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Abstract

Many clustering algorithms only find one
clustering solution. However, data can of-
ten be grouped and interpreted in many dif-
ferent ways. This is particularly true in
the high-dimensional setting where differ-
ent subspaces reveal different possible group-
ings of the data. Instead of committing
to one clustering solution, here we intro-
duce a novel method that can provide sev-
eral non-redundant clustering solutions to
the user. Our approach simultaneously learns
non-redundant subspaces that provide multi-
ple views and finds a clustering solution in
each view. We achieve this by augmenting
a spectral clustering objective function to in-
corporate dimensionality reduction and mul-
tiple views and to penalize for redundancy
between the views.

1. Introduction

Clustering is often a first step in the analysis of com-
plex multivariate data, particularly when a data ana-
lyst wishes to engage in a preliminary exploration of
the data. Most clustering algorithms find one parti-
tioning of the data (Jain et al., 1999), but this is overly
rigid. In the exploratory data analysis setting, there
may be several views of the data that are of poten-
tial interest. For example, given patient information
data, what is interesting to physicians will be different
from what insurance companies find interesting. This
multi-faceted nature of data is particularly prominent
in the high-dimensional setting, where data such as
text, images and genotypes may be grouped together
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in several different ways for different purposes. For ex-
ample, images of faces of people can be grouped based
on their pose or identity. Web pages collected from
universities can be clustered based on the type of web-
page’s owner, {faculty, student, staff}, field, {physics,
math, engineering, computer science}, or identity of
the university. In some cases, a data analyst wishes
to find a single clustering, but this may require an al-
gorithm to consider multiple clusterings and discard
those that are not of interest. In other cases, one may
wish to summarize and organize the data according to
multiple possible clustering views. In either case, it is
important to find multiple clustering solutions which
are non-redundant.

Although the literature on clustering is enormous,
there has been relatively little attention paid to the
problem of finding multiple non-redundant clusterings.
Given a single clustering solution, Bae & Bailey (2006)
impose cannot-link constraints on data points belong-
ing to the same group in that clustering and then
use agglomerative clustering in order to find an al-
ternative clustering. Gondek & Hofmann (2004) use
a conditional information bottleneck approach to find
an alternative clustering to a particular clustering.
Qi & Davidson (2009) propose an approach based on
Gaussian mixture models in which they minimize the
KL-divergence between the projection of the original
empirical distribution of the data and the projection
subject to the constraint that the sum-of-squared error
between samples in the projected space and the means
of the clusters they do not belong to is smaller than
a pre-specified threshold. All of these methods find
a single alternative view given one clustering solution
or a known grouping. In contrast, the approach that
we present here can discover multiple (i.e., more than
two) views.

Recently, Caruana et al. (2006), Cui et al. (2007) and
Jain et al. (2008) also recognized the need to find
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multiple clustering solutions from data. The meta-
clustering method in Caruana et al. (2006) generates
a diverse set of clustering solutions by either random
initialization or random feature weighting. Then to
avoid presenting the user with too many clusterings,
these solutions are combined using agglomerative clus-
tering based on a Rand index for measuring similar-
ity between pairwise clustering solutions. Our ap-
proach differs from meta-clustering in that we directly
seek out multiple solutions by optimizing a multiple
non-redundant clustering criterion rather than relying
on random initialization or random feature weighting.
Cui et al. (2007) propose a sequential method that
starts by finding a dominant clustering partition, and
then finds alternative views by clustering in the sub-
space orthogonal to the clustering solutions found in
previous iterations. Jain et al. (2008) propose a non-
sequential method that learns two disparate cluster-
ings simultaneously by minimizing a K-means sum-
squared error objective for the two clustering solutions
while at the same time minimizing the correlation be-
tween these two clusterings. Both of these methods
are based on K-means and are thus limited to con-
vex clusters. In contrast, the approach we introduce
here can discover non-convex shaped clusters in each
view; we view this capability as important in the ex-
ploratory data analysis setting. Moreover, the method
in Jain et al. (2008) uses all the features in all views.
Our approach is based on the intuition that different
views most likely exist in different subspaces and thus
we learn multiple subspaces in conjunction with learn-
ing the multiple alternative clustering solutions.

