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Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of Computa-

tion—probubikmc compzmzticm; F.2. 1 [Analysis of Algorithms and Problem Complexity]: Numeri-
cal Algorithms and problems—cornputatlons of transforms, computations on polynomials: G.3

[Mathematics of Computing]: Probabihty and Statistics—probabilistic algorithms; 1.2.6 [Artificial
Intelligence]: Learning—concept learning

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: ACO circuits, approximation, Booledn functions. circuits.
complexity, Fourier transform, harmonic analysis learning.

1. Introduction

Harmonic analysis is widely used throughout classical mathematics (see [4]).

Recently, Kahn et al. [9] suggested using harmonic analysis on the hypercube in

the study of Boolean functions. They proved some inequalities which Fourier

coefficients of Boolean functions must satisfy, and derived as a result bounds

on the “influence” of variables on Boolean functions. Harmonic analysis was

used in [3] to obtain lower bounds for the size of decision trees, DNF, and

CNF.

In this paper, we study how the conzputational complexip of Boolean func-

tions is related with their Fourier transform. Specifically, we study the Fourier

transform of functions computable by constant depth circuits and derive an

inequality that the transform of such functions satisfies. This inequality is then

used to establish new results on complexity and learnability of constant depth

circuits.

The best-known lower bound for constant depth circuits is that they require

a very large size to compute the parity function [1, 5, 8, 20]. In fact, small

constant depth circuits cannot even decently approximate the parity function

(see [81). This fact directly bears on the Fourier transform, because the Sth
Fourier coefficient of ~ measures, by definition, the correlation between ~ the

parity of the input bits in S. Consequently, each “high” Fourier coefficient of a

function computable by a small constant depth circuit must be very small

(“high” means coefficients corresponding to sets of large cardinality).

Our Main Lemma is an extension of this fact: Not only is each individ-

ual “high” Fourier coefficient small, but in fact the sum of squares (the

“power spectram”) associated with all high Fourier coefficients is very small.

Specifically:

MAIN LEMMA. Let f be a Boolean function on n l’ariables computable by a

Boolean circuit of depth d and size M, and let t be any integer. Then

x f(s)’ < 2&f2-’’’/2o,
Sc{l n}.lsl>f

where ~(S) denotes the Fourier Transform off at S.

The first application of this lemma is an algorithm for learning ACO

Boolean functions. To learn functions computed by a polynomial-size, con-

stant-depth circuit, the algorithm proceeds as follows: It first observes the

behavior of the circuit on 0( np”’y’o~(”) ) inputs chosen uniformly at random; this

allows it to derive (with high probability) a very good approximation to all the

“low” Fourier coefficients of the function computed by the circuit. Since the

“high” coefficients are guaranteed by the Main Lemma to have very little

“power,” these approximations of the “low” Fourier coefficients are informa-



Constant Depth Circuits, Fourier Transform, and Learnability 609

tive enough to predict the behavior of the circuit on inputs chosen uniformly at

random. Since there are only a few “low” coefficients, the approximation can

be done “efficiently.”

There are three key ideas on which this learning algorithm relies. The first is

that lower bounds (i.e., negative results) may be used to construct learning

algorithms (i.e., positive results). A similar phenomenon appears

in the study of pseudorandom generators, where lower bounds are used in

order to deterministically simulate randomized algorithms [13, 19]. The second

one says that learning can be achieved through estimating the Fourier coeffi-

cients, an observation that may be useful elsewhere as well. The third is the

application of real arithmetic and real valued functions to approximate Boolean

functions.

Our algorithm does not fall into the category of distribution-fi-ee learning,

introduced by [18]. First and foremost, it runs in time O(rzpO1ylOg(“)) and not in

polynomial time. Secondly, it learns circuits only under the uniform probability

distribution on inputs, and not under an arbitrary distribution. On the positive

side, the concept class being learned is substantially richer than previously

achieved, Earlier positive results in learning involve classes whose combinato-

rial complexity is much more restricted, for example, k-DNF [18], k-decision

lists [15], etc. Results involving richer classes, as iVCl, have been negative (see

[10]).

