing the monotonicity of qn,N in N . The statement and
proof can be found in [Jo1].

Lemma 8.1. For all n, N ≥ 1,

qn,N+1 ≤ qn,N .

Using this monotonicity result, the following Tauberian-like “de-Poissonization”
lemma can be proved. This is a modification of Lemma 2.5 in [Jo1] and the proof
is the same.

Lemma 8.2. Let m > 0 be a fixed real number. Set

µ
(m)
N = N + (2

√
m + 1 + 1)

√
N log N

and

ν
(m)
N = N − (2

√
m + 1 + 1)

√
N log N.

Then there are constants C = C(m) and N0 = N0(m) such that

φn(µ(m)
N )− C

Nm
≤ qn,N ≤ φn(ν(m)

N ) +
C

Nm

for N ≥ N0, 0 ≤ n ≤ N .

The reader will observe that the above lemma is actually enough for all of our
future calculations. Nevertheless, for convenience and the purpose of illustration,
we use the following lemma for the convergence of moments.

Lemma 8.3. There exists C > 0 such that

qn,N ≤ Cφn(N −
√

N), 1− qn,N ≤ C
(
1− φn(N +

√
N)
)

for all sufficiently large N , 0 ≤ n ≤ N .



LONGEST INCREASING SUBSEQUENCE 1169

Proof. Note that qn,N ≥ 0. Using Lemma 8.1 and Stirling’s formula for sufficiently
large N , we have from (1.11),

φn(N −
√

N) =
∞∑

N ′=0

e−(N−√N)(N −√N)N ′

(N ′)!
qn,N ′

≥
N∑

N ′≥N−√N

e−(N−√N)(N −√N)N ′

(N ′)!
qn,N ′

≥ qn,N

N∑
N ′≥N−√N

e−(N−√N)(N −√N)N ′

(N ′)!

≥ Cqn,N

N∑
N ′≥N−√N

e−(N−√N)(N −√N)N ′

(N ′)N ′+1/2e−N ′ = Cqn,N

N∑
N ′≥N−√N

ef(N ′),

where f(x) = −(N − √N) + x log(N − √
N) + x − (x + 1

2 ) log x. One can easily
check that f(x) is a decreasing function for x ≥ (N −√N). Thus

φn(N −
√

N) ≥ Cqn,N

√
Nef(N) = Cqn,Ne

√
N+N log(1−1/

√
N) ≥ Cqn,N ,

for sufficiently large N , 0 ≤ n ≤ N .
For the second inequality, note that qn,N ≤ 1 by definition. Again, using

Lemma 8.1 and Stirling’s formula for sufficiently large N ,

1− φn(N +
√

N) =
∞∑

N ′=0

e−(N+
√

N)(N +
√

N)N ′

(N ′)!
(1− qn,N ′)

≥ C(1 − qn,N )
N+

√
N∑

N ′=N

eg(N ′),

where g(x) = −(N +
√

N)+x log(N +
√

N)+x− (x+ 1
2 ) log x. One can check that

for N ≤ x ≤ N +
√

N , g′′(x) < 0 so that min g(x) = min
(
g(N), g(N +

√
N)
)
. If

N is sufficiently large, min
(
g(N), g(N +

√
N)
)

= g(N +
√

N) = − 1
2 log(N +

√
N).

Therefore

1− φn(N +
√

N) ≥ C(1− qn,N )
√

Neg(N) ≥ C(1− qn,N ),

for sufficiently large N , 0 ≤ n ≤ N .

9. Proofs of the main theorems

In this section, we prove the main theorems.

Proof of Theorem 1.1. Assume for definiteness that t < 0. For t ≥ 0, the calcula-
tion is similar. From the definition of qn,N ≡ fN,n

N ! ,

FN (t) = Prob(
lN − 2

√
N

N1/6
≤ t) = q[2

√
N+tN1/6],N .(9.1)

Set

n = [2
√

N + tN1/6].
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As t is fixed, observe that 0 ≤ n ≤ N , as N →∞. Using Lemma 8.2 with any fixed
value of m > 0, we have

φn(µ(m)
N )− C

Nm
≤ FN (t) ≤ φn(ν(m)

N ) +
C

Nm
.

