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Introduction

I The goal of ranking: Find a way to order a set
of given objects or instances reflecting their
underlying utility, relevance or quality.

I Ranking has gained increasing attention in
the field of machine learning and information
retrieval such as document retrieval and
website search.



Example: OHSUMED data

A clinically-oriented MEDLINE (a bibliographic
database of life sciences and biomedical
information) subset stored in Oregon Health and
Science University, covering all references from
270 medical journals between 1987-1991 .

I 348566 documents and 106 queries
I 16140 query-document pairs
I The relevance judgement:

‘d’ (definitely relevant), ‘p’ (possibly relevant)
and ‘n’ (not relevant)



Each query includes patient information and
information request and is sorted by number.

I Query1
‘60 year old menopausal woman without
hormone replacement therapy’
‘Are there adverse effects on lipids when
progesterone is given with estrogen
replacement therapy? ’

I Query 2
‘60 year old male with disseminated
intravascular coagulation’
‘pathophysiology and treatment of
disseminated intravascular coagulation’

· · ·



query documentID relevance 1 2 3 4 5 6 7 8 9 10 … 40 41 42 43 44 45

1 244338 n 5 3.47 0.50 0.48 37.33 11.43 37.31 2.01 25.06 14.21 4.84 31.19 3.44 -36.63 -36.95 -35.83

1 143821 d 3 2.08 0.60 0.55 37.33 11.43 37.31 2.13 15.66 10.91 4.73 28.97 3.37 -36.18 -36.30 -35.20

1 285257 n 2 1.39 0.33 0.31 37.33 11.43 37.31 1.16 9.54 6.07 3.94 27.08 3.30 -37.35 -37.30 -36.00

1 201684 n 1 0.69 0.17 0.15 37.33 11.43 37.31 0.70 6.12 4.31 4.22 27.01 3.30 -37.54 -37.77 -36.63

1 48192 p 0 0.00 0.00 0.00 37.33 11.43 37.31 0.00 0.00 0.00 2.97 26.83 3.29 -36.32 -37.38 -36.06

1 111457 d 3 2.08 0.38 0.35 37.33 11.43 37.31 1.47 15.22 9.15 3.37 26.34 3.27 -38.49 -38.77 -37.41

1 248063 n 0 0.00 0.00 0.00 37.33 11.43 37.31 0.00 0.00 0.00 3.31 25.49 3.24 -38.76 -39.16 -37.90

1 316117 p 2 1.39 0.33 0.31 37.33 11.43 37.31 1.16 9.54 6.07 3.03 25.38 3.23 -39.04 -39.52 -37.58

1 256570 d 0 0.00 0.00 0.00 37.33 11.43 37.31 0.00 0.00 0.00 … 2.53 25.33 3.23 -35.73 -37.15 -35.66

…

106 337888 d 0 0.00 0.00 0.00 30.13 8.81 30.07 0.00 0.00 0.00 … 0.00 NULL NULL NULL NULL NULL

106 36526 n 0 0.00 0.00 0.00 30.13 8.81 30.07 0.00 0.00 0.00 0.00 NULL NULL NULL NULL NULL

106 63379 n 0 0.00 0.00 0.00 30.13 8.81 30.07 0.00 0.00 0.00 0.00 NULL NULL NULL NULL NULL

106 298134 p 0 0.00 0.00 0.00 30.13 8.81 30.07 0.00 0.00 0.00 0.00 NULL NULL NULL NULL NULL

106 299223 n 0 0.00 0.00 0.00 30.13 8.81 30.07 0.00 0.00 0.00 … 0.00 NULL NULL NULL NULL NULL



 
      … 

 
 



 

             
 

(Cited from Qin et al) 



Ranking methods 
 

 Itemwise ranking (Ordinal regression): 
Support Vector Ordinal Regression (Herbrich et al (1999) etc) 
Proportional Odds Model (McCullagh (1984)) 
ORBoost (Lin and Li (2006)) 
 

 
 

 Pairwise ranking:  
RankBoost (Freund et al (2003)) 
AUCSVM (Rakotomamonjy (2004), Brefeld and Scheffer (2005)) 
SVrank (Cortes and Mohri (2007)) 
 



Notation
I K: The number of categories.
I X: An instance used for ranking
I Y ∈ {1, · · · , K}: A category
I X: The space of instances
I r: X → R A ranking function
I c: X → {1, · · · , K} A classification function

As a special case, the case in which K = 2 is
called bipartite ranking. In this case, we use the
following notations;
I Y ∈ {1,−1}
I X: an instance whose category (Y) is 1
I X′: an instance whose category (Y) is -1



How is ranking different from classification?

Classification: Classification error is

l0(c; X, Y) = I(c(X),Y)

Pairwise ranking: Ranking error is defined for a
pair of two instances X and X′ whose categories
are different (1 and -1 respectively).

l0(r; X, X′) = I(r(X)<r(X′)) +
1
2

I(r(X)=r(X′))



 Classification error is not always a good measure 
for ranking problem. 

