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Abstract 
 

As one of the most successful recommender 
systems, collaborative filtering (CF) algorithms 
can deal with high sparsity and high requirement 
of scalability amongst other challenges. 
Bayesian belief nets (BNs), one of the most 
frequently used classifiers, can be used for CF 
tasks. Previous works of applying BNs to CF 
tasks were mainly focused on binary-class data, 
and used simple or basic Bayesian classifiers 
[1][2]. In this work, we apply advanced BNs 
models to CF tasks instead of simple ones, and 
work on real-world multi-class CF data instead 
of synthetic binary-class data. Empirical results 
show that with their ability to deal with 
incomplete data, extended logistic regression on 
naïve Bayes and tree augmented naïve Bayes 
(NB-ELR and TAN-ELR) models [3] consistently 
perform better than the state-of-the-art Pearson 
correlation-based CF algorithm. In addition, the 
ELR-optimized BNs CF models are robust in 
terms of the ability to make predictions, while 
the robustness of the Pearson correlation-based 
CF algorithm degrades as the sparseness of the 
data increases.  
 
1. Introduction 
 

Collaborative filtering (CF) techniques use a 
database of user preferences for items to predict 
additional topics or products a new user might 
like. In a typical CF scenario, there is a list of m 
users {U1, U2, …, Um} and a list of n items {I1, I2, 
…, In}. Each user Ui has a list of items Iui on 
which the user has expressed his/her preferences 
or ratings, or simply the binary 
purchased/unpurchased or like/dislike. CF 
algorithms represent the entire m×n data as a 
user-item ratings matrix. Each value of ri,j in the 
matrix represents the rating score of the i-th user 

on the j-th item. There is an active user for whom 
collaborative filtering algorithms provide 
predictions or recommendations. Prediction 
represents the predicted preference on an item 
for the active user. Recommendation is a list of 
items that the active user will most likely prefer.  

Collaborative filtering is one of the most 
successful recommendation techniques to date. 
However, collaborative filtering tasks face many 
challenges, especially for large online systems. 
The data for CF tasks are extremely sparse (with 
a very high rate of missing values) as each of the 
users can only purchase or rate a small 
percentage of items. CF algorithms are also 
required to have the ability to scale with an 
increasing number of users and items, to make 
satisfactory recommendations in a short time 
period, and to deal with other problems like 
synonymy, which refers to the tendency that the 
same or similar items to have different names. 

Collaborative filtering techniques can be 
classified into three categories. Memory-based 
(or correlation-based) CF techniques use the 
user database to calculate the similarity or 
weight, wi,j, between users or items and make 
predictions or recommendations according to 
those calculated similarity values. Model-based 
CF techniques use the user database to estimate 
or learn a model to make predictions [2]. The 
model can be a data mining and machine 
learning algorithm, such as Bayesian belief nets, 
association rules, or neural networks. Hybrid CF 
techniques combine two or more 
recommendation techniques to make predictions 
or recommendations, usually between CF and 
content-based filtering methods, which make 
recommendations by analyzing the content of 
textual information and finding regularities in the 
content. 

Bayesian belief nets (BNs) classifier is one of 
the most frequently used classifiers. BNs models 
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can be applied to CF tasks as model-based CF 
algorithms. Previous work of applying BNs to 
CF tasks mainly used simple Bayesian models 
such as naïve Bayes model [1][4] and baseline 
Bayesian model [5] on binary datasets. Real-
world CF data have more multi-class datasets 
than binary ones. For example, the three most 
used real-world CF databases: MovieLens, 
EachMovie and Jester are all multi-class data. 
We thus apply BNs CF models on multi-class 
data in this work, with a simple BNs CF model 
as well as two advanced ones. For the advanced 
BNs CF models, we apply the extended logistic 
regression (ELR) for naïve Bayes (NB) and Tree 
Augmented Naive Bayes (TAN) and call the 
resulting CF algorithms the NB-ELR CF and 
TAN-ELR CF models. ELR is a discriminative 
parameter-learning algorithm that maximizes log 
conditional likelihood (LCL) for the fixed 
Bayesian belief net, NB or TAN, and has high 
classification accuracy for both complete data 
and incomplete data [3].  

