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Abstract: Clusterwise p∗ models are developed to detect differentially functioning network models as a function of the subset
of observations being considered. These models allow the identification of subgroups (i.e., clusters) of individuals who are
‘structurally’ different from each other. These clusters are different from those produced by standard blockmodeling of social
interactions in that the goal is not necessarily to find dense subregions of the network; rather, the focus is finding subregions that
are functionally different in terms of graph structure. Furthermore, the clusterwise p∗ approach allows for local estimation of
network regions, avoiding some of the common degeneracy problems that are rampant in p∗ (e.g., exponential random graph)
models.  2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 487–496, 2011
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1. INTRODUCTION

To establish the context in which the models of this paper
are to be discussed, we first note that the ‘social networks’
we are discussing are nothing more than graphs (directed or
undirected) that have a set of N vertices, V = {1, 2, . . . , N},
and an associated set of edges, E. For the set of vertices
(called ‘actors’ in social network analysis), any number of
relations, R, that specify how the actors are related to each
other can be defined; however, it is often the case that R =
1 and that the relational tie can assume one of two values:
presence or absence. This latter assumption, along with
defining a particular relation, R, on the actors allows the
representation of the social relation in the binary adjacency
matrix, AN×N = {Aij }, where Aij = 1 ⇔ (i, j) ∈ R and
Aij = 0 otherwise.

Once A has been established, various analytic approaches
can be used to uncover the general structure of the social
network (see ref. 1). One recurring goal over the last
50 years is to identify differential structural patterns that
may be present within the same network. Often, capturing
heterogeneity within the context of social network analysis
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can be a difficult task. Early approaches relied on classic
clustering techniques (e.g., hierarchical clustering) that
were designed to find ‘dense’ regions of the network by
directly clustering the adjacency matrix that defined the
network. Hierarchical clustering naturally led to closely
related seriation techniques, such as CONCOR (see ref. 1,
Chapter 9), that relied on the permutation of rows and
columns of the adjacency matrix. More recent approaches
fall under the general terminology of ‘blockmodeling’,
where the goal is create blocks (i.e., clusters) that
correspond to known types of equivalence relationships
(e.g., structural equivalence, regular equivalence, etc.).

1.1. Blockmodeling Via Combinatorial Optimization

The earliest approach to blockmodeling for finding dense
regions of networks relied on combinatorial optimization
approaches, rather than statistical models, for finding blocks
(named for the resultant blocks of ‘1’s’ on the diagonal
of the rearranged adjacency matrix) of actors (see ref. 2,
for an early description). These early approaches were
encouraged by techniques for graph partitioning [3] with
modern approaches (see ref. 4, for a review) becoming
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more reliant on various optimization techniques. Examples
of these algorithmic approaches include: permutations of
row and column objects to reveal structure [5], Boolean
decompositions of the adjacency matrix [6], variable-
neighborhood search techniques [7], integer programming
[8], and tabu search [9] among others. Many of these
approaches to blockmodeling rely on notions of cluster
density and compactness that have a history in classic
clustering algorithms, such as K-means clustering [10] and
p-median clustering [11].

1.2. Stochastic Blockmodeling

While the literature is rife with examples from the com-
binatorial optimization perspective, there is also no shortage
of techniques that use a more statistical approach in mod-
eling network structure to find groups. Wasserman and
Anderson [12] describe the difference between stochas-
tic and ‘regular’ (e.g., approaches rooted in combinato-
rial optimization) blockmodeling as that the sought after
block structure is revealed during the modeling process
for stochastic models. The first approach for formalizing
this type of modeling for exponential random graph mod-
els (ERGMs, originally termed p∗ models and discussed in
more detail in the subsequent section) is fairly recent [13].
These models have been extended to mixed-membership
models by Airoldi et al. [14] where each actor has differ-
ent probabilities of belonging to each of the underlying
blocks (e.g., clusters). This probabilistic membership con-
trasts with traditional blockmodeling, which similar to tradi-
tional clustering procedures, require an observation either to
be a member of one (and only one) block or not a member.
Other models utilizing probabilistic membership include the
latent space models developed by Handcock et al. [15] and
Hoff et al. [16].