In summary, this work that we present here advances
the field in the following way: (1) we study an impor-
tant multiple clustering discovery paradigm; (2) within
this paradigm, we develop a novel approach that can
find clusters with arbitrary shapes in each view; (3)
within each view, our method can learn the subspace
in which the clusters reside; and finally, (4) we simul-
taneously learn the multiple subspaces and the clus-
terings in each view by optimizing a single objective
function.

2. Formulation

Our goal is to find multiple clustering views. Given n
data samples, there are cn possible c disjoint partition-
ings of the data (counting permutations of the same
groupings). Only a small number of these groupings
are likely to be meaningful. We would like the clusters
in each view to be of good quality and we also wish
for the clustering solutions in the different views to
provide non-redundant information so as not to over-

whelm the data analyst. Moreover, typically different
views or ways of grouping reside in different subspaces;
thus, we wish to incorporate learning of the subspace
in which the clusters lie in each view as well.

To obtain high-quality clusterings, we base our ap-
proach on a spectral clustering formulation (Ng et al.,
2001); the spectral approach has the advantage that
it avoids strong assumptions on cluster shapes. This
creates a challenge for the design of the measure
of dependence among views in that we must be
able to measure non-linear dependencies. We make
use of the Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al., 2005) for this purpose. That
is, we use the HSIC as a penalty that is added to our
spectral clustering criterion. HSIC measures the sta-
tistical dependence among views and drives the learn-
ing algorithm toward finding views that are as inde-
pendent from each other as possible. We now provide
a fuller description of the main ingredients of our al-
gorithm.

1. Cluster Quality and Spectral Clustering.
There are many ways to define the quality of clusters
resulting in a variety of clustering algorithms in the
literature (Jain et al., 1999). In this paper, we focus
on spectral clustering because it is a flexible cluster-
ing algorithm that is applicable to different types of
data and makes relatively weak assumptions on clus-
ter shapes (clusters need not be convex or homoge-
neous). There are several ways to explain spectral
clustering (Von Luxburg, 2007). Here, we present the
graph partitioning viewpoint. Given a set of n data
samples, {x1, . . . , xn}, with each xi be a column vector
in R

d, let k(·, ·) ≥ 0 be a kernel function that measures
some notion of similarity between data points. We let
kij = k(xi, xj) denote the kernel function evaluated at
points xi and xj . To obtain flexible cluster shapes, we
use nonlinear kernel functions such as polynomial and
Gaussian kernels. Let G = {V,E} be a graph, with
V = {v1, . . . , vn} as the set of vertices and E as the
set of edges connecting the vertices. Each vertex vi in
this graph represents a data point xi. The edge weights
between pairs of vertices (vi and vj) are defined by
kij . Let K be the similarity matrix with elements kij .
The goal of clustering is to partition data {x1, . . . , xn}
into c disjoint partitions, P1, . . . , Pc. We would like
the similarity of the samples between groups to be low,
and similarity of the samples within groups to be high.
There are several varieties of graph partitioning ob-
jective functions. In this paper, we make use of the
c-way normalized cut objective, NCut(G), defined as
follows: NCut(P1, ..., Pc) =

∑c
t=1

cut(Pt,V \Pt)
vol(Pt)

where
the cut between sets A,B ⊆ V , cut(A,B), is defined
as cut(A,B) =

∑
vi∈A,vj∈B kij , the degree, di, of a ver-
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tex, vi ∈ V , is defined as di =
∑n

j=1 kij , the volume
of set A ⊆ V , vol(A), is defined as vol(A) =

∑
i∈A di,

and V \A is the complement of A. Optimizing this ob-
jective function is an NP-hard discrete optimization
problem, thus spectral clustering relaxes the discrete-
ness of the indicator matrix and allows its entries to
take on any real value. If we let U denote this relaxed
indicator matrix, of size n by c, the relaxed optimiza-
tion problem reduces to the following trace maximiza-
tion problem:

maxU∈Rn×c tr(UT D−1/2KD−1/2U)
s.t. UT U = I.