Set

tN = 21/3(n + 1)2/3
(
1− 2

√
µ

(m)
N

n + 1
)

(cf. the definition of t in (7.10)). Then, for all large N ,

2t ≤ tN ≤ 1
2
t and lim

N→∞
tN = t.

Let M6 ≥ 2|t| be any sufficiently large, fixed number satisfying condition (c) in
Lemma 7.1. Using Lemma 7.1 (iii), we have, for some constant C(M6) which
depends on M6, and a constant C which is independent of M6,

φn(µ(m)
N ) = exp

(∫ ∞

tN

2imPII
1,22(y)dy

)(
1 + OM6(

1
n1/3

) + O(e−
1
4 M

3/2
6 )

)
.

Taking N →∞, and then taking M6 →∞, we obtain

lim
N→∞

φn(µ(m)
N ) = exp

(∫ ∞

t

2imPII
1,22(y)dy

)
.

For φn(ν(m)
N ), we obtain the same limit by a similar calculation,

lim
N→∞

φn(ν(m)
N ) = exp

(∫ ∞

t

2imPII
1,22(y)dy

)
.

Thus, recalling d
dx2i(mPII

1 )22(x) = u2(x) in (2.18), integration by parts yields

lim
N→∞

Prob

(
lN − 2

√
n

N1/6
≤ t

)
= exp

(∫ ∞

t

2imPII
1,22(y)dy

)
= F (t).

Proof of Theorem 1.2. Integrating by parts,

EN (χm
N ) =

∫ ∞

−∞
tmdFN (t) = −

∫ 0

−∞
mtm−1FN (t)dt +

∫ ∞

0

mtm−1(1− FN (t))dt,

where FN (t) ≡ Prob

(
lN−2

√
N

N1/6 ≤ t

)
as in Theorem 1.1. From Theorem 1.1, we

have pointwise convergence of FN (t) to F (t). We need uniform control of FN for
large N . Let M > 0 be a sufficiently large, fixed number, and let 0 < δ < 1

4 be a
fixed, sufficiently small number.

Set n = [2
√

N + tN1/6]. First consider the case when t ≤ −M . If t < −2N1/3,
then FN (t) = Prob(lN ≤ 2

√
N + tN1/6) ≤ Prob(lN < 0) = 0. For −2N1/3 ≤ t ≤

−M , (9.1) and Lemma 8.3 yield

FN (t) = qn,N ≤ Cφn(N −
√

N).(9.2)

If −2N1/3 ≤ t ≤ −2δN1/3, when N is sufficiently large,

2
√

N −√N

n + 1
≥

2
√

N(1 − 1√
N

)1/2

2
√

N + tN1/6 + 1
≥ 2

√
N(1 − δ

4 )

2(1− δ)
√

N + 1
≥ 1 +

δ

2
.
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Thus, using Lemma 7.1 (v), for large N ,

φn(N −
√

N) ≤ Ce−cN ≤ Cect3 .(9.3)

If −2δN1/3 ≤ t ≤ −M ,

2
√

N −√N

n + 1
≤ 2

√
N

2
√

N − 2δ
√

N
≤ 1 + 2δ

and, using the monotonicity of (2
√

λ− x)/x1/3 as a function of x ≤ 2
√

λ,

21/3

(
2
√

N −√N − (n + 1)
(n + 1)1/3

)
≥ 21/3

(2
√

N(1 − 1√
N

)1/2 − (2
√

N −MN1/6 + 1)

(2
√

N −MN1/6 + 1)1/3

)
≥ M

2

as N →∞. Thus, we have for −2δN1/3 ≤ t ≤ −M ,

1 +
1
2M

21/3(n + 1)2/3
≤ 2

√
N −√N

n + 1
≤ 1 + 2δ.

