How to Find Majorizing Functions? Tricks and an Example
from
Hunter, D. \& Lange, K. (2012). A Tutorial on MM Algorithms

Recall...

Goal: minimize $f(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$ wrt $\theta \in \mathbb{R}^{d}$.
Use a majorizing function $g\left(\theta \mid \theta^{(m)}\right): \mathbb{R}^{d} \mapsto \mathbb{R}$ such that:
i. (dominating) $g\left(\theta \mid \theta^{(m)}\right) \geq f(\theta) \quad \forall \theta$,
ii. (tangent at $\left.\theta^{(m)}\right) \quad g\left(\theta^{(m)} \mid \theta^{(m)}\right)=f\left(\theta^{(m)}\right)$.

black: $f(\theta)=1 / \theta$; red: majorizing function at $\theta^{(m)}=0.02$

How to find a majorizing/minorizing function?

3.1 Jensen's inequality
3.2 Minorization via Supporting Hyperplanes
3.3 Majorization via the Definition of Convexity
3.4 Majorization via a Quadratic Upper Bound
3.5 The Arithmetic-Geometric Mean Inequality
3.6 The Cauchy-Schwartz Inequality

How to find a majorizing/minorizing function?

3.1 Jensen's inequality - gives us the EM algorithm
3.2 Minorization via Supporting Hyperplanes
3.3 Majorization via the Definition of Convexity
3.4 Majorization via a Quadratic Upper Bound
3.5 The Arithmetic-Geometric Mean Inequality
3.6 The Cauchy-Schwartz Inequality

How to find a majorizing/minorizing function?

3.1 Jensen's inequality
3.2 Minorization via Supporting Hyperplanes
3.3 Majorization via the Definition of Convexity
3.4 Majorization via a Quadratic Upper Bound
3.5 The Arithmetic-Geometric Mean Inequality
3.6 The Cauchy-Schwartz Inequality

EX: $f(\theta)=1 / \theta$

red: quadratic upper bound at $\theta^{(m)}=0.02$
blue: supporting hyperplane (straight line) $\theta^{(m)}=0.02$

How to find a majorizing/minorizing function?

3.1 Jensen's inequality
3.2 Minorization via Supporting Hyperplanes
3.3 Majorization via the Definition of Convexity
3.4 Majorization via a Quadratic Upper Bound
3.5 The Arithmetic-Geometric Mean Inequality
3.6 The Cauchy-Schwartz Inequality

Majorization via the Definition of Convexity

A function $\kappa(t)$ is convex if and only if

$$
\kappa\left(\sum_{i} \alpha_{i} t_{i}\right) \leq \sum_{i} \alpha_{i} \kappa\left(t_{i}\right)
$$

where $\alpha_{i} \geq 0$ and $\sum \alpha_{i}=1$.
Construct $\alpha_{i} t_{i}$, for example:

$$
\begin{aligned}
f\left(x^{\prime} \theta\right) & =f\left(\sum x_{i} \theta_{i}\right) \\
& =f\left(\sum \alpha_{i} \cdot\left(\frac{x_{i}\left(\theta_{i}-\theta_{i}^{(m)}\right)}{\alpha_{i}}+x^{\prime} \theta^{(m)}\right)\right) \\
& \leq \sum \alpha_{i} \cdot f\left(\frac{x_{i}\left(\theta_{i}-\theta_{i}^{(m)}\right)}{\alpha_{i}}+x^{\prime} \theta^{(m)}\right)
\end{aligned}
$$

How to find a majorizing/minorizing function?

3.1 Jensen's inequality
3.2 Minorization via Supporting Hyperplanes
3.3 Majorization via the Definition of Convexity
3.4 Majorization via a Quadratic Upper Bound
3.5 The Arithmetic-Geometric Mean Inequality
3.6 The Cauchy-Schwartz Inequality - skip

How to find a majorizing/minorizing function?

3.1 Jensen's inequality
3.2 Minorization via Supporting Hyperplanes
3.3 Majorization via the Definition of Convexity
3.4 Majorization via a Quadratic Upper Bound
3.5 The Arithmetic-Geometric Mean Inequality
3.6 The Cauchy-Schwartz Inequality

The Arithmetic-Geometric Mean Inequality

Start with something simple:

$$
2 x_{1} x_{2} \leq x_{1}^{2}+x_{2}^{2} \quad \Rightarrow \quad x_{1} x_{2} \leq \frac{x_{1}^{2}}{2}+\frac{x_{2}^{2}}{2}
$$

For $x_{1}, x_{2}>0$, we get:

$$
\begin{aligned}
x_{1} x_{2} & =x_{1} \sqrt{\frac{x_{2}^{(m)}}{x_{1}^{(m)}}} \cdot x_{2} \sqrt{\frac{x_{1}^{(m)}}{x_{2}^{(m)}}} \\
& \leq x_{1}^{2} \cdot \frac{x_{2}^{(m)}}{x_{1}^{(m)}} \cdot \frac{1}{2}+x_{2}^{2} \cdot \frac{x_{1}^{(m)}}{x_{2}^{(m)}} \cdot \frac{1}{2}
\end{aligned}
$$

