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As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences
of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first
introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy
protection, etc., and their possible solutions. We then present three main categories of CF techniques: memory-based, model-
based, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative
algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic
techniques to the state-of-the-art, we attempt to present a comprehensive survey for CF techniques, which can be served as a
roadmap for research and practice in this area.

Copyright © 2009 X. Su and T. M. Khoshgoftaar. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

In everyday life, people rely on recommendations from
other people by spoken words, reference letters, news reports
from news media, general surveys, travel guides, and so
forth. Recommender systems assist and augment this natural
social process to help people sift through available books,
articles, webpages, movies, music, restaurants, jokes, grocery
products, and so forth to find the most interesting and
valuable information for them. The developers of one of
the first recommender systems, Tapestry [1] (other earlier
recommendation systems include rule-based recommenders
and user-customization), coined the phrase “collaborative
filtering (CF),” which has been widely adopted regardless of
the facts that recommenders may not explicitly collaborate
with recipients and recommendations may suggest particu-
larly interesting items, in addition to indicating those that
should be filtered out [2]. The fundamental assumption
of CF is that if users X and Y rate n items similarly, or
have similar behaviors (e.g., buying, watching, listening), and
hence will rate or act on other items similarly [3].

CF techniques use a database of preferences for items
by users to predict additional topics or products a new user
might like. In a typical CF scenario, there is a list of m users
{u1,u2, . . . ,um} and a list of n items {i1, i2, . . . , in}, and each

user, ui, has a list of items, Iui, which the user has rated,
or about which their preferences have been inferred through
their behaviors. The ratings can either be explicit indications,
and so forth, on a 1–5 scale, or implicit indications, such
as purchases or click-throughs [4]. For example, we can
convert the list of people and the movies they like or dislike
(Table 1(a)) to a user-item ratings matrix (Table 1(b)),
in which Tony is the active user that we want to make
recommendations for. There are missing values in the matrix
where users did not give their preferences for certain items.

There are many challenges for collaborative filtering
tasks (Section 2). CF algorithms are required to have the
ability to deal with highly sparse data, to scale with the
increasing numbers of users and items, to make satisfactory
recommendations in a short time period, and to deal with
other problems like synonymy (the tendency of the same or
similar items to have different names), shilling attacks, data
noise, and privacy protection problems.

Early generation collaborative filtering systems, such as
GroupLens [5], use the user rating data to calculate the simi-
larity or weight between users or items and make predictions
or recommendations according to those calculated similarity
values. The so-called memory-based CF methods (Section 3)
are notably deployed into commercial systems such as
http://www.amazon.com/ (see an example in Figure 1) and



2 Advances in Artificial Intelligence

Table 1: An example of a user-item matrix.

(a)

Alice: (like) Shrek, Snow White, (dislike) Superman

Bob: (like) Snow White, Superman, (dislike) spiderman

Chris: (like) spiderman, (dislike) Snow white

Tony: (like) Shrek, (dislike) Spiderman

(b)

Shrek Snow White Spider-man Super-man

Alice Like Like Dislike

Bob Like Dislike Like

Chris Dislike Like

Tony Like Dislike ?

Barnes and Noble, because they are easy-to-implement and
highly effective [6, 7]. Customization of CF systems for each
user decreases the search effort for users. It also promises
a greater customer loyalty, higher sales, more advertising
revenues, and the benefit of targeted promotions [8].

However, there are several limitations for the memory-
based CF techniques, such as the fact that the similarity
values are based on common items and therefore are
unreliable when data are sparse and the common items are
therefore few. To achieve better prediction performance and
overcome shortcomings of memory-based CF algorithms,
model-based CF approaches have been investigated. Model-
based CF techniques (Section 4) use the pure rating data
to estimate or learn a model to make predictions [9]. The
model can be a data mining or machine learning algorithm.
Well-known model-based CF techniques include Bayesian
belief nets (BNs) CF models [9–11], clustering CF models
[12, 13], and latent semantic CF models [7]. An MDP
(Markov decision process)-based CF system [14] produces
a much higher profit than a system that has not deployed the
recommender.