As drawing comparative and convincing 
conclusions from synthetic datasets is risky 
because the data may fit one of the algorithms 
better than others, we work on subsets of the 
real-world data from MovieLens [6]. MovieLens 
is a web-based movies recommender system 
with 43,000 users and their ratings for over 3,900 
movies.  

Instead of classification accuracy or 
classification error, the most widely used 
evaluation metric for CF is the Mean Absolute 
Error (MAE), which is the average of the 
absolute difference between predictions and 
user-specified values [7].  
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where N is the number of items user i has rated, 
pij is the predicted rating for user i on item j, rij is 
the actual rating.  MAE sums the absolute errors 
of the N corresponding rating-prediction pairs 
<pij, rij> and then computes the average. The 
lower the MAE, the better the prediction. 

Other evaluation metrics include variations of 
MAE such as NMAE and RMSE, as well as 
precision, recall, F1 metric, Reversal rate, ROC 
sensitivity, PRC sensitivity, Half-life utility 
metric and NDPM etc [8]. We use MAE as the 
performance criterion in this paper. 

In section 2, we present the commonly-used 
correlation-based collaborative filtering 
algorithms, and propose and discuss the 

robustness of CF algorithms. In section 3, we 
present collaborative filtering using BNs, 
including a simple BNs CF algorithm (naïve 
Bayes) and two advanced BNs CF algorithms 
(NB-ELR CF and TAN-ELR CF models), both on 
multi-class data. Experimental design and results 
are in Section 4 and Section 5 respectively, and 
conclusions in Section 6. 
 
2. Correlation-based Collaborative Filtering 
Algorithms 
 

Correlation-based CF algorithms use the 
entire or a sample of the user-item database to 
generate a prediction. They first calculate the 
similarity or weight, wi,j, which reflects distance, 
correlation, or weight, between two users or two 
items, i and j. Next they produce a prediction for 
the active user by taking the weighted average of 
all the ratings of that user on a certain item, or 
using a simple weighted average [9]. A 
commonly used similarity is Pearson 
correlation, which measures the extent to which 
two variables linearly relate with each other [10]. 
Pearson correlation between user i and j is given 
by 
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where the summations over the subscript u are 
over the items which both the users i and j have 
rated.  is the average rating of the both-rated 
items of the i-th user, and the same for . Other 
similarity measures include variations of 
Pearson correlation and vector cosine similarity 
and its variations [9].  
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After calculating the similarities, we can 
make a prediction for a certain user, a, on a 
certain item, i, by taking a weighted average of 
all the ratings on that item according to the 
following formula [10]. 
 

∑
∑ ⋅−

+=

u
ua

u
uauiu

aia w

wrr
rP

,

,,

,

)(
                                                  

 

where  and  are the average ratings for the 
user a and user u on all other rated items than i, 
w
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a,u is the similarity between the user a and user 
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u. The above process is called a user-based CF 
algorithm.  

An item-based CF algorithm uses the 
similarity between co-rated items (i.e., cases 
where the user rated both the two items) and 
make predictions using a simple weighted 
average to predict the rating Pa,i for user a on 
item I 
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where the summations are over all items u 
similar to i by user a, wi,u  is the similarity 
between items i and u. ra,u is the rating for user a 
on item u. 
 

 matrix of CF 
ratings 

Correlation-based  CF  
prediction 

 I1 I2 I3 I4 I1 I2 I3 I4 
U1 4 3 5 5 2.53 3.95 2.93 4.75 
U2 4 2 1  2.17 4.50 3.67  
U3 3  2 4 2.00  4.17 0.50 
U4 4 4   ?=3 ?=3   
U5 2 1 3 5 2.90 1.80 1.81 1.75 

 MAE=1.56 
(a)                                (b) 

Table 1 (a) an example of matrix of ratings  
(b) the corresponding predictions from 

correlation-based CF algorithm 
 

For example in Table 1 (a), using the user-
based CF algorithm to predict the rating for U1 
on I2, we have 
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We have predictions from the Pearson 

correlation-based CF algorithm for each of the 
observed values, and we then calculate the MAE 
(Table 1(b)).  

