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Abstract

Many existing approaches to collaborative filtering caritregihandle very large
datasets nor easily deal with users who have very few ratihg¢his paper we

present the Probabilistic Matrix Factorization (PMF) mioglkich scales linearly
with the number of observations and, more importantly, greng well on the

large, sparse, and very imbalanced Netflix dataset. Wedughktend the PMF
model to include an adaptive prior on the model parameteissapw how the

model capacity can be controlled automatically. Finallg imtroduce a con-
strained version of the PMF model that is based on the assomtpiit users who
have rated similar sets of movies are likely to have simitefgrences. The result-
ing model is able to generalize considerably better forsiagth very few ratings.

When the predictions of multiple PMF models are linearly bamed with the

predictions of Restricted Boltzmann Machines models, weese an error rate
of 0.8861, that is nearly 7% better than the score of Netfows system.

1 Introduction

One of the most popular approaches to collaborative filgeisnbased on low-dimensional factor
models. The idea behind such models is that attitudes oemaetes of a user are determined by
a small number of unobserved factors. In a linear factor ma@daser’s preferences are modeled
by linearly combining item factor vectors using user-sfiecioefficients. For example, fa¥ users
andM movies, theV x M preference matrix is given by the product of aiy x D user coefficient
matrix UT and aD x M factor matrixV [7]. Training such a model amounts to finding the best
rank-D approximation to the observéd x M target matrixR under the given loss function.

A variety of probabilistic factor-based models has beeppsed recently [2, 3, 4]. All these models
can be viewed as graphical models in which hidden factomabéas have directed connections to
variables that represent user ratings. The major drawbbskalh models is that exact inference is
intractable [12], which means that potentially slow or io@@te approximations are required for
computing the posterior distribution over hidden factorsuch models.

Low-rank approximations based on minimizing the sum-sgdakistance can be found using Sin-
gular Value Decomposition (SVD). SVD finds the matfix= UZV of the given rank which min-
imizes the sum-squared distance to the target matrisince most real-world datasets are sparse,
most entries inRk will be missing. In those cases, the sum-squared distanoeniputed only for
the observed entries of the target matfix As shown by [9], this seemingly minor modification
results in a difficult non-convex optimization problem whicannot be solved using standard SVD
implementations.

Instead of constraining the rank of the approximation mafti= U7V, i.e. the number of factors,
[10] proposed penalizing the norms @fand V. Learning in this model, however, requires solv-
ing a sparse semi-definite program (SDP), making this aghrodeasible for datasets containing
millions of observations.
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Figure 1: The left panel shows the graphical model for Probabilistatii Factorization (PMF). The right
panel shows the graphical model for constrained PMF.

Many of the collaborative filtering algorithms mentionecoab have been applied to modelling
user ratings on the Netflix Prize dataset that contains 480,&ers, 17,770 movies, and over 100
million observations (user/movie/rating triples). Howevnone of these methods have proved to
be particularly successful for two reasons. First, nonénefgdbove-mentioned approaches, except
for the matrix-factorization-based ones, scale well tgdatatasets. Second, most of the existing
algorithms have trouble making accurate predictions fersigho have very few ratings. Acommon
practice in the collaborative filtering community is to rere@ll users with fewer than some minimal
number of ratings. Consequently, the results reported estdndard datasets, such as MovieLens
and EachMovie, then seem impressive because the most Wiffacses have been removed. For
example, the Netflix dataset is very imbalanced, with “igfrent” users rating less than 5 movies,
while “frequent” users rating over 10,000 movies. Howesarce the standardized test set includes
the complete range of users, the Netflix dataset providesca more realistic and useful benchmark
for collaborative filtering algorithms.

The goal of this paper is to present probabilistic algorghtirat scale linearly with the number of
observations and perform well on very sparse and imbaladatsets, such as the Netflix dataset.
In Section 2 we present the Probabilistic Matrix Factoi@a{PMF) model that models the user
preference matrix as a product of two lower-rank user andiemmatrices. In Section 3, we extend
the PMF model to include adaptive priors over the movie aret feature vectors and show how
these priors can be used to control model complexity autcaigt In Section 4 we introduce a
constrained version of the PMF model that is based on thergssan that users who rate similar
sets of movies have similar preferences. In Section 5 wertéipe experimental results that show
that PMF considerably outperforms standard SVD models. l¢¢eshow that constrained PMF and
PMF with learnable priors improve model performance sigaiftly. Our results demonstrate that
constrained PMF is especially effective at making bettedjmtions for users with few ratings.

