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Introduction: Brief Overview

1 Motivation

To reduce the effect of outlying or influential cases

2 Method

Consider a modeling procedure under the frame of loss
function minimization
Modify the current modeling procedure by adding
case-specific parameters

3 Conjectured results

Decrease the potential impacts of outliers
Attain robustness and/or efficiency
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Introduction: Case-specific Parameter and
Regularization

1 Case-specific parameter in the linear model

yi = �0 + x⊤i � + i + �i

Or in matrix notation,

Y = X� + I + �

= (X I)

(
�


)
+ �

2 Dimension: Ill posed problem

Regularization method is needed
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General Modeling Procedure : Through the
objective function minimization

1 Standard regularization of location model

L(�) =
n∑

i=1

g(yi − x⊤i �) + ��J1(�)

2 Add case-specific parameters

L(�, ) =
n∑

i=1

g(yi − x⊤i � − i ) + ��J1(�) + �J2()

3 With �̂, find the minimizer,̂, of

L(�̂, ) =
n∑

i=1

g(ri − i ) + �J2(), where ri = yi − x⊤i �̂

4 With ̂, iterate step 2 and 3 until convergence.
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LASSO: Modification Procedure I

1 Standard LASSO

L(�) =
1

2
(Y − X�)⊤(Y − X�) + ��

p∑
j=1

∣�j ∣

2 Robust LASSO

L(�, ) =
1

2
{Y − (X� + )}⊤{Y − (X� + )}

+ ��

p∑
j=1

∣�j ∣+ �

n∑
i=1

∣i ∣

Case-specific parameters and extra penalty are included
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LASSO: Modification Procedure II

1 With �̂,

L(�̂, ) =
1

2
(r − )⊤(r − ) + ��̂

p∑
j=1

∣�̂j ∣+ �

n∑
i=1

∣i ∣

Minimizer is ̂ = sgn(r)(∣r ∣ − �)+
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LASSO: Modification Procedure III

1 Now with ̂, L(�, ̂) for ith observation becomes{
1
2 (yi − x⊤i �)2 + ��

∑p
j=1 ∣�j ∣ for∣yi − x⊤i �∣ < �

1
2�

2
 + �(∣yi − x⊤i �∣ − �) + ��

∑p
j=1 ∣�j ∣ otherwise

2 Coincide with Huberized LASSO (Rosset & Zhu, 2004)

3 Conjecture : Achieve some Robustness
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Graphical Summary

Loss Functions: Standard LASSO and Robust LASSO

r

L(r)

rλγ− λγ

L(r)
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Application to Language Data (Baayen, 2007)

1 Total sample size: about 4500 cases

2 Variables: (small) 20 variables (large) 9 additional
variables

3 simulated sample size: 400 cases

4 5000 replicates

5 Calculate sum of squared deviations (SSD) from Baayens
fitted values
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Application to Language Data (Baayen, 2007)

Sum of squared deviations (SSD) from Baayens fits in the simulation study. The

horizontal line is the mean SSD for the LASSO while the points represent the mean of

SSDs for the robust LASSO. The vertical lines give approximate 95% confidence intervals

for the mean SSDs. Panel (a) presents results for the small set of covariates and panel (b)

presents results for the large set of covariates.
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More on �� and �

1 �� is chosen by Robust Cp (Ronchetti and Staudte, 1994)

2 Set � = k ⋅ �

3 Estimate � with robust �̂ such as MAD

4 (Huber; 1981) suggests k ∈ [1, 2]
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Simulation Setting (Tibshirani, 1996)

1 Standard linear model y = x⊤� + � was assumed

2 Generated x = (x1, . . . , x8)⊤ from N(0,Σ), where
�i ,j = (0.5)∣i−j ∣.

3 Three scenarios were considered

a Sparse: � = (5, 0, 0, 0, 0, 0, 0, 0)
b Intermediate: � = (3, 1.5, 0, 0, 2, 0, 0, 0)
c dense: �j = 0.85 for all j = 1, . . . , 8

