How to Find Majorizing Functions? Tricks and an Example

from Hunter, D. & Lange, K. (2012). A Tutorial on MM Algorithms

Recall...

Goal: minimize $f(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$ wrt $\theta \in \mathbb{R}^d$.

Use a majorizing function $g(\theta|\theta^{(m)}) : \mathbb{R}^d \mapsto \mathbb{R}$ such that:

- i. (dominating) $g(\theta|\theta^{(m)}) \geq f(\theta) \quad \forall \theta,$ ii. (tangent at $\theta^{(m)}) \quad g(\theta^{(m)}|\theta^{(m)}) = f(\theta^{(m)}).$

black: $f(\theta) = 1/\theta$; red: majorizing function at $\theta^{(m)} = 0.02$

- 3.1 Jensen's inequality
- 3.2 Minorization via Supporting Hyperplanes
- 3.3 Majorization via the Definition of Convexity
- 3.4 Majorization via a Quadratic Upper Bound
- 3.5 The Arithmetic-Geometric Mean Inequality
- 3.6 The Cauchy-Schwartz Inequality

- 3.1 Jensen's inequality gives us the EM algorithm
- 3.2 Minorization via Supporting Hyperplanes
- 3.3 Majorization via the Definition of Convexity
- 3.4 Majorization via a Quadratic Upper Bound
- 3.5 The Arithmetic-Geometric Mean Inequality
- 3.6 The Cauchy-Schwartz Inequality

- 3.1 Jensen's inequality
- 3.2 Minorization via Supporting Hyperplanes
- 3.3 Majorization via the Definition of Convexity
- 3.4 Majorization via a Quadratic Upper Bound
- 3.5 The Arithmetic-Geometric Mean Inequality
- 3.6 The Cauchy-Schwartz Inequality

EX: $f(\theta) = 1/\theta$

red: quadratic upper bound at $\theta^{(m)} = 0.02$ blue: supporting hyperplane (straight line) $\theta^{(m)} = 0.02$

- 3.1 Jensen's inequality
- 3.2 Minorization via Supporting Hyperplanes
- 3.3 Majorization via the Definition of Convexity
- 3.4 Majorization via a Quadratic Upper Bound
- 3.5 The Arithmetic-Geometric Mean Inequality

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3.6 The Cauchy-Schwartz Inequality

Majorization via the Definition of Convexity

A function $\kappa(t)$ is convex if and only if

$$\kappa\left(\sum_{i} \alpha_{i} t_{i}\right) \leq \sum_{i} \alpha_{i} \kappa(t_{i}),$$

where $\alpha_i \ge 0$ and $\sum \alpha_i = 1$. Construct $\alpha_i t_i$, for example:

$$f(x'\theta) = f\left(\sum x_i\theta_i\right)$$

= $f\left(\sum \alpha_i \cdot \left(\frac{x_i(\theta_i - \theta_i^{(m)})}{\alpha_i} + x'\theta^{(m)}\right)\right)$
 $\leq \sum \alpha_i \cdot f\left(\frac{x_i(\theta_i - \theta_i^{(m)})}{\alpha_i} + x'\theta^{(m)}\right)$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○ 三 ○ ○ ○ ○

- 3.1 Jensen's inequality
- 3.2 Minorization via Supporting Hyperplanes
- 3.3 Majorization via the Definition of Convexity
- 3.4 Majorization via a Quadratic Upper Bound
- 3.5 The Arithmetic-Geometric Mean Inequality
- 3.6 The Cauchy-Schwartz Inequality skip

- 3.1 Jensen's inequality
- 3.2 Minorization via Supporting Hyperplanes
- 3.3 Majorization via the Definition of Convexity
- 3.4 Majorization via a Quadratic Upper Bound
- 3.5 The Arithmetic-Geometric Mean Inequality
- 3.6 The Cauchy-Schwartz Inequality

The Arithmetic-Geometric Mean Inequality

Start with something simple:

$$2x_1x_2 \le x_1^2 + x_2^2 \quad \Rightarrow \quad x_1x_2 \le \frac{x_1^2}{2} + \frac{x_2^2}{2}$$

For $x_1, x_2 > 0$, we get:

$$\begin{aligned} x_1 x_2 &= x_1 \sqrt{\frac{x_2^{(m)}}{x_1^{(m)}}} \cdot x_2 \sqrt{\frac{x_1^{(m)}}{x_2^{(m)}}} \\ &\leq x_1^2 \cdot \frac{x_2^{(m)}}{x_1^{(m)}} \cdot \frac{1}{2} + x_2^2 \cdot \frac{x_1^{(m)}}{x_2^{(m)}} \cdot \frac{1}{2} \end{aligned}$$