2 Probabilistic Matrix Factorization (PMF)

Suppose we hav&/ movies,N users, and integer rating values from 1A3. Let R;; represent
the rating of usei for movie j, U € RP>*N andV € RP*M pe latent user and movie feature
matrices, with column vectol$; andV; representing user-specific and movie-specific latent featu
vectors respectively. Since model performance is measayambmputing the root mean squared
error (RMSE) on the test set we first adopt a probabilistiedinmodel with Gaussian observation
noise (see fig. 1, left panel). We define the conditional iigtion over the observed ratings as
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whereN (z|u, o%) is the probability density function of the Gaussian disttibn with meary: and
variances?, andI;; is the indicator function that is equal to 1 if userated moviej and equal to

'Real-valued ratings can be handled just as easily by the Isiddecribed in this paper.



0 otherwise. We also place zero-mean spherical Gaussiarspti, 11] on user and movie feature
vectors:
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The log of the posterior distribution over the user and més&tures is given by
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where(C' is a constant that does not depend on the parameters. Maxintie log-posterior over
movie and user features with hyperparameters (i.e. therodisen noise variance and prior vari-
ances) kept fixed is equivalent to minimizing the sum-ofesqd-errors objective function with
guadratic regularization terms:
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where\y = o%/c}, \v = 02 /0%, and|| - ||%,., denotes the Frobenius norm. A local minimum
of the objective function given by Eqg. 4 can be found by perfioig gradient descent il andV'.
Note that this model can be viewed as a probabilistic exbensiithe SVD model, since if all ratings
have been observed, the objective given by Eq. 4 reduces t8\D objective in the limit of prior
variances going to infinity.

In our experiments, instead of using a simple linear-Ganssiodel, which can make predictions
outside of the range of valid rating values, the dot prodetiieen user- and movie-specific feature
vectors is passed through the logistic functidm) = 1/(1 + exp(—=x)), which bounds the range of
predictions:
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We map the ratings, ..., K to the intervall0, 1] using the functiort(z) = (z — 1)/(K — 1), so
that the range of valid rating values matches the range dfigtiens our model makes. Minimizing
the objective function given above using steepest desakasttime linear in the number of obser-
vations. A simple implementation of this algorithm in Médtlallows us to make one sweep through
the entire Netflix dataset in less than an hour when the maegtirained has 30 factors.

3 Automatic Complexity Control for PMF Models

Capacity control is essential to making PMF models germraliell. Given sufficiently many fac-
tors, a PMF model can approximate any given matrix arbiyrarell. The simplest way to control
the capacity of a PMF model is by changing the dimensionafifigature vectors. However, when
the dataset is unbalanced, i.e. the number of observatifiescignificantly among different rows
or columns, this approach fails, since any single numbeeatire dimensions will be too high for
some feature vectors and too low for others. Regularizgggsameters such as; and\y defined
above provide a more flexible approach to regularizationhdzs the simplest way to find suitable
values for these parameters is to consider a set of reasopataimeter values, train a model for each
setting of the parameters in the set, and choose the modegi¢hfarms best on the validation set.
The main drawback of this approach is that it is computatlgeapensive, since instead of training
a single model we have to train a multitude of models. We withg that the method proposed by
[6], originally applied to neural networks, can be used ttedwaine suitable values for the regular-
ization parameters of a PMF model automatically withoutgigantly affecting the time needed to
train the model.



As shown above, the problem of approximating a matrix initheense by a product of two low-rank
matrices that are regularized by penalizing their Frobenrm can be viewed as MAP estimation
in a probabilistic model with spherical Gaussian priors lo@ tows of the low-rank matrices. The
complexity of the model is controlled by the hyperparanseténe noise variance? and the the
parameters of the priors{, ando? above). Introducing priors for the hyperparameters andimax
mizing the log-posterior of the model over both parametadsteyperparameters as suggested in [6]
allows model complexity to be controlled automaticallyd@en the training data. Using spherical
priors for user and movie feature vectors in this frameweddk to the standard form of PMF with
Ay and Ay chosen automatically. This approach to regularizatioomadlus to use methods that
are more sophisticated than the simple penalization of thbdhius norm of the feature matrices.
For example, we can use priors with diagonal or even full damge matrices as well as adjustable
means for the feature vectors. Mixture of Gaussians priansatso be handled quite easily.