As mentioned, both approaches to blockmodeling are
usually designed to find either dense regions of the network
or highly connected regions of the network. Here, we
move away from the approach of looking for clusters
based on either density or various kinds of equivalence.
Instead, the problem is reformulated as one where the
relational ties result in a set of random variables (e.g.,
A and its elements), allowing us to create a dependence
graph to understand the possible (of which there are
many) graph probability distributions [17]. As it turns
out, any observed relational network may be regarded
as a realization a = [aij ] of a random two-way binary
array A, which has an associated dependence graph D
with vertices that are elements of the index set VD =
{(i, j); i, j ∈ V, i �= j} for the random variables in A. The
edges of D signify pairs of the random variables that are
assumed to be conditionally dependent, such that ED =
{((i, j), (k, l)), where Aij and Akl are not conditionally

independent}. Within the auspices of the dependence
graph, Wasserman and Pattison [18] noted that there were
three major types: Bernoulli graphs, dyadic dependence
distributions, and p∗ (e.g., exponential random graphs). It
is the latter on which we focus our attention.

2. P ∗ MODELS

The set of p∗ models was first introduced by Wasserman
and Pattison [19] and extended by Pattison and Wasserman
[20] and Robins et al. [21]. These models find their basis in
the Hammersley–Clifford theorem [17], which establishes a
probability model for A that only depends on the cliques of
the associated dependence graph D. Specifically, the form
is given by

Pr(A = a) = 1

κ
exp


 ∑

S⊆VD

λS

∏
(i,j)⊆S

aij


 , (1)

where κ is a normalizing quantity; D is the dependence
graph for A, the summation is overall subsets S of vertices
of D; the product term is the sufficient statistic correspond-
ing to the parameter λS ; λS = 0 whenever the subgraph
induced by S is not a clique of D. Consequently, the
nonzero parameters in the associated probability distribu-
tion depend on the maximal cliques of D. By definition,
while not maximal, all subgraphs of a complete subgraph
are also complete. So, if S is a maximal clique, then it and
all of its subgraphs will have nonzero parameters associated
with it. Given this nested nature of complete subgraphs, the
number of parameters can become staggering, requiring the
examination of either simple dependence structures or mak-
ing reasonable assumptions about the parameters. A com-
mon assumption (see ref. 20) is homogeneity—isomorphic
configurations of vertices are equated.

A standard practice (see ref. 22) has been to fit mod-
els with either the full set (or various subsets) of the 16
triadic configurations (see Fig. 1). Additionally, it is clear
that, depending on the nature of the structure one is inter-
ested in, several different configurations can be modeled
in the p∗ framework. Configurations consisting of more
than three nodes have been fit as well. For instance, Patti-
son and Robins [23] fit configurations consisting of 4-nodes
that each followed what they deemed the ‘three-path’ model
(i.e., all pairs of edges lie on a path of length 3). Return-
ing our attention to Fig. 1, it can be seen that some of
the triads can be constructed from simpler triads, making
them conditional on the simpler triad classes being present
as well. This nested nature of lower-order configurations
within higher-order configurations can make interpretation
of the associated parameters difficult. The easiest interpre-
tation is that a significant positive (negative) parameter for
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Fig. 1 This figure depicts the 16 possible triad isomorphisms
that exist among three nodes with asymmetric ties.

a configuration suggests, given the number of other con-
figurations in the dependence graph, there are more (less)
of those configurations present than one would expect to
occur by chance alone.

In general, there have been two common approaches to
estimating p∗ models: maximum likelihood estimation and
pseudolikelihood estimation. The former is done through
Markov Chain Monte Carlo estimation (MCMC; see
refs 24–26), while the latter is done via logistic regression
(see refs 19,27–30).

One may question whether pseudolikelihood estimation
should be pursued now that MCMC procedures have been
developed for maximum likelihood estimation. In fact,
the primary problem with p∗ models is the potential of
either model degeneracy or inferential degeneracy. Model
degeneracy refers to degeneracy that is related directly
to the model, rather than the estimation process, and it
has been shown that model degeneracy is more likely to
occur when there are particular graph structures present.
For instance, in cases where there are large numbers of
transitive triads (τ9) model degeneracy is more likely to
occur [31]. Handcock [25] defines a graph distribution to
be degenerate, or near degenerate, if there are only a few
graphs that have nonzero probabilities.