(1)

where tr(·) is the trace function, D is a diagonal ma-
trix with diagonal elements equal to di, and I is the
identity matrix. The solution U to this optimization
problem involves taking the first c eigenvectors corre-
sponding to the largest c eigenvalues of the normal-
ized similarity matrix L = D−1/2KD−1/2. To obtain
the discrete partitioning of the data, we re-normalize
each row of U to have unit length and then apply K-
means to each row of the normalized U . We assign
each xi to the same cluster that the row ui is assigned
to. This particular version of spectral clustering is due
to Ng et al. (2001).

2. Learning the Low-Dimensional Subspace.
Our goal is to find m low-dimensional subspaces, where
m is the number of views, such that in each view,
clusters are well-separated (linearly or nonlinearly).
We learn the subspace in each view by coupling di-
mensionality reduction with spectral clustering in a
single optimization objective. In each view, instead
of utilizing all the features/dimensions in computing
the kernel similarity matrix K, similarity is computed
in subspace Wq: our algorithm is based on the ker-
nel function k(WT

q xi,W
T
q xj), where Wq ∈ Rd×lq is a

transformation matrix for each view that transforms
xi ∈ Rd in the original space to a lower-dimensional
space lq (lq ≤ d,

∑
q lq ≤ d).

3. How to Measure Redundancy. One way to
measure redundancy between two variables is in terms
of their correlation coefficient; however, this captures
only linear dependencies among random variables. An-
other approach involves measuring the mutual infor-
mation, but this requires estimating the joint dis-
tribution of the random variables. Recent work by
Fukumizu et al. (2009) and Gretton et al. (2005) pro-
vide a way to measure dependence among random
variables without explicitly estimating joint distribu-
tions and without having to discretize continuous ran-
dom variables. The basic idea is to map random vari-
ables into reproducing kernel Hilbert spaces (RKHSs)
such that second-order statistics in the RKHS capture

higher-order dependencies in the original space. Con-
sider X and Y to be two sample spaces with random
variables (x, y) drawn from these spaces. Let us define
a mapping φ(x) from x ∈ X to kernel space F , such
that the inner product between vectors in that space
is given by a kernel function, k1(x, x′) = 〈φ(x), φ(x′)〉.
Let G be a second kernel space on Y with kernel
function k2(·, ·) and mapping ϕ(y). A linear cross-
covariance operator Cxy : G → F between these fea-
ture maps is defined as: Cxy = Exy[(φ(x) − µx) ⊗
(ϕ(y)−µy)], where ⊗ is the tensor product. Based on
this operator, Gretton et al. (2005) define the Hilbert-
Schmidt independence criterion (HSIC) between two
random variables, x and y, as follows:

HSIC(pxy,F ,G) = ‖Cxy‖2
HS

= Ex,x′,y,y′ [k1(x, x′)k2(y, y′)]+
Ex,x′ [k1(x, x′)]Ey,y′ [k2(y, y′)]−
2Ex,y[Ex′ [k1(x, x′)]Ey′ [k2(y, y′)]]

Given n observations, Z := {(x1, y1), ..., (xn, yn)}, we
can empirically estimate the HSIC by:

HSIC(Z,F ,G) = (n − 1)−2tr(K1HK2H) (2)

where K1, K2 ∈ Rn×n are Gram matrices, (K1)ij =
k1(xi, xj), (K2)ij = k2(yi, yj), and where (H)ij = δij−
n−1 centers the Gram matrices to have zero mean in
the feature space. We use the HSIC as a penalty term
in our objective function to ensure that subspaces in
different views provide non-redundant information.

