
Improving regularized singular value decomposition for
collaborative filtering

Arkadiusz Paterek
Institute of Informatics, Warsaw University

ul. Banacha 2, 02-097 Warsaw, Poland
paterek@mimuw.edu.pl

ABSTRACT
A key part of a recommender system is a collaborative filter-
ing algorithm predicting users’ preferences for items. In this
paper we describe different efficient collaborative filtering
techniques and a framework for combining them to obtain a
good prediction.

The methods described in this paper are the most im-
portant parts of a solution predicting users’ preferences for
movies with error rate 7.04% better on the Netflix Prize
dataset than the reference algorithm Netflix Cinematch.

The set of predictors used includes algorithms suggested
by Netflix Prize contestants: regularized singular value de-
composition of data with missing values, K-means, postpro-
cessing SVD with KNN. We propose extending the set of
predictors with the following methods: addition of biases to
the regularized SVD, postprocessing SVD with kernel ridge
regression, using a separate linear model for each movie,
and using methods similar to the regularized SVD, but with
fewer parameters.

All predictors and selected 2-way interactions between
them are combined using linear regression on a holdout set.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning;
H.3.3 [Information storage and retrieval]: Information
search and retrieval—Information filtering

General Terms
Algorithms, Experimentation, Performance

Keywords
prediction, collaborative filtering, recommender systems, Net-
flix Prize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDDCup.07 August 12, 2007, San Jose, California, USA
Copyright 2007 ACM 978-1-59593-834-3/07/0008 ...$5.00.

1. INTRODUCTION
Recommender systems are very important for e-commerce.

If a company offers many products to many clients, it can
benefit substantially from presenting personalized recom-
mendations. For example, Greg Linden, developer of Ama-
zon’s recommendation engine [6], reported that in 2002 over
20% of Amazon’s sales resulted from personalized recom-
mendations. There exist many commercial applications of
recommender systems for products like books, movies, music
and others. Also many applications not directly commercial
have emerged: personalized recommendations for websites,
jokes [4], Wikipedia articles, etc.

A difficult part of building a recommender system is, know-
ing preferences of users for some items, to accurately predict
which other items they will like. This task is called collab-
orative filtering. Most approaches to this task, described so
far in the literature, are variations of K-nearest neighbors
(like TiVo [1]) or singular value decomposition (like Eigen-
Taste [4]). Another approach is using graphical models [7,
8]. Articles [3, 7] are examples of comparisons of different
collaborative filtering techniques.

In October 2006, the contest Netflix Prize was announced.
The goal of the contest is to produce a good prediction of
users’ preferences for movies. Netflix released a database of
over 100 million movie ratings made by 480189 users. The
contest ends when someone submits a solution with pre-
diction error RMSE (root mean squared error) 10% better
than the Netflix Cinematch algorithm. For introduction to
the Netflix Prize competition and description of Netflix Cin-
ematch we direct the reader to the article [2].

This paper describes various collaborative filtering algo-
rithms that work well on the Netflix Prize dataset. Using
approach of combining results of many methods with lin-
ear regression we obtained 7.04% better RMSE than Netflix
Cinematch on the Netflix Prize competition evaluation set.

In section 2 we describe our framework for combining pre-
dictions with linear regression. Most effective predictors
from our ensemble are described in section 3, including ap-
proaches proposed by Netflix Prize contestants: regularized
SVD of data with missing values, K-means, postprocessing
results of regularized SVD with K-NN. In that section we de-
scribe also new (to our knowledge) approaches: regularized
SVD with biases, postprocessing results of SVD with kernel
ridge regression, building a separate linear model for each
movie, and using two methods inspired by regularized SVD,
but with lower number of parameters. In section 4 experi-
mental results are presented, which show that combining the
proposed predictors leads to a significantly better prediction

than using pure regularized SVD. In section 5 we summarize
our experiments and discuss possible further improvements.

2. COMBINING PREDICTORS
In this section we describe how in the proposed solution

the training and the test set are chosen and how different
prediction methods are combined with linear regression.