Inferential degeneracy is related to the shortcomings
of the pseudolikelihood estimation procedure. As Robins
et al. [31] indicate, one of the primary advantages of
maximum likelihood estimation is the ability to obtain
stable standard errors for the estimates. In one of the few

comparisons of the two types of estimates, Robins et al.
[31] (p. 212) conclude: ‘Probably the best that can be
said is that PL [pseudolikelihood] estimates that suggest
“significance” according to PL [pseudolikelihood] standard
errors may be indicative of the effects needed to model
the data’. However, as we see below for computational
reasons, pseudolikelihood estimation becomes necessary for
the proposed clusterwise p∗ models. As such, we include
an automated process for screening models that may be
degenerate, either at the model or inferential level.

3. CLUSTERWISE REGRESSION

The goal of the clusterwise p∗ model is to find subgroups
of vertices that have different functional relationships
between the dependent variable (e.g., the observed value
of the ties in A) and the independent variables (e.g.,
the various vertex configurations being modeled). Given
that pseudolikelihood estimation will be implemented,
the process then becomes one of extending traditional
clusterwise regression models (see refs 32–34) to a logistic
regression setting. To describe the clusterwise p∗ model, we
adopt the following notation from Brusco et al. [35]:

N = the number of objects to be clustered, indexed
1 ≤ i ≤ N ;

V = the number of independent variables (i.e., vertex
configurations), indexed 1 ≤ v ≤ V ;

xiv = the measurement of predictor variable v for the ith
object;

yi = the measurement of the response variable for the ith
object;

K = the number of clusters, indexed 1 ≤ k ≤ K;

PK = {C1, C2, . . . , CK} a feasible partition of the N

objects into K clusters, where Ck represents the set
of objects assigned to the kth cluster;

Nk = the number of objects in the kth cluster;

b0k = the intercept for the logistic regression model in the
kth cluster;

bvk = the slope coefficient for the vth predictor variable
in the kth cluster.

If one were concerned with just conducting a traditional
cluster analysis, such as k-means clustering (see ref. 10,
for a review), then any partition of the data set, PK , has an
associated within-cluster sums-of-squares error

WCSS(PK) =
K∑

k=1

∑
i∈Ck

(yi − yk)
2, (2)
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which leads to the natural total sums-of-squares decompo-
sition

TSS = BCSS(PK) + WCSS(PK), (3)

where BCSS(PK) is the resultant between-cluster sums-of-
squares and is represented as

BCSS(PK) =
K∑

k=1

Nk(yk − y)2. (4)

The BCSS(PK) is the amount of variation explained by
the clustering process. Adding an additional K functional
models (i.e., one for each cluster) that relates the indepen-
dent variables to the dependent variable serves to reduce
the variation not explained by the clustering process (e.g.,
WCSS(PK)). Specifically, WCSS(PK) can be decomposed
as

WCSS(PK)

=

 K∑

k=1

∑
i∈Ck

(
yk − ŷi

)2


 +


 K∑

k=1

∑
i∈Ck

(
yi − ŷi

)2


 ,

(5)

where the first bracketed term represents the within-cluster
variation explained by the regression model, SSR(PK), and
the second bracketed term represents the residual error in
the clusters, SSE(PK). Taking everything together, the TSS
can be decomposed as

TSS = BCSS(PK) + SSR(PK) + SSE(PK). (6)

The obvious goal [32] then becomes to minimize SSE(PK)

subject to PK being a feasible partition of the N objects
into K clusters. A standard objective to maximize is a
normalized version of SSE(PK)

�(PK) = 1 − SSE(PK)

TSS
, (7)

which is analogous to an R2 measure that is created from
the variance accounted for from both the clustering of the
observations, BCSS(PK), and the fitted values from the
clusterwise regression models, SSR(PK).

Generally, this optimization is conducted through an
exchange algorithm [32] that begins with an initial partition
of the object set. An iterative process of object relocation
is initiated by considering reassigning all objects to the
clusters of which the object is not currently a member.
If no reassignment results in an increase in Eq. (7), then
the object remains in its current cluster; otherwise, the
object is reassigned to the cluster that yields the greatest

improvement. The relocation algorithm proceeds until no
relocation can result in an improvement. Upon termination,
the solution is guaranteed to be locally optimal with respect
to all possible relocations of a single object; however,
a global optimum is not guaranteed. Consequently, with
these types of algorithms, it is often recommended that
the exchange process is repeated with several random
initializations [36,37].