2.1. Overall Multiple Non-Redundant Spectral
Clustering Objective Function

For each view q, q = 1, . . . ,m, let Wq be the sub-
space transformation operator, Uq be the relaxed clus-
ter membership indicator matrix, Kq be the Gram ma-
trix, and Dq be the corresponding degree matrix for
that view. Our overall objective function, f , is:

maxU1...Um,W1...Wm

∑
q tr(UT

q D
−1/2
q KqD

−1/2
q Uq)

−λ
∑

q �=r HSIC(WT
q x,WT

r x)
s.t. UT

q Uq = I
(Kq)ij = kq(WT

q xi,W
T
q xj)

WT
q Wq = I.

(3)
The first term

∑
q tr(UT

q D
−1/2
q KqD

−1/2
q Uq) is the re-

laxed spectral clustering objective in Eq. (1) for each
view and it optimizes for cluster quality. In the second
term,

∑
q �=r HSIC(WT

q x,WT
r x) from Eq. (2) is used

to penalize for dependence among subspaces in differ-
ent views. Simply optimizing one of these criteria is
not enough to produce quality non-redundant multi-
ple clustering solutions. Optimizing the spectral crite-
rion alone can still end up with redundant clusterings.
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Optimizing HSIC alone leads to an independent sub-
space analysis problem (Theis, 2007), which can find
views with independent subspaces but data in these
subspaces may not lead to good clustering solutions.
The parameter λ is a regularization parameter that
controls the trade-off between these two criteria. As a
rule of thumb, we suggest choosing a value of λ that
makes the first and second term to be of the same
order.

2.2. Algorithm

In this section, we describe how we optimize our over-
all objective function formulation in Eq. (3). The op-
timization is carried out in two steps:

Step 1: Assuming all Wq fixed, we optimize for
Uq in each view.
With the projection operators Wq fixed, we can opti-
mize the similarity and degree matrices Kq and Dq for
each view respectively. Similar to spectral clustering,
here we relax the indicator matrix Uq to range over real
values. The problem now becomes a continuous opti-
mization problem resulting in an eigenvalue problem.
The solution for Uq is equal to the first cq eigenvec-
tors (corresponding to the largest cq eigenvalues) of
the matrix D

−1/2
q KqD

−1/2
q , where cq is the number of

clusters for view q. Then we normalize each row of Uq

to have unit length. Note that unlike applying spectral
clustering on the projected space WT

q x, this optimiza-
tion step stops here; it keeps Uq real-valued and does
not need to explicitly assign the cluster membership
to the samples.

Step 2: Assuming all Uq fixed, we optimize for
Wq for each view.
We optimize for Wq by applying gradient as-
cent on the Stiefel manifold (Edelman et al., 1999;
Bach & Jordan, 2002) to satisfy the orthonormality
constraints, WT

q Wq = I, in each step. We project
the gradient of the objective function onto the tan-
gent space, ∆WStiefel = ∂f

∂Wq
− Wq( ∂f

∂Wq
)T Wq, which

shows that WT
q ∆WStiefel is skew symmetric. We thus

update Wq on the geodesic in the direction of the tan-
gent space as follows:

Wnew = Wold exp(τWT
old∆WStiefel), (4)

where exp means matrix exponential and τ is the step
size. We apply a backtracking line search to find the
step size according to the Armijo rule to assure im-
provement of our objective function at every iteration.

The derivative ∂f
∂Wq

is calculated as follows. Lq =

D
−1/2
q KqD

−1/2
q is the normalized similarity matrix

for each view. Letting kq,ij denote the (i, j)th en-

try in Kq, and letting dq,ii denote the (i, i)th diag-
onal element in Dq, each element in matrix Lq is
lq,ij = d

−1/2
q,ii kq,ijd

−1/2
q,jj . For a fixed data embedding,

the spectral objective can be expressed as a linear com-
bination of each element in matrix Lq with coefficient
uq,iu