4 �i ∼ N(0, 32)
5 Contamination

No Contamination
first 5% �i were tripled
first 5% of x1 were tripled

6 MSE = 100−1
∑100

i=1(�̂i − �)⊤Σ(�̂i − �)
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Simulation Results

In each scenario, o, e, and x indicate clean data, data with

contaminated measurement errors, and data with mismeasured first

covariate. The dotted lines are for LASSO while the solid lines are for

Robust LASSO. The points are the average MSE from 100 data sets
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Median Regression: Modification Procedure I

1 Median Regression

L�(�) =
n∑

i=1

∣yi − x⊤i �∣

2 Modified Median Regression

L(�, ) =
n∑

i=1

∣yi − x⊤i � − i ∣+
�
2

n∑
i=1

2i

Case-specific parameters and extra penalty are included

15/43



Outline

Introduction

Methodology

Application to
LASSO

Application to
Median
Regression

Application to
Quantile
Regression

Conclusion

Future
Research

Median Regression: Modification Procedure I

1 Median Regression

L�(�) =
n∑

i=1

∣yi − x⊤i �∣

2 Modified Median Regression

L(�, ) =
n∑

i=1

∣yi − x⊤i � − i ∣+
�
2

n∑
i=1

2i

Case-specific parameters and extra penalty are included

15/43



Outline

Introduction

Methodology

Application to
LASSO

Application to
Median
Regression

Application to
Quantile
Regression

Conclusion

Future
Research

Median Regression: Modification Procedure II

1 With �̂,

L(�̂, ) =
∑n

i=1 ∣ri − i ∣+
�
2

∑n
i=1 

2
i

2 Minimizer, ̂ = sgn(r) 1
�

I
(
∣r ∣ > 1

�

)
+ rI

(
∣r ∣ ≤ 1

�

)

r

γ̂

1

λγ
−

1

λγ
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Median Regression: Modification Procedure III

1 With ̂, L(�, ̂) for ith observation becomes{
∣yi − x⊤i �∣ −

1
2�

for∣yi − x⊤i �∣ >
1
�

�
2 (yi − x⊤i �)2 for∣yi − x⊤i �∣ ≤

1
�

2 Again, Huber’s loss function

3 Quadratic adjustment of the V shape

4 Conjecture : Achieve some Efficiency

5 Details of bending constant, � , come later

6 Natural extension to Quantile Regression
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5 Details of bending constant, � , come later

6 Natural extension to Quantile Regression
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Graphical Summary

Loss Function: Median Regression and Efficient Median
Regression

r

L(r)

r1

λγ

1

− λγ

L(r)
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Quantile Regression: Introduction

1 Check loss function for estimating qth regression
quantile, 0 < q < 1 (Koenker& Bassett, 1978)

�(u) =

{
qu for u ≥ 0

(q − 1)u for u < 0.

2 Finding the minimizer is equivalent to finding the zero
of its derivative,

 (u) =

{
q for u ≥ 0

(q − 1) for u < 0.
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Quantile Regression: Modification Procedure I

1 Modified quantile regression

L(�, ) =
n∑

i=1

�(yi − x⊤i �−i )+�J2()

2 Consider asymmetric J2()

J2() = q
1−q

2I ( ≥ 0) + 1−q
q 2I ( < 0)

3 With �̂, the minimizer of L(�̂, ) is

̂ = − q
2�

I (r<− q
2�

)+ rI (− q
2�
≤ r< 1−q

2�
)+ 1−q

2�
I (r≥ 1−q

2�
)
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Quantile Regression: Modification Procedure II

1 With ̂

L(�, ̂) =
n∑

i=1

�(yi − x⊤i �−̂i ) + �J2(̂)

=
n∑

i=1

�M(yi − x⊤i �)

2 �M(u) is given by

�M (u) =

⎧⎨⎩
qu − q(1−q)

4�
if 1−q

2�
≤ u

�
q

1−qu
2 if 0 ≤ u < 1−q

2�

�
1−q
q u2 if − q

2�
≤ u < 0

(q − 1)u − q(1−q)
4�

if u < − q
2�

21/43



Outline

Introduction

Methodology

Application to
LASSO

Application to
Median
Regression

Application to
Quantile
Regression

Conclusion

Future
Research

Quantile Regression: Modification Procedure II
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Graphical Summary