NBA example

2002-2003 season, 29 teams each team *i*: o_i (offensive strength) & d_i (defensive strength) $o_i + d_i$ measures the overall strength of the team

NBA example: Model

Observe: for each game, p_{ij} = points scored by team *i* against team *j*

Assume:

- 1. different games are independent of each other
- 2. each team's total point in one game is independent of its opponent's point total

Model:

$$p_{ij} \sim (indep)$$
 Poisson $\left(t_{ij} \cdot e^{(o_i - d_j)}\right)$

where

$$p_{ij}$$
 = points scored by team *i* against team *j*,
 t_{ij} = time (in minutes) of the game,
 o_i = offensive strength of team *i*,
 d_j = defensive strength of team *j*.

NBA example: MLE

Find MLE for $\theta = (o_i, d_i)_{i=1,...,29}$ by maximizing the log likelihood

$$\begin{aligned} & \text{maximize } l(\theta) = \sum_{i,j} \left\{ p_{ij} \cdot (o_i - d_j) - t_{ij} \cdot e^{(o_i - d_j)} + p_{ij} ln(t_{ij}) - ln(p_{ij}!) \right\} \\ & \Rightarrow \text{minimize } f(\theta) = \sum_{i,j} \left\{ -p_{ij} \cdot (o_i - d_j) + t_{ij} \cdot e^{(o_i - d_j)} \right\} \\ & \Rightarrow \text{majorized by } g(\theta|\theta^{(m)}) = \sum_{i,j} \left\{ -p_{ij} \cdot (o_i - d_j) + t_{ij} \cdot h(\theta|\theta^{(m)}) \right\} \\ & \text{where } h(\theta|\theta^{(m)}) = \frac{e^{2o_i}}{e^{o_i^{(m)} + d_j^{(m)}}} \cdot \frac{1}{2} + \frac{e^{o_i^{(m)} + d_j^{(m)}}}{e^{2d_j}} \cdot \frac{1}{2} \end{aligned}$$

NBA example: majorizing function

Want to show: $e^{(o_i - d_j)} \le h(\theta | \theta^{(m)}) = \frac{e^{2o_i}}{e^{o_i^{(m)} + d_j^{(m)}}} \cdot \frac{1}{2} + \frac{e^{o_i^{(m)} + d_j^{(m)}}}{e^{2d_j}} \cdot \frac{1}{2}$

$$e^{(o_i - d_j)} = e^{o_i} \cdot \frac{1}{e^{d_j}}$$

Let $x_1 = e^{o_i}$
 $x_2 = \frac{1}{e^{d_j}}$
Plug in $x_1 x_2 \le x_1^2 \cdot \frac{x_2^{(m)}}{x_1^{(m)}} \cdot \frac{1}{2} + x_2^2 \cdot \frac{x_1^{(m)}}{x_2^{(m)}} \cdot \frac{1}{2}$

・ロト・日本・日本・日本・日本・日本

NBA example: majorizing function

The majorizing function

$$g(heta| heta^{(m)}) = \sum_{i,j} \left\{ - p_{ij} \cdot (o_i - d_j) + rac{t_{ij}}{2} \cdot rac{e^{2o_i}}{e^{o_i^{(m)} + d_j^{(m)}}} + rac{t_{ij}}{2} \cdot rac{e^{o_i^{(m)} + d_j^{(m)}}}{e^{2d_j}}
ight\}$$

is easy to minimize piecewise for each o_i and d_j .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

NBA example: in case you are interested...

Team	$\hat{o}_i + \hat{d}_i$	Wins	Team	$\hat{o}_i + \hat{d}_i$	Wins
Cleveland	-0.0994	17	Phoenix	0.0166	44
Denver	-0.0845	17	New Orleans	0.0169	47
Toronto	-0.0647	24	Philadelphia	0.0187	48
Miami	-0.0581	25	Houston	0.0205	43
Chicago	-0.0544	30	Minnesota	0.0259	51
Atlanta	-0.0402	35	LA Lakers	0.0277	50
LA Clippers	-0.0355	27	Indiana	0.0296	48
Memphis	-0.0255	28	Utah	0.0299	47
New York	-0.0164	37	Portland	0.0320	50
Washington	-0.0153	37	Detroit	0.0336	50
Boston	-0.0077	44	New Jersey	0.0481	49
Golden State	-0.0051	38	San Antonio	0.0611	60
Orlando	-0.0039	42	Sacramento	0.0686	59
Milwaukee	-0.0027	42	Dallas	0.0804	60
Seattle	0.0039	40			

Thank you!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

18