Besides collaborative filtering, content-based filtering is
another important class of recommender systems. Content-
based recommender systems make recommendations by
analyzing the content of textual information and finding
regularities in the content. The major difference between
CF and content-based recommender systems is that CF
only uses the user-item ratings data to make predictions
and recommendations, while content-based recommender
systems rely on the features of users and items for predictions
[15]. Both content-based recommender systems and CF
systems have limitations. While CF systems do not explicitly
incorporate feature information, content-based systems do
not necessarily incorporate the information in preference
similarity across individuals [8].

Hybrid CF techniques, such as the content-boosted CF
algorithm [16] and Personality Diagnosis (PD) [17], com-
bine CF and content-based techniques, hoping to avoid
the limitations of either approach and thereby improve
recommendation performance (Section 5).

A brief overview of CF techniques is depicted in Table 2.

Figure 1: Amazon recommends products to customers by cus-
tomizing CF systems.

To evaluate CF algorithms (Section 6), we need to use
metrics according to the types of CF application. Instead
of classification error, the most widely used evaluation
metric for prediction performance of CF is Mean Absolute
Error (MAE). Precision and recall are widely used metrics
for ranked lists of returned items in information retrieval
research. ROC sensitivity is often used as a decision support
accuracy metric.

As drawing convincing conclusions from artificial data is
risky, data from live experiments are more desirable for CF
research. The commonly used CF databases are MovieLens
[18], Jester [19], and Netflix prize data [20]. In Section 7, we
give the conclusion and discussion of this work.

2. Characteristics and Challenges of
Collaborative Filtering

E-commerce recommendation algorithms often operate
in a challenging environment, especially for large online
shopping companies like eBay and Amazon. Usually, a
recommender system providing fast and accurate recom-
mendations will attract the interest of customers and bring
benefits to companies. For CF systems, producing high-
quality predictions or recommendations depends on how
well they address the challenges, which are characteristics of
CF tasks as well.

2.1. Data Sparsity. In practice, many commercial recom-
mender systems are used to evaluate very large product
sets. The user-item matrix used for collaborative filtering
will thus be extremely sparse and the performances of the
predictions or recommendations of the CF systems are
challenged.

The data sparsity challenge appears in several situations,
specifically, the cold start problem occurs when a new user
or item has just entered the system, it is difficult to find
similar ones because there is not enough information (in
some literature, the cold start problem is also called the
new user problem or new item problem [21, 22]). New items
cannot be recommended until some users rate it, and new
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Table 2: Overview of collaborative filtering techniques.

CF categories Representative techniques Main advantages Main shortcomings

Memory-based CF

∗Neighbor-based CF
(item-based/user-based CF
algorithms with Pearson/vector
cosine correlation)

∗easy implementation ∗are dependent on human ratings
∗new data can be added easily and
incrementally

∗performance decrease when data
are sparse

∗Item-based/user-based top-N
recommendations

∗need not consider the content of
the items being recommended

∗cannot recommend for new users
and items

∗scale well with co-rated items
∗have limited scalability for large
datasets

Model-based CF

∗Bayesian belief nets CF ∗better address the sparsity,
scalability and other problems

∗expensive model-building∗clustering CF
∗MDP-based CF ∗improve prediction performance

∗have trade-off between prediction
performance and scalability∗latent semantic CF

∗sparse factor analysis ∗give an intuitive rationale for
recommendations

∗lose useful information for
dimensionality reduction
techniques

∗CF using dimensionality
reduction techniques, for example,
SVD, PCA

Hybrid recommenders

∗content-based CF recommender,
for example, Fab

∗overcome limitations of CF and
content-based or other
recommenders

∗have increased complexity and
expense for implementation

∗content-boosted CF ∗improve prediction performance
∗need external information that
usually not available

∗hybrid CF combining
memory-based and model-based
CF algorithms, for example,
Personality Diagnosis

∗overcome CF problems such as
sparsity and gray sheep

users are unlikely given good recommendations because of
the lack of their rating or purchase history. Coverage can
be defined as the percentage of items that the algorithm
could provide recommendations for. The reduced coverage
problem occurs when the number of users’ ratings may be
very small compared with the large number of items in
the system, and the recommender system may be unable to
generate recommendations for them. Neighbor transitivity
refers to a problem with sparse databases, in which users
with similar tastes may not be identified as such if they
have not both rated any of the same items. This could
reduce the effectiveness of a recommendation system which
relies on comparing users in pairs and therefore generating
predictions.