Loss Function: Standard QR and Efficient QR

r

ρ (r)

r
1 − q

2λγ
−

q

2λγ

ρ (r)
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Quantile Regression: Modification Procedure III

1  M(u) is employed for computing purpose.
rlm(MASS) procedure is used in R.

 M(u) =

⎧⎨⎩
q if 1−q

2�
≤ u

2�
q

1−qu if 0 ≤ u < 1−q
2�

2�
1−q
q u if − q

2�
≤ u < 0

(q − 1) if u < − q
2�

2 Recall the  (u) for standard QR

 (u) =

{
q for u ≥ 0

(q − 1) for u < 0.

23/43



Outline

Introduction

Methodology

Application to
LASSO

Application to
Median
Regression

Application to
Quantile
Regression

Conclusion

Future
Research

Quantile Regression: Modification Procedure III

1  M(u) is employed for computing purpose.
rlm(MASS) procedure is used in R.

 M(u) =

⎧⎨⎩
q if 1−q

2�
≤ u

2�
q

1−qu if 0 ≤ u < 1−q
2�

2�
1−q
q u if − q

2�
≤ u < 0

(q − 1) if u < − q
2�

2 Recall the  (u) for standard QR

 (u) =

{
q for u ≥ 0

(q − 1) for u < 0.

23/43



Outline

Introduction

Methodology

Application to
LASSO

Application to
Median
Regression

Application to
Quantile
Regression

Conclusion

Future
Research

Graphical Summary

 Function: Standard QR and Modified QR
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Quantile Regression: A Rule for � I

1 Through simulation search for c which provides ’minimum’
MSE .

2 Error distributions investigated are

Standard Normal
T distributions
Gamma distributions
Log-normal distribution
Exponential distribution

3 Sample sizes: 102, 102.5, 103, 103.5, 104

4 quantiles: 0.1, 0.2, . . . ,0.9

5 The length of interval (of adjustment) is 1
2�

= �̂
2c⋅n�
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Quantile Regression: A Rule for � II
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Quantile Regression: A Rule for � III

1 Again, the length of interval adjusted is 1
2�

= �̂
2c⋅n�

2 Given n, �, rule for c is,

ĉ =

{
e−2.118−1.097q for q < 0.5

e−2.118−1.097(1−q) for q ≥ 0.5

which is developed from exponential error distribution.

3 For computation : Embed the rule in the  M(u) then use
rlm(MASS) in R.

4 Prediction ability?
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Quantile Regression: Prediction with the Rule on
N(0,1) error distribution
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Quantile Regression: Prediction with the Rule on
t(df=10) error distribution
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Quantile Regression: Prediction with the Rule on
t(df=5) error distribution
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Quantile Regression: Prediction with the Rule on
log-normal error distribution
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Quantile Regression: Prediction with the Rule on
gamma error distribution
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Quantile Regression: Prediction with the Rule on
exponential error distribution
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Application to NHANES Data I
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Body Mass Index vs height from 5938 U.S. male (age>18)
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Application to NHANES Data II
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Quantile Regression: Asymptotic Properties I

Assumptions

1 There exist continuous and differentiable densities, fi (�)
uniformly bounded away from 0 and ∞ at �i , i=1,2,....

2 limn→∞ n−1
∑

xix
⊤
i = D0, where D0 is positive definite

3 limn→∞ n−1
∑

fi (�i )xix
⊤
i = D1, where D1 is positive

definite

4 maxi=1,.,n ∥ xi ∥ /
√
n→ 0

Definition: Standard QR Estimator

�̂q = arg min
�∈ℝp

n∑
i=1

�(yi − x⊤i �)

√
n(�̂q − �)→ N(0, q(1− q)D−11 D0D

−1
1 )
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uniformly bounded away from 0 and ∞ at �i , i=1,2,....