From this example, we can find that the 
correlation-based CF algorithm can not make 
predictions for r4,1 and r4,2 because the 
denominator (the summation of the similarities) 
of the prediction function is 0. In this situation, 

we can use the default voting as the prediction, 
which can be either the average rating of that 
user on all of his/her rated items, or the universal 
average rating (3 in datasets of our work), and is 
actually not from the similarity calculation. 
Using the universal average rating instead of the 
average rating of the user gives better 
performance because a large percentage of 
failures in making predictions happen when the 
average rating of the user is 0, and using 3 
instead of 0 gives a better MAE. The contribution 
from default voting to the MAE is taken into the 
performance evaluation of our CF algorithms, 
because we need to compare the performances 
over the same number of predictions. 

We estimate the impact of the default voting 
to the MAE in terms of robustness of the 
algorithms, which can be defined as the number 
of predictions made using the algorithms 
(without using default voting) divided by the 
total number of predictions that should be made.  
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For the correlation-based CF algorithm, the 

zero-value denominator of the prediction 
calculation degrades the robustness of the 
algorithm.  

Although simple to implement, the Pearson 
correlation-based CF algorithm is one of the 
state-of-the-art CF techniques. 
 
3. Collaborative Filtering Using Bayesian 
Belief Nets  
 

Bayesian belief nets (BNs) are often used for 
classification tasks. Motivated by the simplicity 
and accuracy of the naïve Bayes (NB) classifier, 
BNs are increasingly used for pattern 
recognition, fault diagnosis and other 
classification tasks. 

A Bayesian belief net (BN) is a directed, 
acyclic graph (DAG) with a probabilistic graph 
model B = 〈N, A, Θ〉, where each network node 
n∈N represents a random variable and each 
directed arc a∈A between nodes represents a 
probabilistic association between variables, and 
Θ represents a conditional probability table 
(CPtable) quantifying how much a node depends 
on its parents.  

A NB network has a simple structure with the 
class node as the parent of all the attribute nodes. 
No connections between attribute nodes are 
allowed in a NB structure (Figure 1(a)). A TAN 
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network includes a link from the class node 
down to each attribute and, if we ignore those 
class-to-attribute links, the remaining links 
connect attributes to each other and form a tree 
(Figure 1(b)) [11]. TAN has a more complex BN 
structure and generally has better classification 
performance than the simpler structured NB. 

 
 
 
 
 
 

(a)                                (b) 
Figure 1 (a) NB structure (b) TAN structure 

 
BNs classifiers can make classifications for 

both multi-class data and binary-class data. As 
high sparsity of data is a key characteristic of CF 
tasks, the ability to handle the high-missing-rate 
incomplete data is required for BNs CF models. 
 
3.1 Naïve Bayes CF Algorithm 
 

The naïve Bayes model uses an NB classifier 
as its classification model for collaborative 
filtering tasks. Assuming the features are 
independent given the class, the probability of a 
certain class given all of the features p(Cj|f1,f2, 
…fn) can be found by computing  

, where both p(C∏
n

i
jij CfpCp )|()( j) and p(fi|Cj) 

can be estimated from training data (Cj refers to 
class j, fi refers to feature i), the class with the 
highest probability will be classified as the 
predicted class. For incomplete data, the 
probability calculation and classification 
production are computed over observed data (the 
subscript o in the following equation indicates 
observed values), which is an effective way to 
handle missing values when there are enough 
observed data to make reliable classifications. 
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The Laplace Estimator can be used to smooth 
the probability calculation and avoid a 
conditional probability of 0.  
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where |Xi| is the size of the set {Xi}. For an 
example of binary class, P(Xi=0|Y=1)=0/2 will 

be (0+1)/(2+2)=1/4, P(Xi=1|Y=1)=2/2 will be 
(2+1)/(2+2)=3/4 using the Laplace Estimator. 