The Netflix Prize data consists of three files:

• training.txt contains R = 100, 480, 507 ratings on a
scale 1 to 5, for M = 17, 770 movies, made by N =
480, 189 customers,

• probe.txt contains 1, 408, 395 user-movie pairs, for which
the ratings are provided in training.txt,

• qualifying.txt contains 2, 817, 131 user-movie pairs, for
which we do not know the ratings, but RMSE of a
prediction is computed by the Netflix Prize evaluation
system. We can assume probe.txt and qualifying.txt
come from the same population of newest ratings.

Summarizing, the user-item matrix for this data has N ∗
M = 8, 532, 958, 530 elements – c.a. 98.9% values are miss-
ing.

The dataset besides ratings contains other information,
like the dates of the ratings, but we do not use for prediction
any information besides the above mentioned rating data.

Our framework for combining predictions is simple: we
draw random 1.5% − 15% of probe.txt as a test set (hold-
out set). Our training set contains the remaining ratings
from training.txt. We train all algorithms on the training
set (some methods also occasionally observe test set error
to make a decision when to stop optimization of weights).
Then the predictions made by each algorithm for the test set
are combined with linear regression on the test set. Adding
to the regression selected two-way interactions between pre-
dictors gives a small improvement.

There is also a possibility of using data without ratings
(qualifying.txt), which carry some information. The article
[8] suggests that using this additional data can significantly
improve prediction in the Netflix Prize task.

Because linear regression is made on a small set, the weights
obtained are inaccurate. Also, using the test set for lin-
ear regression, feature selection and other purposes causes
small overfitting. We can improve prediction using a cross-
validation-like method: draw randomly a part of probe.txt
as the test set, repeat the training and linear regression,
do this a few times and average the results. However, each
repetition means running again all algorithms on a massive
dataset. Because training each one of our algorithms takes
much time (0.5-20h), we did not perform cross-validation in
experiments described in section 4.

The 7.04% submission to the Netflix Prize is a result of
partial cross-validation. We ran part of our methods for
the second time on a different test set and confirmed an
improvement after merging results of two linear regressions.

In the next sections we describe the most effective predic-
tors from our ensemble.

3. PREDICTORS

3.1 Simple predictors
In this section we describe six predictors which are used by

methods from subsections 3.2 (RSVD) and 3.5 (SVD KNN)
and also in all experiments described in section 4.

For the given movie j rated by user i, first five predictors
are empirical probabilities of each rating 1 − 5 for user i.
The sixth predictor is the mean rating of movie j, after
subtracting the mean rating of each member.

We will refer to that set of six simple predictors as ”BA-
SIC”.

3.2 Regularized SVD
Regularized SVD, a technique inspired by effective meth-

ods from the domain of natural language processing [5], was
proposed for collaborative filtering by Simon Funk (Brandyn
Webb) [9]. Simon Funk’s description [9] includes proposition
of learning rate and regularization constants, and a method
of clipping predictions.

In the regularized SVD predictions for user i and movie j
are made in the following way:

ŷij = uT
i vj (1)

where ui and vj are K-dimensional vectors of parameters.
The layer of k-th parameters of all vectors ui, vj is called
the k-th feature.

Parameters are estimated by minimizing the sum of squared
residuals, one feature at a time, using gradient descent with
regularization and early stopping. Before training, from
each rating a simple baseline prediction is subtracted – com-
bination of six predictors described in section 2.1, with weights
chosen with linear regression.

rij = yij − ŷij

uik += lrate ∗ (rijvjk − λuik)

vjk += lrate ∗ (rijuik − λvjk)

, where yij is the rating given by user i for movie j.
We stop training the feature when the error rate on the

test set increases. After learning of each feature, the predic-
tions are clipped to < 1, 5 > range.

Parameters proposed by Simon Funk are difficult to im-
prove, so we leave them unchanged: lrate = .001, λ = .02.
We choose the number of features K = 96.

We will refer to this method as ”RSVD”.

3.3 Improved regularized SVD
We add biases to the regularized SVD model, one param-

eter ci for each user and one dj for each movie:

ŷij = ci + dj + uT
i vj (2)

Weights ci, dj are trained simultaneously with uik and vjk.

ci += lrate ∗ (rij − λ2(ci + dj − global mean))

dj += lrate ∗ (rij − λ2(ci + dj − global mean))

Values of parameters: lrate = .001, λ2 = .05, global mean =
3.6033.

We will refer to this method as ”RSVD2”.