To alleviate the data sparsity problem, many approaches
have been proposed. Dimensionality reduction techniques,
such as Singular Value Decomposition (SVD) [23], remove
unrepresentative or insignificant users or items to reduce
the dimensionalities of the user-item matrix directly. The
patented Latent Semantic Indexing (LSI) used in information
retrieval is based on SVD [24, 25], in which similarity
between users is determined by the representation of the
users in the reduced space. Goldberg et al. [3] developed
eigentaste, which applies Principle Component Analysis
(PCA), a closely-related factor analysis technique first
described by Pearson in 1901 [26], to reduce dimensionality.
However, when certain users or items are discarded, useful
information for recommendations related to them may
get lost and recommendation quality may be degraded [6,
27].

Hybrid CF algorithms, such as the content-boosted CF
algorithm [16], are found helpful to address the sparsity
problem, in which external content information can be used
to produce predictions for new users or new items. In Ziegler
et al. [28], a hybrid collaborative filtering approach was
proposed to exploit bulk taxonomic information designed
for exact product classification to address the data sparsity
problem of CF recommendations, based on the generation
of profiles via inference of super-topic score and topic
diversification [28]. Schein et al. proposed the aspect model
latent variable method for cold start recommendation, which
combines both collaborative and content information in
model fitting [29]. Kim and Li proposed a probabilistic
model to address the cold start problem, in which items are
classified into groups and predictions are made for users
considering the Gaussian distribution of user ratings [30].

Model-based CF algorithms, such as TAN-ELR (tree aug-
mented naı̈ve Bayes optimized by extended logistic regres-
sion) [11, 31], address the sparsity problem by providing
more accurate predictions for sparse data. Some new model-
based CF techniques that tackle the sparsity problem include
the association retrieval technique, which applies an asso-
ciative retrieval framework and related spreading activation
algorithms to explore transitive associations among users
through their rating and purchase history [32]; Maximum
margin matrix factorizations (MMMF), a convex, infinite
dimensional alternative to low-rank approximations and
standard factor models [33, 34]; ensembles of MMMF
[35]; multiple imputation-based CF approaches [36]; and
imputation-boosted CF algorithms [37].
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2.2. Scalability. When numbers of existing users and items
grow tremendously, traditional CF algorithms will suffer
serious scalability problems, with computational resources
going beyond practical or acceptable levels. For example,
with tens of millions of customers (M) and millions of
distinct catalog items (N), a CF algorithm with the com-
plexity of O(n) is already too large. As well, many systems
need to react immediately to online requirements and make
recommendations for all users regardless of their purchases
and ratings history, which demands a high scalability of a CF
system [6].

Dimensionality reduction techniques such as SVD can
deal with the scalability problem and quickly produce
good quality recommendations, but they have to undergo
expensive matrix factorization steps. An incremental SVD
CF algorithm [38] precomputes the SVD decomposition
using existing users. When a new set of ratings are added
to the database, the algorithm uses the folding-in projection
technique [25, 39] to build an incremental system without re-
computing the low-dimensional model from scratch. Thus it
makes the recommender system highly scalable.

Memory-based CF algorithms, such as the item-based
Pearson correlation CF algorithm can achieve satisfactory
scalability. Instead of calculating similarities between all pairs
of items, item-based Pearson CF calculates the similarity
only between the pair of co-rated items by a user [6,
40]. A simple Bayesian CF algorithm tackles the scalability
problem by making predictions based on observed ratings
[41]. Model-based CF algorithms, such as clustering CF
algorithms, address the scalability problem by seeking users
for recommendation within smaller and highly similar
clusters instead of the entire database [13, 42–44], but there
are tradeoffs between scalability and prediction performance.

2.3. Synonymy. Synonymy refers to the tendency of a
number of the same or very similar items to have different
names or entries. Most recommender systems are unable
to discover this latent association and thus treat these
products differently. For example, the seemingly different
items “children movie” and “children film” are actual the
same item, but memory-based CF systems would find no
match between them to compute similarity. Indeed, the
degree of variability in descriptive term usage is greater than
commonly suspected. The prevalence of synonyms decreases
the recommendation performance of CF systems.