NBA example

NBA example: Model

Observe: for each game, $p_{i j}=$ points scored by team i against team j
Assume:

1. different games are independent of each other
2. each team's total point in one game is independent of its opponent's point total

Model:

$$
p_{i j} \sim(\text { indep }) \text { Poisson }\left(t_{i j} \cdot e^{\left(o_{i}-d_{j}\right)}\right)
$$

where
$p_{i j}=$ points scored by team i against team j,
$t_{i j}=$ time (in minutes) of the game,
$o_{i}=$ offensive strength of team i,
$d_{j}=$ defensive strength of team j.

NBA example: MLE

Find MLE for $\theta=\left(o_{i}, d_{i}\right)_{i=1, \ldots, 29}$ by maximizing the log likelihood maximize $I(\theta)=\sum_{i, j}\left\{p_{i j} \cdot\left(o_{i}-d_{j}\right)-t_{i j} \cdot e^{\left(o_{i}-d_{j}\right)}+p_{i j} \ln \left(t_{i j}\right)-\ln \left(p_{i j}!\right)\right\}$
\Rightarrow minimize $\quad f(\theta)=\sum_{i, j}\left\{-p_{i j} \cdot\left(o_{i}-d_{j}\right)+t_{i j} \cdot e^{\left(o_{i}-d_{j}\right)}\right\}$
\Rightarrow majorized by $g\left(\theta \mid \theta^{(m)}\right)=\sum_{i, j}\left\{-p_{i j} \cdot\left(o_{i}-d_{j}\right)+t_{i j} \cdot h\left(\theta \mid \theta^{(m)}\right)\right\}$
where $h\left(\theta \mid \theta^{(m)}\right)=\frac{e^{2 o_{i}}}{e^{o_{i}^{(m)}+d_{j}^{(m)}}} \cdot \frac{1}{2}+\frac{e^{o_{i}^{(m)}+d_{j}^{(m)}}}{e^{2 d_{j}}} \cdot \frac{1}{2}$

NBA example: majorizing function

Want to show: $e^{\left(o_{i}-d_{j}\right)} \leq h(\theta \mid \theta(m))=\frac{e^{2 o_{i}}}{e^{(m)}+d_{j}^{(m)}} \cdot \frac{1}{2}+\frac{e^{e_{i}^{(m)}+d_{j}^{(m)}}}{e^{2 d_{j}}} \cdot \frac{1}{2}$

$$
\begin{aligned}
e^{\left(o_{i}-d_{j}\right)} & =e^{o_{i}} \cdot \frac{1}{e^{d_{j}}} \\
\text { Let } x_{1} & =e^{o_{i}} \\
x_{2} & =\frac{1}{e^{d_{j}}} \\
\text { Plug in } x_{1} x_{2} & \leq x_{1}^{2} \cdot \frac{x_{2}^{(m)}}{x_{1}^{(m)}} \cdot \frac{1}{2}+x_{2}^{2} \cdot \frac{x_{1}^{(m)}}{x_{2}^{(m)}} \cdot \frac{1}{2}
\end{aligned}
$$

NBA example: majorizing function

The majorizing function

$$
g\left(\theta \mid \theta^{(m)}\right)=\sum_{i, j}\left\{-p_{i j} \cdot\left(o_{i}-d_{j}\right)+\frac{t_{i j}}{2} \cdot \frac{e^{2 o_{i}}}{e^{o_{i}^{(m)}+d_{j}^{(m)}}}+\frac{t_{i j}}{2} \cdot \frac{e^{o_{i}^{(m)}+d_{j}^{(m)}}}{e^{2 d_{j}}}\right\}
$$

is easy to minimize piecewise for each o_{i} and d_{j}.

NBA example: in case you are interested...

Team	$\hat{o}_{i}+\hat{d}_{i}$	Wins	Team	$\hat{o}_{i}+\hat{d}_{i}$	Wins
Cleveland	-0.0994	17	Phoenix	0.0166	44
Denver	-0.0845	17	New Orleans	0.0169	47
Toronto	-0.0647	24	Philadelphia	0.0187	48
Miami	-0.0581	25	Houston	0.0205	43
Chicago	-0.0544	30	Minnesota	0.0259	51
Atlanta	-0.0402	35	LA Lakers	0.0277	50
LA Clippers	-0.0355	27	Indiana	0.0296	48
Memphis	-0.0255	28	Utah	0.0299	47
New York	-0.0164	37	Portland	0.0320	50
Washington	-0.0153	37	Detroit	0.0336	50
Boston	-0.0077	44	New Jersey	0.0481	49
Golden State	-0.0051	38	San Antonio	0.0611	60
Orlando	-0.0039	42	Sacramento	0.0686	59
Milwaukee	-0.0027	42	Dallas	0.0804	60
Seattle	0.0039	40			

Thank you!