Based on our Main Lemma, we derive a number of additional interesting

properties of functions in AC”.

(1) Every function in ACO can be approximated well by a real polynomial of
low degree. This complements the results of [14] and [17], showing that

such an approximation is possible over finite fields.

(2) Every function in AC() has low-average sensitivity to its input. Changing

one bit of the input is very unlikely to change the value of the function,

when the original input and the bit are chosen at random.

(3) Functions in AC” cannot be pseudorandom function generators in the
sense of [6].

(4) Functions in ACO cannot distinguish between uniform distributions and
polynomially bounded polylog-wise independent probability distributions.

(A polynomially bounded distribution over Z: is a distribution in which any

input has probability less than poly(n)/2”.)

The paper is organized as follows: Section 2 is devoted to notations

and definitions. It includes all the necessaxy background on Fourier trans-

form on the hypercube. The Main Lemma is proved in section 3. Section

4 is devoted to the learning algorithm and Section 5 contains further

applications of the Main Lemma.

2. Notation

2.1. FOURIER TRANSFORM. Boolean functions on n variables will be consid-

ered as real valued functions fi {O, 1}” - { – 1, 1}. The set of all real functions

on the cube is a 2 “-dimensional real vector space with an inner product defined

by

(g>.f-) = 2-” Jrf(x)g(x) = -E(d)
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(where E is expectation) and as usual the norm of a function is defined: 11~11

= ~~-, which is the Euclidean norm.

Many of the elementa~ facts in harmonic analysis maybe interpreted in the

following way: Consider the linear space of real functions defined on a group, a

clever choice of a basis for this linear space may be very helpful. This special

basis is given by the characters of the group at hand. In the present case, the

group is the cube Z; and the basis is defined as follows: For each subset S of

{1 ,. ..> n}, define the function XS:

{

+ 1 if Z,=~ x, is even,
x~(x~, . . ..xn) =

– 1 if Z, ~s x, is odd.

The following properties of these functions can all be easily verified:

—For every A, B: X,4 XB = x~~~, where AA B is the symmetric difference of

A and B.

—The family { xs.} for all S c {1 . . . n} forms an orthonormal basis, that is, if

A #B, then (x~,,y~) = O, and for every A, (x~,x~) = 1.

Any real-valued function on the cube can be uniquely expressed as a linear

combination of the XS‘s, namely, X$ c~ xs, where c~ are real constants. These

coefficients (c being viewed as a real function on the cube) constitute the

function’s Fourier transform. For aAfunction ~ and S c {1,..., n}, the Sth

Fourier coefficient of S denoted by ~(S) is what was previously called c-~, that

is, ~ = ~~ ~(S)x~.
Since the XS’s are an orthonormal basis, Fourier coefficients are found via:

f(’$)= (“flxs).

For Boolean ~, this specializes to:

[ 1[ 1.f?S) =Pr ~(x) = @xl –Pr jlx) + Oxl ,
1=s 1=s

where x = (xl, xZ, ..., x.) is chosen uniformly at random in {O, 1}”.

The orthonormality of the basis implies Parseval’s identity:

llfll’ = x f(s)’.
Sc{l.., n}

Note that if ~ is Boolean then 11~11= 1.

Finally we define the de~;ee of a Boolean function, deg( ~) to be the size of

the largest set S such that ~(S) # O. Note that this equals the degree of ~ as a

real (multi-linear) polynomial.

2.2. ACO CIRCUITS. An AC() circuit consists of AND and OR gates, with

inputs xl, . . ..x~ and 21, ...,1,,. Fanin to the gates is unbounded. The size of

the circuit (i.e., the number of the gates) is bounded by a polynomial in n, and

its depth is bounded by a constant. Without loss of generality, the circuit is

leveled, where gates at level i have all their inputs from level i – 1, all gates at

the same level have the same type, which is alternately AND and OR. (For a

more detailed description, see [5], [8], and [20].) The set of functions com-

putable by an ACO circuits of depth d is denoted by AC O[d].
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2.3. RANDOM RESTRICTION. A restriction p is a mapping of the input

variables to O, 1, and *. The function obtained from f(xl, ..., x,, ) by applying a

restriction p, is denoted by fP, its variables are those x, for which p(x, ) = *,

all other variables are set according to p.