3.1. Adapting Clusterwise Regression to
Pseudomaximum Likelihood Estimation

Pseudolikelihood estimation proceeds by treating each
binary tie (regardless of whether it is present or absent)
in the adjacency matrix, Aij , as a ‘case’ in the vector that
represents the dependent variable (e.g., y). The associated
independent variables are represented by the parameters in
the model, as established in Eq. (1), such as the isomor-
phic configurations (e.g., stars and triads of various types).
For each case, the statistic associated with the an indepen-
dent variable is the difference—often termed change statis-
tics—in the number of the relevant configurations between
the graph with aij = 1 and aij = 0. Then, standard logistic
regression can be applied to the data; however, it is impor-
tant to realize that there are dependencies within the data
that prevent the strict adherence to the usual tests of model
fit. Nonetheless, measures of fit can be taken as heuristic
guides and used for within model selection and/or building.
For details on the pseudolikelihood estimation process, we
refer readers to Pattison and Wasserman [20].

Obviously, as the dependent variable is binary, we turn
to logistic regression to model the relationships between
the various isomorphic configurations and the presence
(absence) of a tie in the observed network. Thus, ŷ becomes

ŷ = eb0k+∑
bvkxiv

1 + eb0k+∑
bvkxiv

(8)

and we utilize a standard ‘r-squared’ measure of fit as
described in Eq. (7). While, the r-squared measure can be
artificially low (even for well-fitting models), Hosmer and
Lemeshow [38, p. 167] indicate that ‘they may be helpful in
the model building stage as a statistic to evaluate competing
models’. In the present application, the measure is used to
determine which cluster to assign an observation; thus, the
measure is only utilized for model building and never as the
final assessment of the model itself. Likewise, and equally
relevant, is assuring that the minimization of within-cluster
variance is a reasonable objective for the clustering of
binary data. In fact, Brusco [39] showed that this objective
function worked quite well for binary data in a wide-range
of simulations.

Finally, the last consideration is the nature of the
relocation algorithm and recalculation of the independent
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variables. Specifically, if the observed adjacency matrix
is N × N then the dependent variable will be a binary
vector with length of N(N − 1) (note: the self-links are
ignored). During the application of the relocation algorithm,
if an observation is moved to a different cluster, then
all (N − 1) binary ties are moved with it. To make it
slightly more complicated, the binary tie between the ith
and j th observation is not possible if the two observations
are in different clusters. The overall effect is the need to
recompute K adjacency matrices (one for each cluster),
making the overall length of the ‘full’ dependent variable
vector

∑
Nk(Nk − 1), which will always be less than length

of the vector if only one p∗ model (rather than K) were fit to
the data. Additionally, as the independent variables reflect
structural properties of each cluster’s adjacency matrix,
they will have to be recomputed upon the evaluation of
the effect of assigning each observation to one of the
K clusters. To evaluate the potential assignment of an
observation to a cluster, the p∗ model will have to be
fit, resulting in a total of N × K p∗ models on each
pass through the relocation algorithm. As Steinley [10,36]
and Steinley and Brusco [40] showed, these types of
algorithms tend to have numerous local optima (potentially
in the hundreds, and maybe even in the thousands) so the
general recommendation is to fit the model with several
thousand random initializations. Coupled with the fact
that there may be up to a few hundred iterations before
convergence for any one random initialization, the fitting
of a clusterwise p∗ model to a single data set could result
in the estimation of several million p∗ models. It is for
this reason that pseudolikelihood estimation is required, as
true maximum likelihood estimation would be too costly
terms of computation time and defeat the overall purpose
of exploratory data analysis.

The algorithm for estimating the clusterwise p∗ model
proceeds as:

1. The user chooses the number of clusters, K .

2. The data are partitioned into K clusters where each
cluster must be connected.

3. In turn, each observation is considered to be part
of each cluster. For each consideration, the network
statistics (i.e., the network isomorphisms of interest)
are computed as if that observation were part of that
cluster.