 

 An example from Agrawal and Niyogi (2005) 
 

 
 

Misclassification error is 2/8 in both cases, but 

ranking error of f1 is 4/16 while the error of f2 is 
8/16. So f1 is the better ranking function than f2. 
 
 

(For detailed discussion, see Cortes and Mohri (2003)) 



Empirical ranking risk

An empirical ranking risk is

1
n+n−

n+∑
i=1

n−∑
j=1

l0(r; xi, x j
′)

where {xi} is an observation of positive instance,{
x j
′
}

is an observation of negative instance and
n+, n− are the number of observations in positive
instance and negative instance respectively.



AUC (Area under the curve) 
 

Empirical ranking risk is equal to one minus the area under 
Receiver Operating Characteristic (ROC) curve (true positive 
rate versus false positive rate). (See Hanley and McNeil (1982)) 
 

 



Connection to hypothesis testing
I For fixed threshold value t

TPR(t) = P(r(X) > t|Y = 1)

FPR(t) = P(r(X) > t|Y = −1)

ROC is (FPR(t), TPR(t)) −∞ < t < ∞.
I Consider a hypothesis testing H0 : Y = −1

versus Ha : Y = 1 using r as a test statistics,
then TPR and FPR are power and size of the
test respectively.

I Hence maximizing AUC is equivalent to find
MP test, and it is known that the test uses
likelihood ratio.



Optimal ranking under l0

Theorem (1)
Let r∗

0
(x) := g+(x)/g−(x) and

R0(r) = E(l0(r; X, X′)) denote the expected
ranking risk of r under the bipartite ranking loss,
where X and X′ are, respectively, a positive
instance (Y = 1) and a negative instance (Y = −1)
randomly drawn from the distributions with pdf g+

and g−. Then for any ranking function r,

R0(r∗0) ≤ R0(r).



Ranking with convex loss

I If pdf g+ and g− are known we can derive the
best ranking function but they are unknown.

I Estimate the ranking function through the
minimization of empirical ranking risk, but it is
computationally difficult since l0 is not convex.

I Use a convex surrogate loss as in
classification.



Examples for surrogate losses

I RankBoost (Freund et al (2003))

l(r; X, X′) = exp(r(X) − r(X′))

I AUCSVM (Rakotomamonjy (2004) and
Brefeld and Scheffer (2005)) and SVRank
(Cortes and Mohri (2007))

l(r; X, X′) = (1 − (r(X) − r(X′)))+



Optimal Ranking under convex loss

Theorem (2)
Suppose that l is differentiable, l′(s) < 0 for all
s ∈ R, and l′(−s)/l′(s) = exp(s/α) for some
positive constant α. Then the best ranking function
under the loss l is of the form

r∗(x) = α log(g+(x)/g−(x)) + β,

where β is an arbitrary constant.



Application of Theorem 2

I For the RankBoost algorithm, l(s) = exp(−s),
and l′(−s)/l′(s) = exp(2s). Hence
r∗(x) = 1

2 log(g+(x)/g−(x)).
I Similarly, when l(s) = log(1 + exp(−s)), the

negative log likelihood in logistic regression,
l′(−s)/l′(s) = exp(s), and
r∗(x) = log(g+(x)/g−(x)).

I In these cases, there is no essential
difference between ranking and classification.
For example RankBoost derives the same
result as AdaBoost asymptotically.



More general result

Theorem (3)
Suppose that l is convex, and the subdifferential of
l at zero contains only negative values.
Let r∗ := arg minr Rl(r).

1. If g+(x)
g−(x) >

g+(x′)
g−(x′) , then r∗(x) ≥ r∗(x′) a.e.

2. If l is differentiable and g+(x)
g−(x) >

g+(x′)
g−(x′) , then

r∗(x) > r∗(x′) a.e.
3. If l is differentiable and l′ is one-to-one, then

for x and x′ such that g+(x)
g−(x) =

g+(x′)
g−(x′) ,

r∗(x) = r∗(x′).



Numerical example



Toy example for possible ties under hinge
loss

I Assume that X = {x1, x2, x3}.
I x1, x2 and x3 are ordered such that for pmf p+

and p−
p+(x1)
p−(x1) >

p+(x2)
p−(x2) >

p+(x3)
p−(x3)

(Note that
∑3

i=1 p+(xi) =
∑3

i=1 p−(xi) = 1)
I In this setting, we can derive the optimal

ranking r∗ function under hinge loss.
Let ∆12 = r∗(x1) − r∗(x2) and
∆23 = r∗(x2) − r∗(x3)





Extension to multipartite ranking problem

I If K ≥ 3 there is difference between Ordinal
regression and Pairwise ranking method.