T
q,j , where uq,i is the spectral embedding for xi in

view q. Applying the chain rule, the derivative of the
element lq,ij with respect to Wq can be expressed as

l′q,ij = k′
q,ijd

− 1
2

q,iid
− 1

2
q,jj − 1

2d
− 1

2
q,iid

′
q,iikq,ijd

− 1
2

q,jj

− 1
2d

− 1
2

q,jjd
′
q,jjkq,ijd

− 1
2

q,ii,
(5)

where k′
q,ij , d′q,ii and d′q,jj are derivatives of the simi-

larity and degree with respect to Wq. For each view,
the empirical HSIC estimate term is not dependent on
the spectral embedding Uq and can be expanded as

HSIC(WT
q x,WT

r x) = (n − 1)−2tr(KqHKrH). (6)

If we expand the trace in the HSIC term,

tr(KqHKrH) = tr(KqKr) − 2n−11T KqKr1
+n−2tr(Kq)tr(Kr),

(7)

where 1 is the vector of all ones. The partial deriva-
tive of the two terms in the objective function with
respect to Wq is now expressed as a function of the
derivative of the kernel function. For example, if we
use a Gaussian kernel defined as k(WT

q xi,W
T
q xj) =

exp(−∥∥WT
q ∆xij

∥∥2
/2σ2), where ∆xij is xi − xj , the

derivative of kq,ij with respect to Wq is

∂kq,ij

∂Wq
= − 1

σ2
∆xij∆xT

ijWq exp
−∆xT

ijWqW
T
q ∆xij

2σ2
.

(8)

We repeat these two steps iteratively until conver-
gence. We set the convergence threshold to be ε =
10−4 in our experiments. After convergence, we obtain
the discrete clustering solutions by using the standard
K-means step of spectral clustering in the embedding
space Uq in each view. Algorithm 1 provides a sum-
mary of our approach.

2.3. Implementation Details

In this section we describe some practical implemen-
tation details for our algorithm.

Initialization. Our algorithm can get stuck at a lo-
cal optimum, making it dependent on initialization.
We would like to start from a good initial guess. We
initialize the subspace views Wq by clustering the fea-
tures, such that features assigned to the same views are
dependent on each other and those in different views
are as independent from each other as possible. We
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Algorithm 1 Multiple Spectral Clustering
Input: Data x, cluster number cq for each view and
number of views m.
Initialize: All Wq by clustering the features.
Step 1: For each view q, project data on subspaces
Wq, q = 1, . . . ,m.
Calculate the kernel similarity matrix Kq and degree
matrix Dq in each subspace.
Calculate the top cq eigenvectors of Lq =
D

−1/2
q KqD

−1/2
q to form matrix Uq. Normalize rows

of Uq to have unit length.
Step 2: Given all Uq, update Wq based on gradient
ascent on the Stiefel manifold.
REPEAT steps 1 and 2 until convergence.
K-means Step: Form n samples uq,i ∈ Rcq from
rows of Uq for each view. Cluster the points uq,i,
i = 1, . . . , n, using K-means into cq partitions,
P1, . . . , Pcq

.
Output: Multiple clustering partitions and trans-
formation matrices Wq.

measure dependence based on HSIC. First, we calcu-
late the similarity, aij , of each pair of features, fi and
fj , using HSIC, to build a similarity matrix A. For
discrete features, similarity is measured by normalized
mutual information. Second, we apply spectral clus-
tering (Ng et al., 2001) using this similarity matrix to
cluster the features into m clusters, where m is the
number of desired views. Each feature cluster q corre-
sponds to our view q. We initialize each subspace view
Wq to be equivalent to the projection that selects only
the features in cluster q. We build Wq as follows. For
each feature j in cluster q, we append a column of
size d by 1 to Wq whose entries are all zero except for
the jth element which is equal to one. This gives us
matrix Wq of size d by lq, where d is the original di-
mensionality and lq the number of features assigned to
cluster q. We find this is a good initialization scheme
because this provides us with multiple subspaces that
are approximately as independent from each other as
possible. Additionally, this scheme provides us with an
automated way of setting the dimensionality for each
view lq. Although we start with disjoint features, the
final learned Wq in each view are transformation ma-
trices, where each feature can have some weight in one
view and some other weight in another view.