For a set S= {x,,,..., x,,,} and a vector R = (rl, ..., rlsl) G {O, l}lsl, let

S - R denote the restriction p, such that p(x,,) = rj, for x,, ~ S, and P(X) = *,

for x @ S.

A random restriction with a parameter p is obtained by setting each xl,

independently. We choose a value from {*, O, 1}, such that Pr[ p(xl) =

*1 = p, and Pr[ p(xl) = 1] = Pr[ p(x~) = O] = (1 – p)/2. In many cases, we
abbreviate the notation and write Pr[ * ] rather than Pr[ p(x, ) = *].

2.4. MISCELLANEOUS. The complement of a set S c {1 . . . n} is denoted by

SC. For a real number r, the value of sign(r) is 1 if r is positive, – 1 if it is

negative and sigrz(0) = O.

A minterm of a Boolean function is a minimal set of variables with the

property that setting all of them to one forces the function to be one. (In the

restriction language, it is a minimal set of variables S such that f~ + Jx) - 1.)

A maxterm is as minimal set of variables S that forces the function to be zero

(i.e., ~$+, - O).

3. Main Lemma

Hastad’s Switching Lemma [8] states that ACO functions tend to simplify in a

significant way when subjected to random restrictions. This beautiful lemma is

the main tool of the present article. We use a stronger statement than the one

originally made by Hastad. It was observed by Hastad and Boppana (see [8, p.

65]) that the original proof yields this stronger version as well.

LEMMA 1 (HASTAD). Let f be gillen by a CNF formula where each clause has

size at most t, and choose a random restriction p with parameter p (i.e.,

Pr[ p(x,) = * ] = p). With probability of at least 1 – (5pt)’, fP can be expressed as

a DNF formula each clause of which has size of at most s, and the clauses all

tZCCepl disjoint sets of inputs.

We require the following simple corollary,

COROLLARY 1. If f is given by a CNF (or DNF ) of bottom fanin at most t,

and p is chosen at random with Pr[ * ] = p, then

pr[deg(fP) > s] < (5pt)’.

PROOF. Whenever fP satisfies conditions (1) and (2) of Hastad’s lemma the

following also holds: For every set S, IS I > s, each clause of the DNF formula

for fP accepts exactly the same number of strings having even or odd parity on

S. This happens because at least one of the variables in S does not appear in
the clause (since the clause size is bounded by s). The corollary follows since

the clauses all accept disjoint sets of inputs and thus fP accepts an equal

number of strings having even or odd parity on S. ❑

Repeated application of Hastad’s lemma yields the following lemma.
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LEMMA 2. Let f be a Boolean function computed by a circuit of size M and

depth d. Then

P~[deg(fP) > s)] s M2-S,

where p is a random restriction with

~r[*]= 1
lod~d-1 “

PROOF. We view the restriction p as obtained by first having a random

restriction with Pr[ * ] = 1/10, and then d – 1 consecutive restrictions each

with Pr[ * ] = 1/(10 s).

With high probability, after the first restriction, at the bottom level of the

circuit all fanins are at most s. To see this, we consider two cases for each gate

at the bottom level of the original circuit:

(1)

(2)

The original fanin is at least 2s. In this case, the probability that the gate

was not eliminated by p, that is, that no input to this gate got assigned a O

(assuming without loss of generality that the bottom level is an AND level)
is at most 0.552’ < 2-’;

The original fanin is at most 2s. In this case, the probability that at least s

inputs got assigned a * is at most
()

2S 0. IS <2-’. Thus, the probability

failure at this stage is at most ml 2 ‘;, where ml is the number of gates

the bottom level.