Previous attempts to solve the synonymy problem
depended on intellectual or automatic term expansion, or
the construction of a thesaurus. The drawback for fully
automatic methods is that some added terms may have
different meanings from intended, thus leading to rapid
degradation of recommendation performance [45].

The SVD techniques, particularly the Latent Semantic
Indexing (LSI) method, are capable of dealing with the
synonymy problems. SVD takes a large matrix of term-
document association data and construct a semantic space
where terms and documents that are closely associated are
placed closely to each other. SVD allows the arrangement of
the space to reflect the major associative patterns in the data,

and ignore the smaller, less important ones. The performance
of LSI in addressing the synonymy problem is impressive
at higher recall levels where precision is ordinarily quite
low, thus representing large proportional improvements.
However, the performance of the LSI method at the lowest
levels of recall is poor [25].

The LSI method gives only a partial solution to the
polysemy problem, which refers to the fact that most words
have more than one distinct meaning [25].

2.4. Gray Sheep. Gray sheep refers to the users whose
opinions do not consistently agree or disagree with any group
of people and thus do not benefit from collaborative filtering
[46]. Black sheep are the opposite group whose idiosyncratic
tastes make recommendations nearly impossible. Although
this is a failure of the recommender system, non-electronic
recommenders also have great problems in these cases, so
black sheep is an acceptable failure [47].

Claypool et al. provided a hybrid approach combining
content-based and CF recommendations by basing a predic-
tion on a weighted average of the content-based prediction
and the CF prediction. In that approach, the weights of the
content-based and CF predictions are determined on a per-
user basis, allowing the system to determine the optimal
mix of content-based and CF recommendation for each user,
helping to solve the gray sheep problem [46].

2.5. Shilling Attacks. In cases where anyone can provide
recommendations, people may give tons of positive rec-
ommendations for their own materials and negative rec-
ommendations for their competitors. It is desirable for CF
systems to introduce precautions that discourage this kind of
phenomenon [2].

Recently, the shilling attacks models for collaborative
filtering system have been identified and their effectiveness
has been studied. Lam and Riedl found that item-based
CF algorithm was much less affected by the attacks than
the user-based CF algorithm, and they suggest that new
ways must be used to evaluate and detect shilling attacks on
recommender systems [48]. Attack models for shilling the
item-based CF systems have been examined by Mobasher
et al., and alternative CF systems such as hybrid CF systems
and model-based CF systems were believed to have the ability
to provide partial solutions to the bias injection problem
[49]. O’Mahony et al. contributed to solving the shilling
attacks problem by analyzing robustness, a recommender
system’s resilience to potentially malicious perturbations in
the customer/product rating matrix [50].

Bell and Koren [51] used a comprehensive approach to
the shilling attacks problem by removing global effects in
the data normalization stage of the neighbor-based CF, and
working with residual of global effects to select neighbors.
They achieved improved CF performance on the Netflix [20]
data.

2.6. Other Challenges. As people may not want their habits
or views widely known, CF systems also raise concerns about
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Table 3: The Nexflix Prize Leaderboard as of July 2009.

Rank Team Best RMSE score Improvement (%)

1 BellKor’s Pragmatic
Chaos

0.8556 10.07

2 Grand Prize Team 0.8571 9.91

3 Opera Solutions and
Vandelay United

0.8573 9.89

4 Vandelay Industries! 0.8579 9.83

5 Pragmatic Theory 0.8582 9.80

6 BellKor in BigChaos 0.8590 9.71

7 Dace 0.8605 9.55

8 Opera Solutions 0.8611 9.49

9 BellKor 0.8612 9.48

10 BigChaos 0.8613 9.47

Table 4: A simple example of ratings matrix.

I1 I2 I3 I4

U1 4 ? 5 5

U2 4 2 1

U3 3 2 4

U4 4 4

U5 2 1 3 5

personal privacy. Miller et al. [4] and Canny [52] find ways
to protect users’ privacy for CF recommendation tasks.

Increased noise (or sabotage) is another challenge, as
the user population becomes more diverse. Ensembles of
maximum margin matrix factorizations [35] and instance
selection techniques [53] are found useful to address the
noise problems of CF tasks. As Dempster-Shafer (DS)
theory [54, 55] and imputation techniques [56] have been
successfully applied to accommodate imperfect and noisy
data for knowledge representation and classification tasks,
they are also potentially useful to deal with the noise problem
of CF tasks.