Therefore, from Lemma 7.1 (iv), provided M
2 satisfies condition (d) and 2δ satisfies

condition (a),

φn(N −
√

N) ≤ CM exp
(
− 1

96
(
21/3(n + 1)2/3(

2
√

N −√N

n + 1
− 1)

)3)
.(9.4)

On the other hand, using the monotonicity of (2
√

λ − x)/x1/3 as a function of
x ≤ 2

√
λ,

21/3

(
2
√

N −√N − (n + 1)
(n + 1)1/3

)
≥ 21/3

(2
√

N(1− 1√
N

)1/2 − (2
√

N + tN1/6 + 1)

(2
√

N + tN1/6 + 1)1/3

)
≥ − t

2

for all −2δN1/3 ≤ t ≤ −M , as N →∞. Therefore (9.4) gives us

φn(N −
√

N) ≤ C(M) exp(
1

768
t3)(9.5)

for −2δN1/3 ≤ t ≤ −M .
Inserting the above estimates (9.3) and (9.5) into (9.2), we obtain

FN (t) ≤ C(M)ect3 for −2N1/3 ≤ t ≤ −M,(9.6)

and as FN (t) = 0 for t < −2N1/3, it follows by the dominated convergence theorem
that

lim
N→∞

∫ 0

−∞
mtm−1FN (t)dt =

∫ 0

−∞
mtm−1F (t)dt.(9.7)

Now consider the case when t ≥ M . If t > N5/6 − 2N1/3, then 1 − FN (t) =
1−Prob(lN ≤ 2

√
N +tN1/6) ≤ 1−Prob(lN > N) = 0. For M ≤ t ≤ N5/6−2N1/3,

again, (9.1) and Lemma 8.3 yield

1− FN (t) = 1− qn,N ≤ C(1− φn(N +
√

N)).(9.8)
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If 2δN1/3 ≤ t ≤ N5/6 − 2N1/3, when N is sufficiently large,

2
√

N +
√

N

n + 1
≤ 2

√
N(1 + δ

4 )

2
√

N + 2δ
√

N
≤ 1− δ

2
.

Thus, using Lemma 7.1 (i),

1− φn(N +
√

N) ≤ Ce−cn ≤ Ce−c
√

N ≤ Ce−ct3/5
.(9.9)

If M ≤ t ≤ 2δN1/3, similar calculations to the case −2δN1/3 ≤ t ≤ −M yield

1
2
≤ 1− 2δ ≤ 2

√
N +

√
N

n + 1
≤ 1−

1
2M

21/3(n + 1)2/3
.

Therefore, from Lemma 7.1 (ii), as N →∞,

1− φn(N −
√

N) ≤ exp
(
−c
(
21/3(n + 1)2/3(1 − 2

√
N +

√
N

n + 1
)
)3/2

)
,(9.10)

provided 1
2M satisfies condition (d). However, as in the case −2δN1/3 ≤ t ≤ −M ,

we have

21/3

(
(n + 1)− 2

√
N +

√
N

(n + 1)1/3

)
≥ 21/3

( (2
√

N + tN1/6)− 2
√

N(1 + 1√
N

)1/2

(2
√

N + tN1/6)1/3

)
≥ t

2

for all M ≤ t ≤ 2δN1/3, as N →∞. Therefore (9.10) gives us

1− φn(N −
√

N) ≤ C exp(−ct3/2)(9.11)

for M ≤ t ≤ 2δN1/3.
Inserting the above estimates (9.9) and (9.11) into (9.8), we obtain for M ≤ t ≤

N5/6 − 2N1/3

1− FN (t) ≤ Ce−ct3/5
(9.12)

as N → ∞. Once again, as 1 − FN (t) = 0 for t > N5/6 − 2N1/3, it follows by the
dominated convergence theorem that

lim
N→∞

∫ ∞

0

mtm−1(1− FN (t))dt =
∫ ∞

0

mtm−1(1− F (t))dt.(9.13)

Appendix A.

As advertised in the Introduction, in this Appendix we give a new derivation of
the formula

∞∑
N=0

λNFN (n)
N !

= det(dj−k)0≤j,k≤n−1,(A.1)

where dj = (2π)−1
∫ 2π

0 exp(2
√

λ cos θ − ijθ)dθ, and FN (n) is the distribution func-
tion for the length, `N (π), of the longest increasing subsequence in the random
permutation π from SN . We set F0(0) = 1.