We now apply d – 2 more restrictions with Pr[ * ] = 1/( 10,s). After each

of

at

of

these, we use Hastad’s switching lemma to convert the lower two levels from

CNF to DNF (or vice versa), and collapse the second and third

levels (from the bottom) to one level, reducing the depth by one. For each gate

of distance two from the inputs, the probability that it has a minterm

(respectively, maxterm) of size larger than s, is bounded by 2-s. The probability
that some gate has a minterm (respectively, maxterm) larger than s is no more

than ml 2 ‘$, where m, is the number of gates at level i.

After these d – 2 stages we are left with a CNF (or DNF) formula of bottom

fanin at most s. We now apply the last restriction with Pr[ * ] = 1/(10,s) and by

Corollary 1 get a function with degree at most s. The probability of failure at

this stage is at most 2‘s.

To compute the total probability of failure, we observe that each gate of the

original circuit contributed 2–’ probability of failure exactly once. ❑

At this point, we start analyzing how the Fourier transform of f relates to

the probability of its restrictions having low degree. We start with a lemma

relating the Fourier transform of a function f with the transforms of its

restrictions.

LEMMA 3. Let f be a Boolean fimction and S an arbitra~ subset of the

llariables. Then, for any subset of the uariables A:

f(A) =2-’s” X X.4ns(R)i’+~(A n ‘).

R ● {O, I}ls’l
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PROOF. Recall that !(A) = El[ f XA ]. In the right-hand side, we are simply

first averaging over variables in S and then in variables in S’. We can rewrite

the right-hand side as:

First, we can rearrange the summation such that,

‘2-1s”1 ~ ‘2-ISI ~
XAn Sc(Rl)XAn S(R2)fS’+R$R2).

RI ●{0, l)ISCI R2G{0,1}IS

Note that

XAn Sc(Rl)XAn S(R2) = X,4(X):

where x, when restricted to the variables in S’, is RI and when restricted to

the variables in S is Rz. Similarly, fs. ~ ~JRz ) = f(x). Furthermore, averaging

over RI and Rz is like averaging over x = {O, 1}”. Finally, by definition

1S1+ IScl = n; therefore, we can rewrite the expression as,

which is by definition ~(A). ❑

LEMMA 4. Let f be a Boolean function and S an arbitray subset. For any
BcS:

PROOF. By Lemma 3

( )~ ~(11 u C)’ = ~ 2-IS(I ~ x,uC(R)~, +~((B u C) n S) 2.

Ccs’ Ccs’ R ●{0, l)ISCI

Note that XB” C(R) = XC(R) and (B u C) n S = 1?. Therefore, the above

expression equals:

Now we can simply multiply and get

2-1s’1
x

[ 1~ &+RfB)&+RjB)2-1s’1~XC(R1 @ R2) .
RI={O,l)IS’I R2G{0,1)ISCI Ccs’

One can verify that the expression between the brackets is one if RI = Rz and

otherwise zero. Therefore, the expression can be simplified to

2-ISCI ~ &+ R(B)2>

R= {O, l}ISCI

which completes the proof. ❑
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LEMMA 5. Let f be a Boolean function, San arbitra~ subset, and k an integer.

The?l

~ ~(A)2 <F’r[deg(f~.+~) > k],
.4,1,4 nSl>k

where R is a O– 1 assignment to the variables in SC chosen at random.

PROOF. The main idea is the following: Consider an arbitra~ assignment

R. If deg( f~. ~ ~) s k, then for any A, such that IA n SJ > k, the correspond-

ing Fourier coefficient is zero, that is, fYc+~(A n s) = o.
On theA other hand, since ~$. ~ ~ is a Boolean function, the value of

xl ~1> ~ fs. ~ ~(B)2 is bounded by one. Therefore, it is sufficient to show that

[1 1~ f(~)’=ER~&+~(B)2 .
,4,1Ans[>k Bl>k

Rewrite the left-hand side as

x f(A)2 = ~ ~ ~(D u B)2.
.4. /,4n Sl>k BcS,lBl>k DcSC

By Lemma 4, this equals

~ Q-IS’I ~ &+ R(B)2,

BcS,l Bl>k R=(O, I)ISCI

which can be rewritten as

which completes the proof. ❑

By averaging sums as those appearing in Lemma 5 over all subsets S, the

sum of squares of high coefficients can be bounded.