Explainability is another important aspect of recom-
mender systems. An intuitive reasoning such as “you will like
this book because you liked those books” will be appealing
and beneficial to readers, regardless of the accuracy of the
explanations [57].

2.7. The Netflix Prize Challenge. Launched in October 2006,
the Netflix prize challenge [20] attracted thousands of
researchers to compete in the million-dollar-prize race for
a most improved performance for movie recommendations.
The challenge is featured with a large-scale industrial
dataset (with 480,000 users and 17,770 movies), and a rigid
performance metric of RMSE (see detailed description in
Section 6).

Up to July, 2009, the Leaderboard on the Netflix prize
competition is as Table 3, in which the leading team “BellKor
in Pragmatic Chaos” (with 10.05% improved RMSE over the
Netflix movie recommendation system: Cinematch) based
their solution on a merged model of latent factor and

neighborhood models [58]. Some interesting research papers
on the Netflix prize challenge can be found in the 2008 KDD
Netflix Workshop (http://netflixkddworkshop2008.info/).

3. Memory-Based Collaborative
Filtering Techniques

Memory-based CF algorithms use the entire or a sample of
the user-item database to generate a prediction. Every user is
part of a group of people with similar interests. By identifying
the so-called neighbors of a new user (or active user), a
prediction of preferences on new items for him or her can
be produced.

The neighborhood-based CF algorithm, a prevalent
memory-based CF algorithm, uses the following steps: cal-
culate the similarity or weight, wi, j , which reflects distance,
correlation, or weight, between two users or two items, i
and j; produce a prediction for the active user by taking the
weighted average of all the ratings of the user or item on
a certain item or user, or using a simple weighted average
[40]. When the task is to generate a top-N recommendation,
we need to find k most similar users or items (nearest
neighbors) after computing the similarities, then aggregate
the neighbors to get the top-N most frequent items as the
recommendation.

3.1. Similarity Computation. Similarity computation be-
tween items or users is a critical step in memory-based
collaborative filtering algorithms. For item-based CF algo-
rithms, the basic idea of the similarity computation between
item i and item j is first to work on the users who have
rated both of these items and then to apply a similarity
computation to determine the similarity, wi, j , between the
two co-rated items of the users [40]. For a user-based CF
algorithm, we first calculate the similarity, wu,v, between the
users u and v who have both rated the same items.

There are many different methods to compute similarity
or weight between users or items.

3.1.1. Correlation-Based Similarity. In this case, similarity
wu,v between two users u and v, or wi, j between two items
i and j, is measured by computing the Pearson correlation or
other correlation-based similarities.

Pearson correlation measures the extent to which two
variables linearly relate with each other [5]. For the user-
based algorithm, the Pearson correlation between users u and
v is

wu,v =
∑

i∈I
(
ru,i − ru

)(
rv,i − rv

)

√∑
i∈I
(
ru,i − ru

)2
√∑

i∈I
(
rv,i − rv

)2
, (1)

where the i ∈ I summations are over the items that both the
users u and v have rated and ru is the average rating of the
co-rated items of the uth user. In an example in Table 4, we
have w1,5 = 0.756.
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Figure 2: item-based similarity (wi, j) calculation based on the co-
rated items i and j from users 2, l and n.

For the item-based algorithm, denote the set of users u ∈
U who rated both items i and j, then the Pearson Correlation
will be

wi, j =
∑

u∈U
(
ru,i − ri

)(
ru, j − r j

)

√∑
u∈U (ru,i − ri)2

√∑
u∈U (ru, j − r j)2

, (2)

where ru,i is the rating of user u on item i, ri is the average
rating of the ith item by those users, see Figure 2 [40].

Some variations of item-based and user-based Pearson
correlations can be found in [59]. The Pearson correlation-
based CF algorithm is a representative CF algorithm, and is
widely used in the CF research community.

Other correlation-based similarities include: constrained
Pearson correlation, a variation of Pearson correlation that
uses midpoint instead of mean rate; Spearman rank correla-
tion, similar to Pearson correlation, except that the ratings are
ranks; and Kendall’s τ correlation, similar to the Spearman
rank correlation, but instead of using ranks themselves, only
the relative ranks are used to calculate the correlation [3,
60].