Let µ = (µ1, µ2, . . . , µr, 0, 0, . . . ), µ1 ≥ µ2 ≥ · · · , be a partition of N , i.e. µj ,
1 ≤ j ≤ r, are positive integers and N = µ1 + · · · + µr; we write µ ` N . With
µ we can associate a Young diagram, also denoted by µ, in the standard way; see
for example [Sa]. In the Young diagram there are µj boxes in the j-th row. If we
insert the numbers 1, . . . , N in the boxes in such a way that the numbers in every
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row and column are increasing we get a (standard) Young tableau t ; t has shape
µ, s(t) = µ. Let r(µ) denote the number of rows in µ.

Schensted [Sc] has constructed a certain bijection, the Schensted correspondence,
between the permutation group SN and pairs of Young tableaux (t, t′) with the same
shape s(t) = s(t′) = µ, where µ ` N . This correspondence has the property that if
SN 3 π → (t, t′), µ = s(t), then `N(π) equals the length, µ1, of the first row in µ,
and the length, `′N(π), of the longest decreasing subsequence in π equals r(µ), the
number of rows in µ. For details see [Sa].

If we put the uniform probability distribution on SN , then clearly the random
variables `N and `′N have the same distribution (just reverse the permutation). Let
f(µ) denote the number of Young tableaux with shape µ. Then, by the Schensted
correspondence,

FN (n) =
1

N !

∑
µ`N

r(µ)≤n

f(µ)2.(A.2)

If we set hj = µj + r− j, r = r(µ), we have the following formula, due to Frobenius
and Young:

f(µ) = N !
∏

1≤i<j≤r

(hi − hj)
r∏

i=1

1
hi!

(A.3)

(see for example [Si]). Note that N =
∑r

j=1 µj =
∑r

j=1 hj − r(r − 1)/2 and
hj−1 − hj = µj−1 − µj + 1 ≥ 1. Combining the formulas (A.2) and (A.3) we get

FN (n) = N !
n∑

r=1

1
r!

∑
(∗)

∆(h)2
r∏

j=1

1
(hj !)2

,(A.4)

where the (∗) means that we sum over all different integers hi ≥ 1 such that∑
hj = N +r(r−1)/2, and ∆(h) =

∏
i<j(hj−hi) is the Vandermonde determinant.

That we can remove the ordering of the hj ’s in (A.4) follows from symmetry under
permutation of h1, . . . , hr. The constraint

∑
hj = N + r(r − 1)/2 is removed by

the Poissonization

φn(λ) = e−λ
∞∑

N=0

λN

N !
FN (n) = e−λ[1 +

n∑
r=1

λ−r(r−1)/2Hr(λ)],(A.5)

where

Hr(λ) =
1
r!

∑
h∈Zr

+

∆(h)2
r∏

j=1

λhj

(hj !)2
.

We have used the fact that
∑

hj ≥ 1 + · · ·+ r = r(r − 1)/2 + r and N ≥ r, since
the hj ’s are different integers. The condition that the hj ’s are different can then
be removed since otherwise ∆(h) = 0. Observe that Hr(λ) is a Hankel determinant
with respect to the discrete measure

ν({m}) =
λm

(m!)2
, m ∈ Z+

(see [Sz1]), i.e.

Hr(λ) = det(
∞∑

m=1

mj+k λm

(m!)2
)0≤j,k≤r−1.
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If qj , j ≥ 0, are any polynomials with deg qj = j and leading coefficient 1, row and
column operations on the determinant give

Hr(λ) = det(
∞∑

m=1

qj(m)qk(m)
λm

(m!)2
)0≤j,k≤r−1.(A.6)

We now make a particular choice of qj , qj(x) = x(x − 1) · · · (x − (j − 1)), if j ≥ 1
and q0(x) = 1, so that

aj dj

daj
am = qj(m)am, m, j ≥ 0.(A.7)

The elements in the Hankel determinants can then be written
∞∑

m=1

qj(m)qk(m)
λm

(m!)2
= ajbk dj

daj

dk

dbk

∞∑
m=0

ambm

(m!)2

∣∣∣∣∣
a=b=

√
λ

− δj0δk0.(A.8)