4. For each of the clusters, the observation is assigned
to the cluster which resulted in the highest overall
model R2.

5. Steps 3 and 4 are repeated until no observations
change clusters.

3.1.1. Step 1

While K must be fixed prior to estimating the clusterwise
p∗ model, a common way to determine the value of K is to
fit several different models assuming K = 1, . . .Kmax and
choose the value of K such that the incremental increase in
overall model fit is negligible. This approach is analogous
to using a screen plot to determine the number of com-
ponents in principal component analysis. For the present
application we have adjusted the standard, overall model R2

to be

�
′
(PK) =

K∑
k=1

(
Nk

N

)(
Nk − Vk − 1 − K

Nk − 1

)
R2

k . (9)

This formulation has several advantages. The first term
weights the overall contribution to the model fit by the
relative size of each cluster, insuring that exceptionally
well-fitting, small clusters are not over-weighted (as would
be the case with a simple arithmetic mean of the cluster
R2 values). The second term favors parsimonious models
in two regards: (i) there is a penalty for the number of
predictors, Vk , for each cluster, and (ii) there is an explicit
penalty for too many clusters. Finally, the third term
measures the goodness-of-fit for the kth cluster. The final
partition is chosen to maximize �

′
(PK).

3.1.2. Step 2

The initialization scheme for the algorithm is to par-
tition the data into K clusters. This partitioning may
be done in several manners; most naturally, either ran-
domly, a graph partitioning algorithm, or a blockmodel-
ing algorithm, or any combination thereof. The only con-
straint being that each of the K clusters must be con-
nected. Under this rule, isolate nodes would be consid-
ered their own cluster; consequently, a natural prescreen-
ing method would be to remove isolates prior to the
analysis.

3.1.3. Step 3

In general, this step serves as a standard core compo-
nent for the majority of clusterwise regression procedures;
however, with the p∗ model, degeneracy is a serious con-
cern. Normally, in a standard OLS setting for clusterwise
regression, parameters that were unimportant for a partic-
ular cluster would have values close to zero and merely
be insignificant. Contrarily, the inclusion of extra network
isomorphisms (especially, if their counts are too low or too
high) can cause degeneracy within the model estimation
step. Thus, depending on the configuration of the nodes
within a particular cluster, specific models may become
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Table 1. Pseudolikelihood parameter estimates for Sampson’s monk data.

Parameter estimates (standard error)

Complete Transitivity Cyclicity Reciprocity Outstar Mixed star Instar Choice

K(�
′
) Nk τ1 τ9 τ10 τ11 τ12 τ13 τ14 τ15

1 (0.260) 18 0.35 (0.69) 0.42 (0.12) −0.08 (0.34) −1.78 (0.42) −0.34 (0.13)
2 (0.589) 7 −3.16 (1.21) −4.44 (2.02) −3.60 (1.88) 3.63 (1.49) 3.20 (1.13)

11 1.57 (1.26) 0.32 (0.27) 1.87 (0.96) −4.33 (0.88)
3 (0.278) 7 −3.16 (1.21) −4.44 (2.02) −3.60 (1.88) 3.63 (1.49) 3.20 (1.13)

7 0.65 (0.39) −1.11 (0.56) 1.26 (0.74) −0.30 (0.43)
4 0.28 (0.73) −0.75 (1.04)

degenerate and necessitates the need to have different pre-
dictor variables for each of the clusters.

To address this concern, for every cluster, a mini-model
comparison technique is conducted to insure the fidelity of
the model and avoid potential degeneracies that are often
rampant in p∗ models. For each cluster, all 2V − 1 models
are evaluated in terms of �

′
; by extension, we recommend

that the user chooses a set of theory driven graph statistics
(probably less than 10 because of the number of possible
models) rather than a ‘shotgun’ approach where everything
and the kitchen sink is included as a predictor. A standard
‘red flag’ for degeneracy in p∗ models is the presence of
very large or near zero standard errors of the parameter
estimates. A simple and efficient screening mechanism is
to ignore all solutions with large standard errors, defined
here as being an order of magnitude larger than the
actual parameter estimate, or with extremely small standard
errors (e.g., <0.001). These rules have served well in
practice, with the former more likely to indicate inferential
degeneracy and the latter more likely to indicate general
model degeneracy.