Kernel Similarity Approximation. Calculating
the kernel similarity matrix K is time consuming.
We apply incomplete Cholesky decomposition as sug-
gested in Bach & Jordan (2002), giving us an approx-
imate kernel similarity matrix K̃. Using incomplete

Cholesky decomposition, the complexity of calculating
the kernel matrix is O(ns2), where n is the number of
data instances, s is the size of the approximation ma-
trix G̃, where K̃ = G̃G̃T . Thus, the complexities of
our derivative computation and eigen-decomposition
are now O(nsd) and O(ns2) respectively.

3. Experiments

We performed experiments on both synthetic and real
data to investigate the capability of our algorithm to
yield reasonable non-redundant multiple clustering so-
lutions. In particular, we present the results of exper-
iments on two synthetic data and four real data: a
corpus of face image data, a corpus of machine sounds
and two text data sets. We compare our method, mul-
tiple SC (mSC), to two recently proposed algorithms
for finding multiple clusterings: orthogonal projection
clustering (OPC) (Cui et al., 2007) and de-correlated
K-means (DK) (Jain et al., 2008). We also compare
against standard spectral clustering (SC) and stan-
dard K-means. In these standard algorithms, differ-
ent views are generated by setting K to the number
of clusters in that view. In orthogonal projection clus-
tering (Cui et al., 2007), instances are clustered in the
principal component space (retaining 90% of the total
variance) by a suitable clustering algorithm to find a
dominant clustering. Then data are projected to the
subspace that is orthogonal to the subspace spanned
by the means of the previous clusters. This process is
repeated until all the possible views are found. In de-
correlated K-means (Jain et al., 2008), the algorithm
simultaneously minimizes the sum-of-squared errors
(SSEs) in two clustering views and the correlation of
the mean vectors and representative vectors between
the two views. Gradient descent is then used to find
the clustering solutions. In this approach, both views
minimize SSEs in all the original dimensions. We set
the number of views and clusters in each view equal
to the known values for all methods.

We measure the performance of our clustering methods
based on the normalized mutual information (NMI)
(Strehl & Ghosh, 2002) between the clusters found
by these methods with the “true” class labels. Let
A represent the clustering results and B the labels,
NMI = H(A)−H(A|B)√

H(A)H(B)
, where H(·) is the entropy. Note

that in all our experiments, labeled information is not
used for training. We only use the labels to measure
the performance of our clustering algorithms. Higher
NMI values mean that the clustering results are more
similar to the labels; the criterion reaches its maximum
value of one when the clustering and labels are per-
fectly matched. To account for randomness in the al-



Multiple Non-Redundant Spectral Clustering Views

gorithms, we report the average NMI results and their
standard deviations over ten runs. For multiple clus-
tering methods, we find the best matching partitioning
and view based on NMI and report that NMI. In all
of our experiments we use a Gaussian kernel, except
for the text data where we use a polynomial kernel.
We set the kernel parameters so as to obtain the max-
imal eigen-gap between the kth and k+1th eigen-value
for the matrix L. The regularization parameter λ was
set in the range 0.5 < ‖ λHSIC

tr(UT LU)
‖ < 1.5.

3.1. Results on Synthetic Data

Table 1. NMI Results for Synthetic Data

Data 1 Data 2
view 1 view 2 view 1 view 2

mSC .94±.01 .95±.02 .90±.01 .93±.02
OPC .89±.02 .85±.03 .02±.01 .07±.03
DK .87±.03 .94±.03 .03±.02 .05±.03
SC .37±.03 .42±.04 .31±.04 .25±.04
K-means .36±.03 .34±.04 .03±.01 .05±.02