Now,
∞∑

m=0

ambm

(m!)2
=

1
2π

∫ 2π

0

eaeiθ+be−iθ

dθ

and hence we can perform the differentiations in (A.8) and get
∞∑

m=1

qj(m)qk(m)
λm

(m!)2
= λ(j+k)/2dj−k − δj0δk0,

where dj−k = (2π)−1
∫ 2π

0 exp(2
√

λ cos θ − i(j − k)θ)dθ. Inserting this identity into
the formula (A.6) yields

Hr(λ) = λr(r−1)/2(Dr −Dr−1), r ≥ 1,(A.9)

where Dr is the Toeplitz determinant det(dj−k)0≤j,k≤r−1 and D0 = 1. Hence, using
the formula (A.5), we get φn(λ) = e−λDn, which is what we wanted to prove.

In the remaining part of this Appendix we will give a heuristic argument showing
why we can expect the random variable `N (π) to behave like the largest eigenvalue
of a random hermitian matrix. From our considerations above we see that

FN (n) =
1

N !

∑
µ`N
µ1≤n

f(µ)2.

By the same computations as above this leads to

φn(λ) = e−λ[1 +
∞∑

r=1

λ−r(r−1)/2Hr(λ; n)],(A.10)

where

Hr(λ; n) =
1
r!

∑
h∈{1,...,n+r−1}r

∆(h)2
r∏

j=1

λhj

(hj !)2
.

Note that Hr(λ; n) ↗ Hr(λ) as n →∞. We can think of

1
r!Hr(λ)

∆(h)2
r∏

j=1

λhj

(hj !)2
=

1
r!Hr(λ)

e−2
∑

i<j log |hi−hj |−1+
∑

j [(log λ)hj+2 log(hj !)]

(A.11)
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as the probability of the configuration h ∈ Zr
+. This probability has the form of a

discrete Coulomb gas on Z+ at inverse temperature β = 2 confined by an external
potential. An N × N random hermitian matrix with a probability density of the
form Z−1

N exp(−Tr V (M)) has an eigenvalue density
1

ZN
e−2

∑
i<j log |xi−xj |−1+

∑
j V (xj),

with x ∈ RN ; x1, . . . , xN are the eigenvalues of M . Thus we can think of the hj ’s
as some kind of “eigenvalues”.

Let

Pr(λ; n) = Hr(λ; n)/Hr(λ),

i.e. Pr(λ; n) is the probability that the largest “eigenvalue” is ≤ n + r − 1. Then,
by (A.9) and (A.10),

φn(λ) = e−λ[1 +
∞∑

r=1

Pr(λ; n)(Dr −Dr−1)] = e−λ +
∞∑

r=1

Pr(λ; n)(φr(λ)− φr−1(λ)).

(A.12)

Now, the essential contribution to the right-hand side of (A.12) comes from r around
2
√

λ since otherwise φr(λ)− φr−1(λ) is very small. Thus

φn(λ) ≈ P2
√

λ(λ; n),

i.e. φn(λ) is like the probability that the largest “eigenvalue” in the discrete
Coulomb gas (A.11) is ≤ n + 2

√
λ.
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preprint, LANL E-print math.CO/9811154.

[Ul] S.M.Ulam, Monte Carlo calculations in problems of mathematical physics, in Modern
Mathematics for the Engineers, E.F.Beckenbach, ed., McGraw-Hill, 261-281, 1961.
MR 23:B2202

[VK1] A.M.Vershik and S.V.Kerov, Asymptotics of the Plancherel measure of the symmetric
group and the limiting form of Young tables, Soviet Math. Dokl., 18, 527-531, (1977).
MR 58:562



1178 JINHO BAIK, PERCY DEIFT, AND KURT JOHANSSON

[VK2] A.M.Vershik and S.V.Kerov, Asymptotic behavior of the maximum and generic di-
mensions of irreducible representations of the symmetric group, Functional Anal.
Appl., 19, no.1, 21-31, (1985). MR 86k:11051

[Wi] H.Widom, personal communication.

Courant Institute of Mathematical Sciences, New York University, New York, New

York 10012

E-mail address: baik@cims.nyu.edu

E-mail address: deift@cims.nyu.edu

Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm,

Sweden

E-mail address: kurtj@math.kth.se