In summary, we find a point estimate of parameters and hypampeters by maximizing the log-
posterior given by

Inp(U,V,0°%, Oy, 0v|R) =lnp(R|U,V,0%) + Inp(U|Ov) + Inp(V|Ov)+
Inp(Oy) +Inp(OVv) + C, (6)

where©y and©y are the hyperparameters for the priors over user and moatargevectors re-
spectively and” is a constant that does not depend on the parameters or laypergters.

When the prior is Gaussian, the optimal hyperparameterbedaund in closed form if the movie
and user feature vectors are kept fixed. Thus to simplifyniegrwe alternate between optimizing
the hyperparameters and updating the feature vectors asegest ascent with the values of hy-
perparameters fixed. When the prior is a mixture of Gaussihadyperparameters can be updated
by performing a single step of EM. In all of our experimentswsed improper priors for the hy-
perparameters, but it is easy to extend the closed form apdathandle conjugate priors for the
hyperparameters.

4 Constrained PMF

Once a PMF model has been fitted, users with very few ratinijbavie feature vectors that are close
to the prior mean, or the average user, so the predictedysator those users will be close to the
movie average ratings. In this section we introduce an mohdit way of constraining user-specific
feature vectors that has a strong effect on infrequent users

LetW € RP*M pe a latent similarity constraint matrix. We define the feattector for usei as:
M
Ui = Y, + 2zt fn e ™
j=1 Lik

where! is the observed indicator matrix with; taking on value 1 if usei rated moviej and 0
otherwisé. Intuitively, theit" column of thel’’ matrix captures the effect of a user having rated a
particular movie has on the prior mean of the user’s feataotor. As a result, users that have seen
the same (or similar) movies will have similar prior distritons for their feature vectors. Note that
Y; can be seen as the offset added to the mean of the prior disrikto get the feature vectdr;
for the user. In the unconstrained PMF modeg] andY; are equal because the prior mean is fixed
at zero (see fig. 1). We now define the conditional distributieer the observed ratings as
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We regularize the latent similarity constraint matbix by placing a zero-mean spherical Gaussian
prior on it:

M

p(Wlow) = [[ N (Wil0, o3, T). 9)
k=1

2If no rating information is available about some usdre. all entries off; vector are zero, the value of the
ratio in Eq. 7 is set to zero.
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Figure 2:Left panel: Performance of SVD, PMF and PMF with adaptivenrs;iusing 10D feature vectors, on
the full Netflix validation data. Right panel: PerformandeS¥D, Probabilistic Matrix Factorization (PMF)
and constrained PMF, using 30D feature vectors, on theatadial data. The y-axis displays RMSE (root mean
squared error), and the x-axis shows the number of epoclpgsses, through the entire training dataset.

As with the PMF model, maximizing the log-posterior is e@lént to minimizing the sum-of-
squared errors function with quadratic regularizatiomtgr
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with Ay = 02/0%, \y = 02 /0%, and\w = 0% /03,. We can then perform gradient descen¥in
V', andW to minimize the objective function given by Eq. 10. The tiagtime for the constrained
PMF model scales linearly with the number of observationsictv allows for a fast and simple
implementation. As we show in our experimental resultsisecthis model performs considerably
better than a simple unconstrained PMF model, especiallgfoaquent users.

5 Experimental Results

5.1 Description of the Netflix Data

According to Netflix, the data were collected between Oatdl998 and December 2005 and repre-
sent the distribution of all ratings Netflix obtained duriings period. The training dataset consists
of 100,480,507 ratings from 480,189 randomly-chosen, ymmus users on 17,770 movie titles.
As part of the training data, Netflix also provides validataata, containing 1,408,395 ratings. In
addition to the training and validation data, Netflix als@ydes a test set containing 2,817,131
user/movie pairs with the ratings withheld. The pairs weleced from the most recent ratings for
a subset of the users in the training dataset. To reduce theeational overfitting to the test set that
plagues many empirical comparisons in the machine leatitergture, performance is assessed by
submitting predicted ratings to Netflix who then post thetnmean squared error (RMSE) on an
unknown half of the test set. As a baseline, Netflix providestest score of its own system trained
on the same data, which is 0.9514.