LEMMA 6. Let f be a Boolean function, t an integer, and O < p < 1. Then

where S is a subset chosen at random such that each Latiable appears in its

independently with probability p, and pt ~ 8.

PROOF. Using Chernoff bounds, the probability that IA n S I > pt/2 is at

least 1 – exp( – tp/8) (see [7]). In our case, tp > 8; therefore, we can assume

that the probability of IA n S I > pt/2 is at least 1/2. Each set A

contributes flA)2 to at least half of the sets S, and the lemma follows. ❑

At this point, we have developed all the necessary machinery to prove the

Main Lemma.
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LEMMA 7 (MAIN LEMMA). Let f be a Boolean function computed by a circuit

of depth d and size M, and let t be any integer. Then

PROOF. Fix p =

where S is chosen

probability p. LJsing

l\(lOt(~- 1)/~), and s = pt\2 = tl/d\20. By Lemma 6,

at random such that each variable appears in it with

Lemma 5, this is bounded from above by

1- L J

Consider now the distribution of the restriction S’ + R induced by first

choosing S at random such that each variable appears in it with probability p,

and then choosing a random O– 1 assignment R to the bits in S’. This is exactly

the same distribution as choosing a restriction p at random with Pr[ * ] = p.

since by our choice of p and s, p s l/(lOdsd - l), Lemma 2 applies and the

above quantity is bounded by

2A42-” = 2&fp’’’/2o ❑

4. Learning Constant Depth Circuits

Theoretical machine learning is mainly concerned with learning concepts, i.e.,

Boolean functions. The standard scenario is the following: A class of concepts

is fixed and known to the learner who is trying to identify a specific member in

the class that is unknown to him. To this end, the learner observes pairs of

input/output of the concept. Based on these observations, the learner wishes

to find some concept that is “close” to the unknown concept.

Various models of learning differ on a number of issues: First is the way for

selecting input/output pairs for the learner to observe: They may be specified

by the learning algorithm, randomly chosen from the uniform distribution,

from some unknown distribution, or even by an adversa~. The other issue is

when are two concepts considered “close” to each other. This may be defined

as their probability to agree on inputs drawn uniformly at random, from some

unknown distribution, or from the distribution used to select inputs at the

observation stage.

We consider a learning model with two phases: learning and prediction. In

the learning phase the algorithm is presented randomly chosen inputs x, along

with f ( x). During the prediction phase the algorithm is-only presented random

inputs x, and must output a Prediction f(~)7 for f( x). For
a given distribution D, an algorithm is called an (e, 8, D) prediction

algorithm if

Pr~[~-disagrees withfon more than

1an E fraction of the inputs < S.
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We present an (e, 8, U) algorithm for learning circuits of depth d

and size M, where U is the uniform distribution. For every fixed d, the

algorithm runs in time quasi-polynomial in E, 8, and M. In the learning phase

the algorithm derives good approximations to the Fourier coefficients of ~, and

in the prediction stage these approximate coefficients are used to predict the

value of ~.

4.1. LEARNING PHASE. The algorithm observes ~ on m randomly chosen,

sample points xl, . . . , Xn, where m = 4(2nk/~)ln(2n~/8) and k =

(2O log(2m\6))~. Its approximation for the Sth coefficient of ~ is

For all ISI < k, and as = O, for all I,S > k.

40~o p~E~~~~~~N p~SE@ The predicted value of ~ on input x is

( )f(x) = sign ~ a~x~(x) .
lSl<k

THEOREM 1. The abole algorithm is an ( .s, 8, U) learning algorithm for

circuits of depth d and size M, where U is the uniform distribution.