Previous work of applying BNs to CF tasks is 
mainly focused on binary-class data. For 
example, in [4], multi-class data are first 
converted to binary-class data, and then 
converted to a Boolean feature transformation of 
the ratings matrix, doubling the user numbers by 
transforming each user Un to Unlike and 
Undislike. The rating of 1 for Un is converted to 
1/0 corresponding to Unlike/Undislike, and 0 and 
missing value converted to 0/1 and 0/0 
respectively. These conversions facilitate the use 
of the NB algorithm for CF tasks, but bring the 
loss of multi-class information and increase the 
burden of scalability, especially for multi-class 
data, e.g., 5-class data needs 5 times more user 
numbers by simply using the Boolean feature 
transformation of the ratings matrix, which will 
not be realistic for real-world CF tasks. In [1], 
they applied the NB CF model only on binary 
data. 

C
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In our work, we apply the NB CF algorithm 
directly to real-world multi-class data for CF 
tasks and produce straightforward predictions for 
users. 

For the same example in Table 1(a), to 
predict the rating for U1 on I2 using the NB CF 
algorithm and the Laplace Estimator, we have 
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in which p(4)p(U2=2|4)p(U4=4|4)p(U5=1|4) = 
(1/3)*(1/6)*(2/6)*(1/6) = 0.0031. 

For the NB CF algorithm, there are cases 
where the maximum probability is 0 when 
calculating the prediction, and therefore one can 
not produce predictions using the algorithm. We 
also use the default voting as the prediction in 
this situation. The zero-value maximum 
probability of the prediction calculation for the 
NB CF algorithm degrades the robustness of the 
algorithm.  
 
3.2 NB-ELR and TAN-ELR CF Models 
 

As computing the optimal CPtable entries is 
generally intractable, Greiner et al. proposed a 
gradient-ascent algorithm, extended logistic 
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regression (ELR), which is a discriminative 
parameter-learning algorithm that maximizes log 
conditional likelihood [3]. 
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where S is the sample space {<ci,ei>}, and each 
class label ci is associated with evidence ei. ELR 
extends standard logistic regression (LR) [12] to 
accommodate incomplete training data, while 
most LR algorithms only require complete data. 

ELR optimizes the log conditional likelihood 
 by changing the values of each CPtable 

entry Θ
)(Θ

∧

LCL

d|f. To incorporate the constraints Θd|f ≥0 
and ΣdΘd|f=1, they used a different set of 
parameters: the logistic βd|f, where 
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As the βi values sweep over the reals, the 

appropriate constraints will be satisfied by the 
corresponding Θd|f values. ELR is basically 

 
Initialize β(0)  
For k=1…m 
       β(k+1) = β(k) + α(k) × d(k) 

 
where β(0) is the initial plug-in parameters, β(k) is 
the set of parameters at iteration k,  α(k) is the 
magnitude of the changes calculated with line 
search, d(k) is the direction of the modification 
(conjugate gradient), and m is the stopping 
criteria called cross tuning [3]. Given a set of 
labeled queries, ELR descends to the direction of 
the total derivative with respect to these queries, 
which is the sum of the individual derivatives. 

ELR uses observed frequency estimates 
(OFE) [17] to initialize the parameters, β(0). 
These easy-to-compute generative starting values 
are often used to initialize parameters for 
discriminative tasks [13]. It uses the conjugate 
gradient method to descend along conjugate 
directions, rather than simply the local gradient, 
and requires far fewer steps to reach the local 
optimum [14]. A standard Brent’s iterative line 
search procedure [14] is used to decide how far 
ELR will ascend in the d(k) direction. Cross 
tuning is used in ELR to estimate the optimal 
number of iterations [3]. 

In [3], working on 20 incomplete datasets 
from the UCI machine learning repository with 

different missing rates, mostly between 0.06% 
and 30.17% and one with 64.94%, and using the 
classification accuracy criterion, NB-ELR 
performs significantly better than NB-APN and 
NB-EM. NB-APN is the NB optimized by a 
standard missing-data learning algorithm, 
Adaptive Probabilistic Networks (APN) [15], and 
NB-EM is by Expectation Maximization (EM) 
[16], both of which ascend to parameter values 
whose likelihood is locally optimal.  

NB-ELR performs similarly to or slightly 
worse than TAN-ELR, in which the BNs classifier 
TAN is optimized by ELR. NB, however, has a 
simpler structure and NB-ELR can be learned in 
a much shorter time period than TAN-ELR. We 
implement both NB-ELR and TAN-ELR for the 
CF tasks in this work and compare them with 
other CF algorithms. 
 