I Examples for an evaluation metric in
information retrieval:
Assume that data is {(x1, y1), . . . , (xn, yn)} and
r(x[n]) ≤ · · · ≤ r(x[1]).

I MRR (Mean Reciprocal Rank,
∑n

i=1
g(y[i])

i )
I NDCG (Normalized discounted cumulative gain,∑n

i=1
2y[i]−1

log2(i+1) )

where g is an nondecreasing function.



Multipartite version of AUC

Let nj be the number of observations in category
j ∈ {1, . . . , K}.
I Hand and Till (2001)

Ûovo(r) = 2
k(k−1)

∑
l′<l Âl′ l

where Âl′ l = 1
nl′nl

∑
yi=l′

∑
y j=l I(r(xi)<r(x j))

I Waegeman et al (2008)
Ûpairs(r) = 1∑

l′<l nl′nl

∑
yi<y j

I(r(xi)<r(x j))

Ûcons(r) = 1
k−1

∑k−1
l=1 B̂l

where
B̂l = 1∑l

i=1 ni
∑k

j=l+1
nj

∑
yi≤l

∑
y j>l I(r(xi)<r(x j))



A tripartite ranking risk

I Suppose K = 3, and let a pairwise ranking
loss of (X, Y) and (X′, Y′) (where Y > Y′)
using r be

l0(r; X, X′, Y, Y′) = cY′Y I(r(X)<r(X′))

then the expected risk of r is
R0(r; c)
=

∑
1≤ j<i≤3 E[l0(r; X, X′, i, j)]P(Y = i, Y′ = j)

I If c12 = c13 = c23 = 1, the risk above is the
same as E[Ûpairs(r)]



Theorem (4)
Let

r∗0(x) :=
c13 P(Y = 3|x) + c12 P(Y = 2|x)
c13 P(Y = 1|x) + c23 P(Y = 2|x)

and R(r; c) denote the pairwise ranking risk of r
above. Then for any ranking function r,

R0(r∗0; c) ≤ R0(r; c).

Note: Under some conditions, this result can be
extended to the case where K ≥ 4.



Relation to Ordinal regression
I A loss function in ordinal regression is

represented as

l(r, {θi}
K
i=0 ; x, y) = l(r(x) − θy) + l(θy+1 − r(x))

I If l(s) = I(s<0), then the ranking function r∗
minimizing E[l(r, {θi}

K
i=0 ; X, Y)] is

r∗(x) = argmax j P(Y = j|X)

(Dembczyński, Kotłowski and Słowiński
(2008))

I Hence the multipartite ranking problem is
essentially the same as multiclass
classification problem.



Relation to Proportional odds model (K = 3)

I log P(Y≤ j|x)
P(Y> j|x) = r(x) − θ j

where − ∞ = θ0 < θ1 ≤ θ2 < θ3 = ∞

⇔ P(Y = j|x) = 1
1+exp(r(x)−θ j)

− 1
1+exp(r(x)−θ j−1)

I r∗(x) maximizing the likelihood satisfies

er∗(x) =
q(x)−1+

√
(q(x)−1)2+4eθ1−θ2 q(x)

2e−θ2

where q(x) =
p2(x)+p3(x)
p1(x)+p2(x)

I er∗(x) is order perserved transformation of q(x).
I This implies that proportional odds model

minimizes E[Ûpairs(r)].



Relation to Ordinal Regression Boosting
l(s) = e−s and it is shown that for K ≥ 3

r∗(x) =
1
2

log

∑k−1
j=1 P(Y = j + 1|x) exp(θ̂ j)∑k−1

j=1 P(Y = j|x) exp(−θ̂ j)

where θ̂i satisfies

e2θi =

EX

P(Y = i|X)
(∑k−1

j=1 P(Y= j+1|X) exp(θ j)∑k−1
j=1 P(Y= j|X) exp(−θ j)

)1/2
EX

P(Y = i + 1|X)
( ∑k−1

j=1 P(Y= j|X) exp(−θ j)∑k−1
j=1 P(Y= j+1|X) exp(θ j)

)1/2



When K = 3
r∗(x) = 1

2 log P(Y=2|x)+P(Y=3|x) exp(θ̂2−θ̂1)
P(Y=1|x) exp(θ̂2−θ̂1)+P(Y=2|x)

+ 1
2(θ̂1 − θ̂2)

Hence this is the best if we set
c12 = c23 = 1, c13 = exp(θ̂2 − θ̂1). If θ̂2 > θ̂1, the
cost of misranking the pair of instances in category
1 and category 3 is higher than the other two types
of misranking.



Numerical example for tripartite ranking 
 

Setting: 
 

 
 

In ORBoost, the number of observation genearted for each 
category is 2000. 

 
Theoretical result: 
 

 
 

 
 

 
 



ORBoost (Solid, iteration=2000) and theoretical rank (dashed) 
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K. Dembczyński, W. Kotłowski, and R. Słowiński.
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