To provide additional insight into the performance of diffiet algorithms we created a smaller and
much more difficult dataset from the Netflix data by randonmdjesting 50,000 users and 1850
movies. The toy dataset contains 1,082,982 training ané2vdlidation user/movie pairs. Over

50% of the users in the training dataset have less than I@gati

5.2 Details of Training

To speed-up the training, instead of performing batch legrve subdivided the Netflix data into
mini-batches of size 100,000 (user/movie/rating triplasid updated the feature vectors after each



mini-batch. After trying various values for the learningerand momentum and experimenting with
various values oD, we chose to use a learning rate of 0.005, and a momentum,&9tBis setting
of parameters worked well for all values bfwe have tried.

5.3 Results for PMF with Adaptive Priors

To evaluate the performance of PMF models with adaptiveprie used models with 10D features.
This dimensionality was chosen in order to demonstratedban when the dimensionality of fea-
tures is relatively low, SVD-like models can still overfitdathat there are some performance gains
to be had by regularizing such models automatically. We @egban SVD model, two fixed-prior
PMF models, and two PMF models with adaptive priors. The S\uidlehwas trained to minimize
the sum-squared distance only to the observed entries datbet matrix. The feature vectors of
the SVD model were not regularized in any way. The two fixeidqPMF models differed in their
regularization parameters: one (PMF1) mad = 0.01 and Ay = 0.001, while the other (PMF2)
hadAy = 0.001 andAy = 0.0001. The first PMF model with adaptive priors (PMFA1) had Gaus-
sian priors with spherical covariance matrices on user aodefeature vectors, while the second
model (PMFA2) had diagonal covariance matrices. In botlegahe adaptive priors had adjustable
means. Prior parameters and noise covariances were ugaftgedvery 10 and 100 feature matrix
updates respectively. The models were compared based &MB& on the validation set.

The results of the comparison are shown on Figure 2 (leftlpaNete that the curve for the PMF
model with spherical covariances is not shown since it isiaity identical to the curve for the model
with diagonal covariances. Comparing models based on #estoRMSE achieved over the time of
training, we see that the SVD model does almost as well as tduerately regularized PMF model
(PMF2) (0.9258 vs. 0.9253) before overfitting badly towattts end of training. While PMF1
does not overfit, it clearly underfits since it reaches the EM&only 0.9430. The models with
adaptive priors clearly outperform the competing modelhjeving the RMSE of 0.9197 (diagonal
covariances) and 0.9204 (spherical covariances). Theaigsuggest that automatic regularization
through adaptive priors works well in practice. Moreover; preliminary results for models with
higher-dimensional feature vectors suggest that the ggeriformance due to the use of adaptive
priors is likely to grow as the dimensionality of feature tggs increases. While the use of diagonal
covariance matrices did not lead to a significant improveroeer the spherical covariance matrices,
diagonal covariances might be well-suited for automdija@gularizing the greedy version of the
PMF training algorithm, where feature vectors are learnegldimension at a time.

5.4 Results for Constrained PMF

For experiments involving constrained PMF models, we ugdd f@atures D = 30), since this
choice resulted in the best model performance on the vaidaet. Values oD in the range of
[20, 60] produce similar results. Performance results of SVD, PN, eonstrained PMF on the
toy dataset are shown on Figure 3. The feature vectors wiiaized to the same values in all
three models. For both PMF and constrained PMF models thianégation parameters were set to
Au = Ay = Ay = Ay = 0.002. Itis clear that the simple SVD model overfits heavily. Tha-co
strained PMF model performs much better and convergesaenadily faster than the unconstrained
PMF model. Figure 3 (right panel) shows the effect of coriising user-specific features on the
predictions for infrequent users. Performance of the PMBehfor a group of users that have fewer
than 5 ratings in the training datasets is virtually idegitto that of the movie average algorithm that
always predicts the average rating of each movie. The ainstl PMF model, however, performs
considerably better on users with few ratings. As the nunabeatings increases, both PMF and
constrained PMF exhibit similar performance.