Our first experiment was based on a synthetic data
set consisting of two alternative views to which noise
features were added. There were six features in total.
Three Gaussian clusters were generated in the feature
subspace {f1, f2} as shown in Figure 1(a). The color
and symbols of the points in Figure 1 indicate the clus-
ter labeling in the first view. The other three Gaus-
sian clusters were generated in the feature subspace
{f3, f4} displayed in Figure 1(b). The remaining two
features were generated from two independent Gaus-
sian noise with zero mean and variance σ2 = 25. Here,
we test whether our algorithm can find the two views
even in the presence of noise. The second synthetic
data set has two views with arbitrarily shaped clus-
ters from four dimensions. The two clustering views
are in the two subspaces {f1, f2} and {f3, f4}, respec-
tively, as shown in Figure 1(c) and Figure 1(d). In this
data set, we investigate whether or not our approach
can discover arbitrarily shaped clusters in alternative
clustering views. Table 1 presents the average NMI
values obtained by the different methods for the differ-
ent views on these synthetic data. The best values are
highlighted in bold font. The results in Table 1 show
that our approach works well on both data sets. Or-
thogonal clustering and de-correlated K-means both
performed poorly on synthetic data set 2 because they
are not capable of discovering clusters that are non-
spherical. Note that standard spectral clustering and
K-means also performed poorly because they are de-
signed to only search for one clustering solution. Stan-

dard SC was better than all of the K-means based
method for synthetic data set 2, but it is still far worse
than our proposed mSC algorithm, which can discover
multiple arbitrarily shaped clusterings simultaneously.
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(d) View 2 of Synthetic Data 2(c) View 1 of Synthetic Data 2

(b) View 2 of Synthetic Data 1(a) View 1 of Synthetic Data 1

Figure 1. (a) View 1 and (b) View 2 of synthetic data set
1; (c) View 1 and (d) View 2 of synthetic data set 2.

3.2. Results on Real Data

We now test our method on four real-world data sets to
see whether we can find meaningful clustering views.
We selected data that are high dimensional and in-
tuitively are likely to present multiple possible parti-
tionings. In particular, we test our method on face
image, a sound data set and two text data sets. Table
2 presents the average NMI results for the different
methods on the different clustering/labeling views for
these real data sets.

Face Data. The face data set from the UCI KDD
archive (Bay, 1999) consists of 640 face images of 20
people taken at varying poses (straight, left, right, up),
expressions (neutral, happy, sad, angry), eyes (wear-
ing sunglasses or not). The image resolution is 32×30,
resulting in a data set with 640 instances and 960 fea-
tures. The two dominant views inferred from this data
are identity and pose. Figure 2 shows the mean face
image for each cluster in two clustering views. The
number below each image is the percentage of this per-
son appearing in this cluster. Note that the first view
captures the identity of each person, and the second
view captures the pose of the face images. Table 2 re-
veals that our approach performed the best (as shown
in bold) in terms of NMI compared to the other two
competing methods and also compared to standard SC
and K-means.
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Table 2. NMI Results for Real Data
Face Machine Sound WebKB Data

ID Pose Motor Fan Pump Univ Owner
mSC 0.79±0.03 0.42±0.03 0.82±0.03 0.75±0.04 0.83±0.03 0.81±0.02 0.54±0.04
OPC 0.67 ± 0.02 0.37 ± 0.01 0.73 ± 0.02 0.68 ± 0.03 0.47 ± 0.04 0.43 ± 0.03 0.53 ± 0.02
DK 0.70 ± 0.03 0.40 ± 0.04 0.64 ± 0.02 0.58 ± 0.03 0.75 ± 0.03 0.48 ± 0.02 0.57±0.04
SC 0.67 ± 0.02 0.22 ± 0.02 0.42 ± 0.02 0.16 ± 0.02 0.09 ± 0.02 0.25 ± 0.02 0.39 ± 0.03

K-means 0.64 ± 0.04 0.24 ± 0.04 0.57 ± 0.03 0.16 ± 0.02 0.09 ± 0.02 0.10 ± 0.03 0.50 ± 0.04