The proof of Theorem 1 uses the following two lemmas: Lemma 8 shows

with high probability all low-order coefficients are approximated well.

LEMMA 8

[ c]Pr For some S,\Sl <k, I as –~(S)l > J <s
2nk

PROOF. For a subset S, consider the random ~ariable Ys = f(.x)x~(x). The

expected value of Ys is, by definition, f(S). The algorithm esti-

mates this expected value by averaging over m samples. The lemma follows

through a standard application of Chernoff bounds (see [7]). ❑

LEAMMA 9. Let f be a Boolean ji.mction, and g an arbitrary jimction such that

X$(f(S) – j$(S))2 < ~, then Pr[f(x) + sign(g(x))] < ~.

PROOF. Since f is a Boolean function, f(x) # sign(g(x)) implies that

If(x) – g(x)l >1. Note that Ilf – g112 = ~,,(~(x) – g(x))’; thus, the probabil-
ity that If(x) – @x)l > ~ does not exceed IIf – gllz. Finally, by Parseval’s

equality, Ilf – gll” = X~(f(S) – ~(S))2 S e. ❑

Based on the above lemmas, we prove Theorem 1.

PROOF OF THEOREM 1. Consider the function g = Zls ~ ~ ay xs. If IS\ >

k, then F(S) = O. But f has a circuit of depth d and size M, and an

application of the Main Lemma yields:

x (f(s) -E(S))2 = ~ f(s)’ < ;.
lSl>k lSl>k
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By Lemma 8, with probability of at least 1 – 6, there holds (~(S) – ~(S))2 <

●/2nk for every set 1S I < k. Whenever this is the case g satisfies the conditions
of Lemma 9, so that sign(g) disagrees with f on no more than an e fraction of

the inputs. ❑

5. Further Corollaries

In this section, the Main Lemma is used to derive some new properties of

functions in ACO.

5.1. APPROXIMATIONS BY A Low DEGREE POLYNOMIAL. As mentioned pre-

viously, Boolean functions can be thought of as taking real values. So it makes

sense to approximate them with simple real functions such as low-degree

polynomials. This complements the results of [14] and [17], showing that such

approximation is possible over finite fields.

LEMMA 10. Let f G AC O[d], then for et’e~ c >0, there exists a po~nomial p

of degree at most O(log(n/~)~) such that IIf – PII c E.

PROOF. Approximate f by p = Zlsl ~ ~ f~S)ms, where ms = H, ● s X,, where

the input bits xl are taken to have values of 1 and – 1 (respectively, false and

true). The lemma becomes a restatement of the Main Lemma. ❑

It is interesting to note that the results of [14] and [17] for polynomials over

finite fields yield more general, weighted approximations. These weights can

correspond to any probability distribution. Our results apply only for the

uniform distribution.

5.2. Low AVERAGE SENSITIVITY

Definition 1. Let f be a Boolean function, and w ● {O, 1}”. The sensitivity of

f on w is the number of hamming neighbors w‘ of w such that f(w) # f(w ‘).

The auerage sensitivity of f, s(f), is the average over all w ● {0, 1}’ of the

sensitivity of f on w.

This quantity measures how on average the value off is sensitive to changes

in the input. Equivalently, average sensitivity can be defined as the sum of

influences of all variables on f (see [9]) in terms of the Fourier transform of f

it becomes:

LEMMA 11. For any Boolean function f:

s(f) = XIW’(S)2.
s

Comment. In [9], this appears as 4Zsl Sl~(S)z, because the Boolean func-

tions discussed there map to {O, 1}, while here the range is {1, – 1}.

An application of the Main Lemma implies:

LEMMA 12. For any fimction f = ACO[dl, we lzaL1es(f) = O((logn)~).

The bound given by this lemma is not far from optimal as the parity

function on (log n) ‘– 1 bits has sensitivity (log n)~– 1, and can be computed in

AC”[d].
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This lemma gives a general, simple way to prove lower bounds for AC”, and

has recently found some new applications. In [16], it is used to obtain lower

bounds on the number of negations required by ACO circuits. In [12], it is used

to show that universal hashing cannot be done in AC”.