One other interesting aspect of the constrained PMF mottei®ven if we know only what movies
the user has rated, but do not know the values of the ratihgsnbdel can make better predictions
than the movie average model. For the toy dataset, we ralygamipled an additional 50,000 users,
and for each of the users compiled a list of movies the userdtad and then discarded the actual
ratings. The constrained PMF model achieved a RMSE of 1.051ibe validation set compared
to a RMSE of 1.0726 for the simple movie average model. Thiggrment strongly suggests that
knowing only which movies a user rated, but not the actuahgat can still help us to model that
user’s preferences better.



Toy Dataset

12—

1.15¢

11r

1.05p .
----- AN Movie Ag_erage

PSRRI

RMSE
RMSE
N

Constrained
0.95- PMF

Constrained
PMF

0 20 40 60 80 100 120 140 160 180 200 1-5 6-10  11-20  21-40  41-80 81-160  >161
Epochs Number of Observed Ratings

Figure 3:Left panel: Performance of SVD, Probabilistic Matrix Fattation (PMF) and constrained PMF on
the validation data. The y-axis displays RMSE (root mearasefierror), and the x-axis shows the humber of
epochs, or passes, through the entire training datasdit pagel: Performance of constrained PMF, PMF, and
the movie average algorithm that always predicts the aeerating of each movie. The users were grouped by
the number of observed ratings in the training data.

o.

0.918

.. 0916
Q_ Movie

~ Average 0914

0912

0.91]

RMSE

Constrained
05 PMF

0.908
Constrained

0.906 PMF

0.904] =0
Constrained PMF S
0.902F (using Test rated/unrated id)

0.
1-5  6-10 1120 21-40 41-80 81-160 161-320 321-640 >6d1 15 6-10 11-20 21-40 41-80 81-160 161-320 321-640 >641 0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Observed Ratings Number of Observed Ratings Epochs

Figure 4: Left panel: Performance of constrained PMF, PMF, and theienaverage algorithm that always
predicts the average rating of each movie. The users weopgdby the number of observed rating in the train-
ing data, with the x-axis showing those groups, and the g-didplaying RMSE on the full Netflix validation
data for each such group. Middle panel: Distribution of asetthe training dataset. Right panel: Performance
of constrained PMF and constrained PMF that makes use ofditicadl rated/unrated information obtained
from the test dataset.

Performance results on the full Netflix dataset are simdahe results on the toy dataset. For both
the PMF and constrained PMF models the regularization patensawere settdy = Ay = Ay =
Aw = 0.001. Figure 2 (right panel) shows that constrained PMF sigmtigaoutperforms the
unconstrained PMF model, achieving a RMSE®016. A simple SVD achieves a RMSE of about
0.9280 and after about 10 epochs begins to overfit. Figurefdp@nel) shows that the constrained
PMF model is able to generalize considerably better foraath very few ratings. Note that over
10% of users in the training dataset have fewer than 20 mtiAg the number of ratings increases,
the effect from the offset in Eq. 7 diminishes, and both PM#& eonstrained PMF achieve similar
performance.

There is a more subtle source of information in the Netflbadat. Netflix tells us in advance which
user/movie pairs occur in the test set, so we have an additiaegory: movies that were viewed
but for which the rating is unknown. This is a valuable sowti@aformation about users who occur
several times in the test set, especially if they have onmallsaumber of ratings in the training set.
The constrained PMF model can easily take this informatida account. Figure 4 (right panel)
shows that this additional source of information furthepiroves model performance.

When we linearly combine the predictions of PMF, PMF with arteble prior, and constrained
PMF, we achieve an error rate of 0.8970 on test set When the predictions of multiple PMF
models are linearly combined with the predictions of ml&tiRBM models, recently introduced
by [8], we achieve an error rate of 0.8861, that is nearly 7%eb¢han the score of Netflix's own
system.



6 Summary and Discussion

In this paper we presented Probabilistic Matrix Factorima{PMF) and its two derivatives: PMF
with a learnable prior and constrained PMF. We also demaiestrthat these models can be effi-
ciently trained and successfully applied to a large datametaining over 100 million movie ratings.

Efficiency in training PMF models comes from finding only pio@stimates of model parameters
and hyperparameters, instead of inferring the full postetistribution over them. If we were to
take a fully Bayesian approach, we would put hyperpriorg tlve hyperparameters and resort to
MCMC methods [5] to perform inference. While this approacbamputationally more expensive,
preliminary results strongly suggest that a fully Bayesi@atment of the presented PMF models
would lead to a significant increase in predictive accuracy.
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