3.4 K-means
K-means and K-medians were proposed for collaborative

filtering in [7].
Before applying K-means we subtract from each rating

the user’s mean rating. K-means algorithm is used to di-
vide users into K clusters Ck, minimizing the intra-cluster
variance.

KX
k=1

X
i∈Ck

||yi − µk||2 (3)

, where

||yi − µk||2 =
X
j∈Ji

(yij − µkj)
2 (4)

, where Ji is the set of movies rated by user i.
For each user belonging to cluster Ck the prediction for

movie j is µkj .
Our predictor is mean prediction of ensemble of 10 runs

of K-means with K ranging from 4 to 24.
We will refer to this method as ”KMEANS”.

3.5 Postprocessing SVD with KNN
The following prediction method was proposed by an anony-

mous Netflix Prize contestant.
Let’s define similarity between movies j and j2 as cosine

similarity between vectors vj and vj2 obtained from regular-
ized SVD:

s(vj , vj2) =
vT

j vj2

||vj ||||vj2 ||
(5)

Now we can use k-nearest neighbor prediction using similar-
ity s.

We use prediction by one nearest neighbor using similarity
s and refer to this method as ”SVD KNN”.

We also obtained good quality clustering of items, using
single linkage hierarchical clustering with the similarity s.
Though it was not useful for improving prediction, we men-
tion it, because clustering of items can be useful in applica-
tions in recommender systems, for example to avoid filling
recommendation slots with very similar items.

3.6 Postprocessing SVD with kernel ridge re-
gression

One idea to improve SVD is to discard all weights uik

after training and try to predict yij for each user i using vjk

as predictors, for example using ridge regression.
Let’s redefine y in this section as a vector: i-th row of

matrix y, with missing values omitted (now y is vector of
movies rated by user i). Let X be a matrix of observations -
each row of X is normalized vector of features of one movie
j rated by user i: xj2 =

vj

||vj ||
. For efficiency reasons we limit

the number of observations to 500. If a user rated more than
500 movies, we use only 500 most frequently rated movies.

We can predict y using ridge regression:

β̂ = (XT X + λI)−1XT y (6)

ŷi = xT
i β̂ (7)

Equivalent dual formulation involving Gram matrix XXT :

β̂ = XT (XXT + λI)−1y (8)

By changing Gram matrix to a chosen positive definite
matrix K(X, X) we obtain the method of kernel ridge re-
gression. It is equivalent to performing ridge regression in a

possibly much higher dimensional space, implicitly defined
by kernel K. Predictions in this method are made in the
following way:

ŷi = K(xT
i , X)(K(X, X) + λI)−1y (9)

We can look for a kernel (defining similarity or distance
between observations) which will result in better prediction
than K(xT

i , xT
j) = xT

i xj . We obtained good results with

Gaussian kernel K(xT
i , xT

j) = exp(2(xT
i xj − 1)) and the pa-

rameter λ = .5.
For each user we perform kernel ridge regression. Obser-

vations are
vj

||vj ||
, for the first at most 500 most frequently

rated movies, rated by the user. We name the method with
Gaussian kernel ”SVD KRR”.

3.7 Linear model for each item
For a given item (movie) j we are building a weighted

linear model, using as predictors, for each user i, a binary
vector indicating which movies the user rated.

ŷij = mj + ei ∗
X

j2∈Ji

wj2 (10)

where Ji is the set of movies rated by user i, constant mj is
the mean rating of movie j, and constant weights ei = (|Ji|+
1)−1/2. The model parameters are learned using gradient
descent with early stopping.

We name this method ”LM”.

3.8 Decreasing the number of parameters
The regularized SVD model has O(NK + MK) param-

eters, where N is the number of users, M is the number
of movies, K is the number of features. One idea to de-
crease the number of parameters is, instead of fitting ui

for each user separately, to model ui as a function of a bi-
nary vector indicating which movies the user rated. For
example uik ≈ ei

P
j∈Ji

wjk, where Ji is the set of movies

rated by user i (possibly including movies for which we do
not know ratings, e.g. qualifying.txt) and constant weights

ei = (|Ji|+ 1)−1/2, like in the previous section. This model
has O(MK) parameters.

ŷij = ci + dj + ei

KX
k=1

vjk

X
j2∈Ji

wj2k (11)

where Ji is the set of movies rated by user i.
The second proposed model is following:

ŷij = ci + dj +
KX

k=1

vjk

X
j2∈Ji

vj2k (12)

Parameters vjk and wjk are merged and there are no con-
stant weights ei.