5.3. No PSEUDORANDOM FUNCTION GENERATORS. A function ~:

{0. 1}”2 X {0, 1}’2 + {O, 1} is called a pseudorandom function generator if no
oracle Turing machine M running in polynomial time can distinguish between

a truly random oracle and the oracle ~(s, * ), where s is chosen at random. For

exact definitions as well as constructions of such generators, see [6]. (Here we

are using a function generator that outputs one bit, in contrast to a string of

bits.)

LEMMA 13. There does not exist a pseudorandom function generator in AC().

PROOF. The following algorithm exploits the low-average sensitivity of ACO

functions, in order to distinguish them from a truly random one. The algorithm

chooses a random x. Then, the algorithm flips a random bit in x, denote the

result by x‘. If ~(x) = jlx ‘), then the algorithm guesses ACO fimction; other-
wise, it guesses random function. ❑

5.4. CORRELATION WITH t-WIsE INDEPENDENT PROBABILITY DISTRIBUTIONS.

Consider probability distributions on 2{’” ~‘ ‘II}. Such a distribution K is called

t-wise independent if for every x,, . . . x,, and every .s,, . . . ●,, in

{O, 1} there holds K(X, = q, . . . x,, =

“d

q,) = 2 ‘f. An easy but useful observation

is that if p is consl ered as a real function on the cube, then it is t-wise

independent iff its Fourier transform vanishes on all S of cardinality between 1

and t.

Such distributions play an important role in the design of pseudorandom

generators for ,4C0 [2, 13]. Indeed, it is conjectured in [11] that any distribution

that is polylog-wise independent is a pseudorandom generator for ACO. Specif-

ically, for a real function f on the cube and a probability distribution ~ on it,

let J!ZP(f ) (respectively, E(f) = Eu( f )) be the expectation of f when the input
is chosen according to ~ (respectively, uniformly). The conjecture is that for

~ = ACO[d] and a (log d-l rz)-wise independent p the difference between 13(f)

and ~W(f ) does not exceed 0.1, say. Here we show a result of a similar flavor

that falls short, however, of proving the conjecture.

For the purpose of this section alone, Boolean functions map into {O, 1}.

LEMMA 14. Let f be a Boolean function computable by a circuit of depth d and
size M and let p be a t-wise independent probability distribution, then:

PROOF. Notice that

Ep(f) = 2“(f, p) = 2n z f(s)jMs),
Sc{l.. tz}

where the last equality follows from the orthonormality of the *basis of

characters. Since f maps kto {O, 1} its expectation equals Eu( f ) = f(@), and
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L(@) = 2-”. AIso, p is t-wise independent so XS) = 0, for 1 s 1s1s t. BY

Cauchy-Schwartz inequality

l%(f) - Ew(f)l = 2“ ~ f(s)ji(s) ~ 2“
\sl>t m“

An application of the Main Lemma completes the proof. ❑

The quantity II vII plays an important role in the above bound. Note that

IIid = ~m; therefore, II P112 is the collision probability of the distribu-

tion (the probability that two random values drawn independently according to

v have the same value). In order for our upper bound to be nontrivial (i.e., less

than one), II PII has to be exponentially small. For example, if K is polynomially

bounded, that is, for any x the probability p(x) < poZy(n)/2n, then we get a

meaningful bound. Unfortunately, for our bound to be meaningful, the distri-

bution w has to be “fairly close” to the uniform distribution.

ACKNOWLEDGMENTS. We would like to thank Mauricio Karchmer, Mike Sipser,

Robert Sloan, and Prasoon Tiwari for helpful discussions. We would like to

thank the anonymous referees whose comments helped to both improve and

simplify the presentation.

REFERENCES

1. AJTAI. M. ~~-formulae on finite structure. Ann. Pure Appl. Logic 24 (1983), 1-48.
2. AJTAI, M., AND WIGDERSON, A. Deterministic simulation of probabilistic constant depth

circuits. In Adwmces in computing research, Vol. 5. S. Micali, ed. JAI Press, Greenwich, Ct.,
1989, pp. 199-222.