An additional protection against degeneracy is the
minimization of the sum-of-squared residuals. As discussed
in the rich literature on K-means clustering (see ref. 10),
minimizing within-cluster variance estimates often results
in clusters that are equally sized. In this setting, the result is
to create clusters that are close to the same size, minimizing
the occurrence of clusters that are too large and likely to
suffer from a degree of heterogeneity that can be the culprit
of model degeneracy. Thus, we are relying on a series
of ‘local’ network models rather than trying to model the
network in full.

3.1.4. Steps 4 and 5

Observations are moved to the cluster, provided that the
cluster will remain a connected component, to which model
fit is most increased. To this end, the procedure is like
most greedy clustering approaches and is myopic in nature.
However, the iterative nature often results in solutions that

compare favorably with more complex, likelihood driven
approaches (see ref. 41).

4. EXAMPLES

4.1. Sampson’s Monk Data

A classic example used in social network analysis
is Sampson’s monastery study [42,43] with 18 monks
based on the ‘whom do you like’ sociometric relation.
The network consists of 56 ties, and Sampson originally
partitioned the data into three subgroups—a partitioning
that is originally assumed to be the ‘true structure’ in terms
of finding coherent, dense groups within the network. First,
we performed the variable selection procedure described
above for when K = 1 and using the graph statistics (and
their common terminology in parentheses): τ1 (complete),
τ9 (transitivity), τ10 (cyclicity), τ11 (reciprocity), τ12

(outstar), τ13 (mixed star), τ14 (instar), and τ15 (choice) as
they are the most commonly used in this type of modeling.1

In this instance, there were 192 models that were deemed
degenerate in terms of their standard errors. The best fitting
model, in terms of �

′
is provided in Table 1 and will serve

as the baseline for determining if it is beneficial to fragment
the network into clusters with different p∗ models for each
cluster.

Comparing the values of �
′
, it is seen that the two

cluster solution is the best in terms of predicting the exist-
ing data set most parsimoniously. Additionally, while the
within-group models fit well, neither of the models are non-
degenerate when applied to the other group. Furthermore, it
is clear that the clusterwise p∗ approach differs from other
blockmodeling attempts (both stochastic and traditional) in
that it is not driven to find coherent or dense subgroups;

1 While these statistics are the most commonly used, they are
also used here for demonstration purposes only. Clearly, for
a theoretically motivated question, it would be reasonable and
expected to choose a set of graph statistics that would aid in
interpretability of the phenomenon under study.

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 2 (a) Ties are represented by black boxes, while white boxes indicate there is not a tie presence. (b) The shading of the box indicates
the p∗ model (K = 1) derived probability of a tie, with white being a probability of zero and black being a probability of unity. (c) The
p∗ model derived probabilities for K = 2. (d) The absolute difference between the p∗ model derived probabilities when K = 1 and
K = 2, with white indicating the same prediction and black indicating opposite prediction of links between the two models.

rather, the overall goal is prediction. If one were to choose
the three group solution, it is equivalent to that originally
found by Sampson [42] and replicated in other blockmod-
eling work (see ref. 14); whereas, the consistency between
the selected two group solution and the three group solution
is only moderate with an adjusted Rand index (ARI; which
is equal to zero when there is chance agreement and unity
when there is perfect agreement [44]) of 0.63.

Figure 2 helps illustrate the difference between the
predictive power of the one group versus the two group
solution. Figure 2(a) is a representation of the original
network, with the solid blocks indicating a tie between two
monks. Figure 2(b) shows the model predicted values of the
one group p∗ model, while Fig. 2(c) shows the predicted
values of the two group p∗ model. Finally, Fig. 2(d) shows
the absolute difference in predicted values between the
two models, clearly indicating that the two group model
has more predictive power. In this instance, the predictive
power is not hindered too much by ignoring the ties between
the clusters because the network as a whole is fairly sparse.

To test the sensitivity of the clusterwise p∗ approach, we
randomly perturbated the existing network and refit the two-
class model, comparing the resultant partitions with that
under the unperturbated data (see Fig. 3). For each tie, �
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Fig. 3 The x-axis indicates the percentage of ties that are
randomly perturbed (either from zero to one or from one to zero)
in Sampson’s monk data, while the y-axis denotes the agreement
between the partition derived from the unperturbed data and the
partition derived at a given level of perturbation. The plotted
values are the averages of 1,000 data sets, with accompanying
standard error bars. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

represents the random probability that the tie was changed
to absent if previously present or to present if previously
absent, where � ranges from 0.05 to 0.5, with 1000
replications being conducted at each level of �. Figure 3
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indicates the expected decrease in agreement between the
partitions as the data becomes more perturbed, with the
associated error bars crossing chance levels (e.g., ARI = 0)
when � = 0. The fact that changing, on average, 20% of
the links completely eliminates any meaningful agreement
between the partitions should not be too surprising given
the sparseness (only 56 ties out of 306 possible ties) of the
original network.