2 limn→∞ n−1
∑

xix
⊤
i = D0, where D0 is positive definite

3 limn→∞ n−1
∑

fi (�i )xix
⊤
i = D1, where D1 is positive

definite

4 maxi=1,.,n ∥ xi ∥ /
√
n→ 0

Definition: Standard QR Estimator

�̂q = arg min
�∈ℝp

n∑
i=1

�(yi − x⊤i �)

√
n(�̂q − �)→ N(0, q(1− q)D−11 D0D

−1
1 )
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Quantile Regression: Asymptotic Properties II

1 Modified QR Estimator

�̂q,M = arg min
�∈ℝp

n∑
i=1

�M(yi − x⊤i �)

√
n(�̂q,M − �)→ N(0, q(1− q)D−11 D0D

−1
1 ), if � > 1/3

2 Modified QR Estimator under Location-Scale Family
Model : yi = x⊤i � + (x⊤i �)�i , where �i are iid

�̌q,M = arg min
�∈ℝp

n∑
i=1

�M ((yi − x⊤i �)/x⊤i �)

With
√
n-consistent estimator of � (Koenker,Zhao: 1994)

√
n(�̌q,M − �)→ N(0, q(1− q)D−12 ), if � > 1/3
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Quantile Regression: Asymptotic Properties III

1 Modified QR Estimator under Heterogeneous data

�̃q,M = arg min
�∈ℝp

n∑
i=1

fi (�i )�
M
 (yi − x⊤i �)

√
n(�̃q,M − �)→ N(0, q(1− q)D−12 ), if � > 1/3

2 Remark: D−11 D0D
−1
1 > D−12

3 Performance of �̃q,M in finite sample size?
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Quantile Regression: Asymptotic Properties III

1 Modified QR Estimator under Heterogeneous data

�̃q,M = arg min
�∈ℝp

n∑
i=1

fi (�i )�
M
 (yi − x⊤i �)

√
n(�̃q,M − �)→ N(0, q(1− q)D−12 ), if � > 1/3

2 Remark: D−11 D0D
−1
1 > D−12

3 Performance of �̃q,M in finite sample size?
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Quantile Regression: Simulation with
Heterogeneous Data

1 Consider linear model yi = �0 + �1xi + xi�i , �i ’s are iid
standard normal

2 (�0, �1)⊤ = (1, 2)⊤

3 x is consist of three points; x∈ {1, 2, 3}

4 sample size n=300 and n=900 were made and evenly
distributed at each design point (200 replicates)

5 Standard QR, Modified QR(QR.M), Weighted QR
(WQR), and Weighted QR.M (WQR.M) are compared
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Table: mean of MSE and its standard error in (⋅) from 200
replications with n=300 and n=900 at qth quantile, multiplied by
1000.

q=.1 q=.2 q=.3 q=.4 q=.5
n=300

QR 92.31(8.85) 66.68(5.47) 56.40(4.80) 44.77(3.57) 42.53(3.33)
QR.M 92.91(8.41) 62.37(5.19) 48.38(4.06) 37.48(2.94) 33.47(2.64)
WQR 85.49(8.32) 62.10(5.53) 54.93(4.97) 42.82(3.46) 42.32(3.48)
WQR.M 84.44(8.03) 57.93(5.19) 44.84(3.92) 35.55(2.89) 31.21(2.48)

n=900
RQ 28.93(2.44) 22.10(2.04) 18.06(1.56) 15.50(1.43) 14.41(1.25)
RQ.M 28.89(2.40) 21.09(1.95) 15.90(1.35) 13.13(1.14) 12.22(1.07)
WQR 27.77(2.31) 21.44(1.91) 17.73(1.55) 15.20(1.44) 14.42(1.21)
WRQ.M 28.28(2.59) 20.09(1.82) 15.30(1.28) 12.58(1.10) 11.54(1.00)
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Concluding Remarks

1. A new approach to treat cases

2. Regularization of case-specific parameter increases

1 Robustness in LASSO

2 Efficiency and Robustness in Quantile Regression

3. Broadly applicable
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Future Research

1 Classification

Logistic Regression
Support Vector Machine

2 Cross Validation

Find more accurate loss function

Thank You!
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