In both models parameters are learned using gradient de-
scent with regularization and early stopping, similarly to the
regularized SVD.

We name the first method ”NSVD1”and the second ”NSVD2”.

4. EXPERIMENTAL RESULTS
Table 1 summarizes the results of experiments with meth-

ods described in the previous sections.
Combining results of RSVD2 method with six simple pre-

dictors called BASIC gives RMSE .9039 on the test set and

Test RMSE Test RMSE Cumulative

Predictor with BASIC with BASIC test RMSE

and RSVD2

BASIC .9826 .9039 .9826
RSVD .9094 .9018 .9094
RSVD2 .9039 .9039 .9018

KMEANS .9410 .9029 .9010
SVD KNN .9525 .9013 .8988
SVD KRR .9006 .8959 .8933

LM .9506 .8995 .8902
NSVD1 .9312 .8986 .8887
NSVD2 .9590 .9032 .8879

SVD KRR
* NSVD1 — — .8879
SVD KRR
* NSVD2 — — .8877

Table 1: Linear regression results - RMSE on the
test set

.9070 (4.67% improvement over Netflix Cinematch) on quali-
fying.txt, as reported by the Netflix Prize evaluation system.
Linear regression with all predictors from the table gives
RMSE .8877 on the test set and .8911 (6.34% improvement)
on qualifying.txt.

The predictors described in this paper are parts of a so-
lution which scores .8844 on the qualifying dataset – that is
7.04% improvement over Netflix Cinematch. The solution
submitted to the Netflix Prize is the result of merging in
proportion 85/15 two linear regressions trained on different
training-test partitions: one linear regression with 56 pre-
dictors (most of them are different variations of regularized
SVD and postprocessing with KNN) and 63 two-way inter-
actions, and the second one with 16 predictors (subset of the
predictors from the first regression) and 5 two-way interac-
tions. In the first regression the test set is random 15% of
probe.txt, and in the second – 1.5% of probe.txt.

All experiments were done on a PC with 2GHz proces-
sor and 1.2GB RAM. Running times varied from 45min for
SVD KNN to around 20h for RSVD2.

5. SUMMARY
We described a framework for combining predictions and

described methods that combined together give a good pre-
diction for the Netflix Prize dataset.

Possible further improvements of the solution presented:

• apply cross-validation-like solution described in chap-
ter 2 – repeat calculations on different training-test
partitions and merge the results.

• add different efficient predictors to the ensemble. Good
candidates are methods already applied with success
to collaborative filtering: Restricted Boltzmann Ma-
chines [8] and other graphical models [7].

6. ACKNOWLEDGMENTS
Thanks to Netflix for releasing their data and organization

of the Netflix Prize. Thanks to Simon Funk for sharing his
approach of using regularized singular value decomposition.
Also, I would like to thank Piotr Pokarowski for the course
Statistics II.

7. REFERENCES
[1] K. Ali and W. van Stam. Tivo: making show

recommendations using a distributed collaborative
filtering architecture. In W. Kim, R. Kohavi, J. Gehrke,
and W. DuMouchel, editors, KDD, pages 394–401.
ACM, 2004.

[2] J. Bennett and S. Lanning. The Netflix Prize.
Proceedings of KDD Cup and Workshop, 2007.

[3] J. S. Breese, D. Heckerman, and C. M. Kadie.
Empirical analysis of predictive algorithms for
collaborative filtering. In G. F. Cooper and S. Moral,
editors, UAI, pages 43–52. Morgan Kaufmann, 1998.

[4] K. Y. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Inf. Retr., 4(2):133–151, 2001.

[5] G. Gorrell and B. Webb. Generalized hebbian
algorithm for incremental latent semantic analysis.
Proceedings of Interspeech, 2006.

[6] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[7] B. Marlin. Collaborative filtering: a machine learning
perspective. M.Sc. thesis, 2004.

[8] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted
Boltzmann Machines for collaborative filtering.
Proceedings of the 24th International Conference on
Machine Learning, 2007.

[9] B. Webb. Netflix update: Try this at home.
http://sifter.org/∼simon/journal/20061211.html, 2006.