3. BRANDMAN, Y., HENNESSY, J., AND ORLITSKY, A. A spectral lower bound technique for the
size of decision trees and two level circuits. IEEE Trans. Corrzput. .?9, 2 (1990), 282–287.

4. DYM, H., AND MCKEAN, H. P. Fourier Series and Integrals. Academic Press, Orlando, Fla..

1972.

5. FURST, M., SAKE, J., AND SIPSER, M. Parity, circuits, and the polynomial-time hierarchy.
Math. Syst. Theory 17 (1984), 13-27.

6. GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to construct random functions. J.
ACM 33, 4 (Oct. 1986), 792-807.

7.

8.

9.

10.

11.

12.

13.

HAGERUP, T., AND RUB, C. A guided tour to Chernoff bounds. Inf Proc. Lett. 33 (1989),

305-308.

HASTAD, J. AND BOPPANA, Computational limitations for small depth circuits. Ph.D. disserta-
tion, MIT Press, Cambridge, Mass., 1986.
KAHN, J., KALAI, G., AND LINIAL, N. The influence of variables on Boolean functions. In
Proceedings of the 29th Annual Symposiam on Foundations of Compater Science (White Plains,
N. Y., Oct.). IEEE, New York, 1988, pp. 68-80.
KEARNS, M., AND VALIANT, L. Cryptographic limitations on learning Boolean formulae and

finite automata. In Proceedings of the 21st Annual ACM Symposium on Theoiy of Computing

(Seattle, Wash., May). ACM, New York, 1989, pp. 433-444.
LINIAL, N., AND NISAN, N. Approximate inclusion-exclusion. In Proceedings of the 22nd

Annual ACM Symposium on Theoiy of Compating. (Baltimore, Md., May 12–14). ACM, New

York, 1990, pp. 260-270.
MANSOUR, Y., NISAN, N., AND TIWAR1, P. The computational complexity of universal
hashing. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing.

(Baltimore, Md., May 12-14). ACM, New York, 1990, pp. 235-243.
NISAN, N., AND WIGDERSON, A. Hardness vs. randomness. In Proceedings of the 29th Annual

Symposium cm Foundations of Computer Science (White Plains, N. Y., Oct.) IEEE, New York,
1988, pp. 2–12.



620 N. LINIAL ET AL.

14. RAZBOROV, A. A. Lower bounds for the size of circuits of bounded depth with basis
AND, XOR. Math. Zarnetsk 41 (1987), 598-607 (in Russian). English translation in Math
Notes ./1 (1987), 333–338.

15. RIVEST, R.L. Learning decision lists. Machine Leammg2 ,3(1987),229-246.

16. SANTHA, M., AND WILSON, C. Polynomial size circuits with a hmited number of negations. In
Proceedings of the 8th Annual Svmposium on Aspects of Theoretical Computer Science. IEEE,

New York, 1991, pp. 228-237.

17. SMOLENSKY, R. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19tll Annaal ACM Symposwm on Theoty of Computmg (New

York City, N. Y., May 25–27). ACM, New York, 1987, pp. 77–82.

18. VALIANT, L. G. A theory of the learnable. Comrnun ACM 27, 11 (Nov. 1984), 1134-1142.

19. YAO. A. C. Theory and applications of trapdoor functions. In Proceedings of the 23rd Annual

Symposium on Fowzdatzons of Computer Science. IEEE, New York, 1982, pp. 80-91.

20. Y.40, A. C. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th

Armua[ Sympo,num on Foundations of Computer Sccence (Portland. Ore. Oct.). IEEE, New
York, 1985, pp. 1-10.

RECEIVED DECEMBER 1989: REVISED NOVEMBER 1991: ACCEPTED NOVEMBER 1991

Iournd of the Aswctatmn for Cmnputmg M~chmay, Vol 40, No 3, .luly 1993