3.3 Other Bayesian Belief Nets CF Models 
 

There are some other BNs models for CF 
tasks in CF research literature, such as the BNs 
with decision trees model, which has a decision 
tree at each node of the BN, with a node 
corresponds to each item in the domain and the 
states of each node correspond to the possible 
ratings for each item [2]; and the Baseline 
Bayesian model, which uses a Bayesian belief 
net with no arcs (baseline model) for 
collaborative filtering and recommends items on 
their overall popularity [5].  

 
4. Experimental Design 
 

We implemented a commonly-used 
correlation-based CF algorithm (user-based CF 
algorithm using the Pearson Correlation as the 
similarity value), a simple BNs CF algorithm 
(NB CF algorithm) and two advanced BNs CF 
algorithms (NB-ELR CF model and TAN-ELR 
CF model) to compare performances of the CF 
algorithms.  

We evaluated 17 subsets of the real-world 
MovieLens data, with different missing rates 
from 53.8% to 97.2%. Each of the subset 
datasets has observed ratings for 943 users on 20 
movies, with the rating values from 1 to 5. The 
original MovieLens dataset used has 100,000 
ratings for 1682 movies by 943 users.  

We also worked on three other subsets with 
the same number of users and items and with 
missing rates of 98.1%, 98.9% and 99.5% 
respectively. However, because the robustnesses 
of correlation-based CF algorithm and NB CF 
algorithm are very low, (e.g., correlation-based 
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CF algorithm can only make 44, 8 and 0 
predictions for the three datasets for 358, 207 
and 94 need-to-be-predicted values respectively), 
the overall MAE will come more from a default 
voting than from the algorithms. We therefore do 
not count the MAEs from these three datasets in 
our overall performance comparison. 

For the correlation-based CF algorithm and 
naïve Bayes CF algorithm, we assume each of 
the observed values were missing and predict a 
rating value for it. Then we calculate the 
difference between the actual value and 
predicted value, and continue to work on the next 
observed value and finally sum up the absolute 
errors and obtain the Mean Average Error (MAE) 
to evaluate the performance of the algorithms. 
For each new CF task, it just needs to calculate 
its related similarities or conditional probabilities 
to produce predictions from the algorithms. New 
evidences of ratings are incrementally 
incorporated with the existing ones. 

For the NB-ELR and TAN-ELR CF models, 
we use each column of the rating matrix in turn 
as the class column and the remaining columns 
as the attributes, remove the users with missing 
values on the class column and use 5-fold cross-
validation to train and test the NB-ELR and TAN-
ELR models. We use OFE [17] as the type of the 
CPtable initialization, use 5-fold cross-tuning 
and 20 as the maximum iteration number for the 
NB-ELR and TAN-ELR training, which are the 
options required by the ELR algorithm [3]. The 
models produce predictions and calculate the 
MAE for each dataset. Then we use each of the 
other columns as the class column in turn and 
repeat the above steps and get the average MAE 
of all testing results. For each new CF task, i.e., 
to predict a rating of a certain user on a certain 
item, the prediction is available from the existing 
trained model. When necessary (e.g., the system 
has gotten a large amount of new evidences), 
new evidences can be re-trained together with 
existing ones to give an updated model. 

 
5. Results 
 

Using real-world multi-class CF datasets, the 
empirical results show that the correlation-based 
CF algorithm, NB-ELR CF algorithm, and TAN-
ELR CF algorithm perform significantly better 
than the naïve Bayes CF algorithm. Overall, in 
terms of MAE, NB-ELR CF and TAN-ELR CF 
algorithms have consistently better performances 
than the correlation-based CF algorithm. 
Statistically, using paired T-Test, NB-ELR CF is 
better than the correlation-based CF algorithm 

with p=0.0002, TAN-ELR CF is better than 
correlation-based CF algorithm with p=0.00004, 
and it is also better than NB-ELR CF with 
p=0.0077 (see Table 2 and Figure 2).  