4.2. Graph and DiGraph Glossary

The second data set represents a network of graph
theoretic terms which contains a link from term A to term B
if and only if Term B is used to describe the meaning of
term A [45]. The data set contains 72 terms with 122 links;
once again, a rather sparse network that contains only about
2% of the possible ties. Repeating the analytic procedure
above, and testing from K = 1 to K = 4, the associated fit
statistics were: �

′
(P1) = 0.111, �

′
(P2) = 0.130, �

′
(P3) =

0.158, and �
′
(P4) = 0.151, with continued decreasing fit

as K increases.
Table 2 provides the terms by group assignments, where

the three groups seem to be related to (broadly speaking):
graph traversal and components, general definitions, and
trees, respectively. Figure 4 provides the three clusters
solution with the nodes color coded and grouped by cluster
membership. First, we see that there is still a substantial
number of connections between the two largest groups;
however, we emphasize that this is part of what makes
clusterwise p∗ models different from standard blockmodels
(although, the relative within-cluster densities are still more
pronounced than the between cluster densities). Namely,
the goal is not to necessarily find the densest subgroups.
The models that define the three groups have the following
relevant parameters: Group 1 (cyclicity, instar, outstar,
mixed star), Group 2 (cyclicity, instar, outstar, mixed star,
choice), and Group 3 (cyclicity, instar, mixed star, choice).
Additionally sensitivity analysis was conducted as in the
prior example; however, the results are not displayed as
they are nearly identical in nature to Sampson’s data set.

5. FUTURE DIRECTIONS

To our knowledge, this is the first attempt to cluster
network data in a manner that is not based on finding dense
clusters and/or ‘blocks’ with specific types of patterns.
However, while the current manuscript introduces an
exploratory procedure for finding subregions of a network
that may contain differing structures, the main difficulties of
combining partitioning and model fitting remain. Namely,
that it is easy to take advantage of sample variation in order
to extract clusters.

Table 2. Clusterwise p∗ group membership for glossary terms.

Group Terms

Group 1 Acyclic, Adjacency structure, Adjacent, Bridge,
Clique, Complete, Connected component,
Connected

Cycle diameter, Distance, Forest, Hamiltonian,
Path, Spanning Subgraph, Spanning tree,
Subgraph

Trail, Tree, Walk
Group 2 Adjacency matrix, Ancestor, Arc, Arc List,

Bipartite Graph, Binary Code, Chromatic
number, Closure

Condensed graph, Degree, Degree sequence,
Descendant, Digraph, Edge, Graph,
Homeomorphic, Incidence matrix

Internal vertex, Isomorphic, k-colorable, Label,
Leaf, Loop, Matching, Neighborhood, Node,
Order, Orientation

Parent, Pendant vertex, Prefix code, Perfect
matching, Planar, Reduced graph, Regular,
Saturated vertex

Sibling, Size, Strongly connected, Topological
order, Tournament, Underlying graph, Vertex

Group 3 Binary search tree, Child, Decision tree, Height,
Level, m-ary tree, Offspring, Ordered tree,
Rooted tree

Fig. 4 The three cluster solution of the graph term glossary data.
The blue cluster represents terms related to ‘trees’; the red cluster
represents terms related to ‘graph traversal’; the black cluster
represents general graph definitions. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

One potential advantage is that the clusterwise p∗
approach can help guard against degenerate models by
finding sets of local models that are not degenerate. Fur-
thermore, this enhances the local prediction of the network
by introducing flexibility into how different subregions of
the network are modeled, enhancing understanding of dif-
ferential functionality across the network. One drawback of
the current work is that we only are modeling ties within
each block, relying on the modeling process itself to ignore
sparse regions of the networks that often occur between
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blocks. Future research will focus on incorporating within-
cluster network models, likely as described herein, with
between-cluster network models.
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