Machine Sound Data. In this section, we report re-
sults of an experiment on the classification of acoustic
signals inside buildings into different machine types.
We collected sound signals with accelerometers, yield-
ing a library of 280 sound instances. Our goal is to
classify these sounds into three basic machine classes:
motor, fan, pump. Each sound instance can be from
one machine, or from a mixture of two or three ma-
chines. As such, this data has a multiple clustering
view structure. In one view, data can be grouped
as motor or no motor; the other two views are sim-
ilarly defined. We represent each sound signal by
its FFT (Fast Fourier Transform) coefficients, pro-
viding us with 100, 000 coefficients. We select the
1000 highest values in the frequency domain as our
features. Table 2 shows that our method outper-
forms orthogonal projection clustering, de-correlated
K-means, standard SC, and standard K-means. We
performed much better than the competing methods
probably because we can find independent subspaces
and arbitrarily shaped clusters simultaneously.

WebKB Text Data. This data set1 contains html
documents from four universities: Cornell University,
University of Texas, Austin, University of Washing-
ton and University of Wisconsin, Madison. We re-
moved the miscellaneous pages and subsampled a total
of 1041 pages from four web-page owner types: course,
faculty, project and student. We preprocessed the data
by removing rare words, stop words, and words with
small variances, giving us a total of 350 words in the
vocabulary. Average NMI results are shown in Table
2. mSC is the best in discovering view 1 based on uni-
versities (with NMI values around 0.81, while the rest
are ≤ 0.48), and comes in close second to decorrelated-
K-means in discovering view 2 based on owner types
(0.54 and 0.57 respectively). A possible reason why
we do much better than the other approaches in view
1 is because we can capture nonlinear dependencies
among views, whereas OPC and DK only consider lin-
ear dependencies. In this data set, the two cluster-

1http://www.cs.cmu.edu/afs/cs/project/theo-
20/www/data/

ing views (universities and owner) reside in two dif-
ferent feature subspaces. Our algorithm, mSC, also
discovered these subspaces correctly. In the univer-
sity view, the five highest variance features we learned
are: {Cornell, Texas, Wisconsin, Madison, Washing-
ton}. In the type of web-page owner view, the highest
variance features we learned are: {homework, student,
professor, project, ph.d}.
NSF Text Data. The NSF data set (Bay, 1999)
consists of 129, 000 abstracts from year 1990 to 2003.
Each text instance is represented by the frequency of
occurrence of each word. We select 1000 words with
the highest frequency variance in the data set and ran-
domly subsample 15000 instances for this experiment.
Since this data set has no labels, we do not report any
NMI scores; instead, we use the five highest frequency
words in each cluster to assess what we discovered.
We observe that view 1 captures the type of research:
theoretical research in cluster 1 represented by words:
{methods, mathematical, develop, equation, problem}
and experimental research in cluster 2 represented by
words: {experiments, processes, techniques, measure-
ments, surface}. We observe that view 2 captures dif-
ferent fields: materials, chemistry and physics in clus-
ter 1 by words: {materials, chemical, metal, optical,
quantum}, control, information theory and computer
science in cluster 2 by words: {control, programming,
information, function, languages}, and biology in clus-
ter 3 by words: {cell, gene, protein, dna, biological}.

4. Conclusions

We have introduced a new method for discovering mul-
tiple non-redundant clustering views for exploratory
data analysis. Many clustering algorithms only find
a single clustering solution. However, data may be
multi-faceted by nature; also, different data analysts
may approach a particular data set with different goals
in mind. Often these different clusterings reside in
different lower dimensional subspaces. To address
these issues, we have introduced an optimization-based
framework which optimizes both a spectral clustering
objective (to obtain high-quality clusters) in each sub-
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(a) The mean faces in the identity view.

0.74 0.78

0.45 0.41

(b) The mean faces in the pose view.

Figure 2. Multiple non-redundant spectral clustering re-
sults for the face data set.

space, and the HSIC objective (to minimize the depen-
dence of the different subspaces). The resulting mSC
method is able to discover multiple non-redundant
clusters with flexible cluster shapes, while simultane-
ously finding low-dimensional subspaces in each view.
Our experiments on both synthetic and real data show
that our algorithm outperforms competing multiple
clustering algorithms (orthogonal projection cluster-
ing and de-correlated K-means).
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