For the response time, the NB CF algorithm 
produces all the predictions in the shortest time 
of the four algorithms: within 2 seconds, 
averaged over the 17 datasets. It takes 5 seconds 
on average for the correlation-based CF 
algorithm to produce all the predictions, 3.7 
minutes for the NB-ELR CF algorithm and 12 
minutes for the TAN-ELR CF algorithm to train 
and test each dataset using computers with AMD 
Athlon XP 1.1GHz processors and 1GB 
memory. The training and prediction time of NB-
ELR CF is acceptable when it’s not very time-
critical. Although the TAN-ELR CF algorithm 
produces the best predictions, it’s not desirable 
for time-critical situations. One solution is to run 
the time-consuming training stage offline, and 
the online prediction-producing stage will take a 
much shorter time. 

The fast degradation of the performances of 
all four algorithms when the missing rate is 
higher than 90% is due to the lack of enough 
observed values to make predictions. 

 
Sparsity 

(%) 
correlation-
based CF 

NB 
CF 

nb-elr 
CF 

TAN-
ELR 

53.8 0.796 1.071 0.769 0.780 
56.8 0.840 1.170 0.822 0.827 
59.9 0.823 1.122 0.799 0.797 
62.2 0.795 1.095 0.782 0.770 
66.8 0.810 1.109 0.787 0.787 
69.0 0.798 1.059 0.773 0.765 
72.5 0.841 1.191 0.822 0.798 
75.1 0.832 1.113 0.804 0.821 
79.0 0.872 1.237 0.824 0.814 
81.8 0.826 1.197 0.860 0.853 
83.9 0.843 1.087 0.845 0.818 
86.1 0.903 1.169 0.887 0.839 
89.0 0.879 1.121 0.857 0.831 
91.1 0.921 1.100 0.876 0.831 
93.7 0.917 1.031 0.841 0.820 
95.4 1.027 1.097 0.960 0.969 
97.2 1.087 1.202 1.040 1.022 

Average 0.871 1.128 0.844 0.832 
Table 2, MAE of the four CF algorithms 
 
In terms of robustness, the NB-ELR and TAN-

ELR CF algorithms consistently produce 
predictions regardless of the data sparseness and 
obtain a perfect robustness of 1 for the datasets 
in this case study. The correlation-based CF 
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algorithm degrades faster than the NB CF 
algorithm when the missing rate of the dataset 
increases (Figure 3) and is more frequently 
unable to produce the predictions. 

 

 
Figure 2, the performances of the four CF 

algorithms against missing rates of the data 
 

 
Figure 3, robustness of the four CF 

algorithms 
 

 
6. Conclusions 
 

Collaborative filtering (CF) is one of the most 
important recommendation systems. Algorithms 
with a strong ability to deal with sparsity, 
scalability and other challenges will be suitable 
for CF tasks. In this work, we apply Bayesian 
belief nets (BNs) algorithms on real-world multi-
class CF datasets, and specifically, we apply 
advanced BNs models instead of simple ones in 
the CF realm. NB-ELR and TAN-ELR, the NB 
and TAN BNs optimized by the extended logistic 
regression (ELR) algorithm, have superior 
performance when dealing with incomplete data 
for CF tasks. Empirical results show that NB-
ELR and TAN-ELR perform consistently better 
than the state-of-the-art Pearson correlation-
based CF algorithm across the whole missing 
rate spectrum from 53.8% to 97.2%. A simple 

BNs CF algorithm, NB CF algorithm, performs 
worse than the correlation-based CF algorithm 
on multi-class data. In terms of robustness of the 
four algorithms, NB-ELR and TAN-ELR CF 
algorithms are very robust in producing 
predictions for CF tasks, while the NB CF 
algorithm and correlation-based CF algorithm 
become more frequently unable to make 
predictions with the increase of the missing rate 
of the data. The robustness of the correlation-
based CF algorithm degrades faster than NB CF 
algorithm. Of the four algorithms, TAN-ELR 
performs the best in terms of MAE, but requires 
the longest time to train the model and make 
predictions. The second-best NB-ELR (with MAE 
0.012 shy of TAN-ELR) will be more practical 
because it gives predictions more quickly. 
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