Usually the number of users in the computation of
similarity is regarded as the neighborhood size of the active
user, and similarity based CF is deemed as neighborhood-
based CF.

3.1.2. Vector Cosine-Based Similarity. The similarity between
two documents can be measured by treating each document
as a vector of word frequencies and computing the cosine
of the angle formed by the frequency vectors [61]. This
formalism can be adopted in collaborative filtering, which
uses users or items instead of documents and ratings instead
of word frequencies.

Formally, if R is the m × n user-item matrix, then the
similarity between two items, i and j, is defined as the cosine
of the n dimensional vectors corresponding to the ith and jth
column of matrix R.

Vector cosine similarity between items i and j is given by

wi, j = cos
(
�i, �j
)
=

�i•�j
�‖i‖ ∗ �∥∥ j

∥
∥

, (3)

where “•” denotes the dot-product of the two vectors. To
get the desired similarity computation, for n items, an n × n
similarity matrix is computed [27]. For example, if the vector
�A = {x1, y1}, vector �B = {x2, y2}, the vector cosine similarity

between �A and �B is

wA,B = cos
(
�A, �B

)
=

�A•�B
�‖A‖ ∗ �‖B‖

= x1x2 + y1y2
√
x2

1 + y2
1

√
x2

2 + y2
2

.

(4)

In an actual situation, different users may use different
rating scales, which the vector cosine similarity cannot take
into account. To address this drawback, adjusted cosine sim-
ilarity is used by subtracting the corresponding user average
from each co-rated pair. The Adjusted cosine similarity has
the same formula as Pearson correlation (2). In fact, Pearson
correlation performs cosine similarity with some sort of
normalization of the user’s ratings according to his own
rating behavior. Hence, we may get negative values with
Pearson correlation, but not with cosine similarity, supposing
we have an n-point rating scale.

3.1.3. Other Similarities. Another similarity measure is con-
ditional probability-based similarity [62, 63]. As it is not
commonly-used, we will not discuss it in detail in this paper.

3.2. Prediction and Recommendation Computation. To obtain
predictions or recommendations is the most important step
in a collaborative filtering system. In the neighborhood-
based CF algorithm, a subset of nearest neighbors of the
active user are chosen based on their similarity with him
or her, and a weighted aggregate of their ratings is used to
generate predictions for the active user [64].

3.2.1. Weighted Sum of Others’ Ratings. To make a prediction
for the active user, a, on a certain item, i, we can take a
weighted average of all the ratings on that item according to
the following formula [5]:

Pa,i = ra +

∑
u∈U

(
ru,i − ru

) ·wa,u∑
u∈U

∣
∣wa,u

∣
∣ , (5)

where ra and ru are the average ratings for the user a and
user u on all other rated items, andwa,u is the weight between
the user a and user u. The summations are over all the users
u ∈ U who have rated the item i. For the simple example
in Table 4, using the user-based CF algorithm, to predict the
rating for U1 on I2, we have

P1,2 = r1 +

∑
u

(
ru,2 − ru

) ·w1,u∑
u

∣
∣w1,u

∣
∣

= r1 +

(
r2,2 − r2

)
w1,2 +

(
r4,2 − r4

)
w1,4 +

(
r5,2 − r5

)
w1,5∣

∣w1,2
∣
∣ +

∣
∣w1,4

∣
∣ +

∣
∣w1,5

∣
∣

= 4.67 +
(2− 2.5)(−1) + (4− 4)0 + (1− 3.33)0.756

1 + 0 + 0.756

= 3.95.
(6)
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Note the above prediction is based on the neighborhood
of the active users.

3.2.2. Simple Weighted Average. For item-based prediction,
we can use the simple weighted average to predict the rating,
Pu,i, for user u on item i [40]

Pu,i =
∑

n∈N ru,nwi,n∑
n∈N

∣
∣wi,n

∣
∣ , (7)

where the summations are over all other rated items n ∈ N
for user u,wi,n is the weight between items i and n, ru,n is the
rating for user u on item n.

3.3. Top-N Recommendations. Top-N recommendation is to
recommend a set of N top-ranked items that will be of
interest to a certain user. For example, if you are a returning
customer, when you log into your http://amazon.com/
account, you may be recommended a list of books (or other
products) that may be of your interest (see Figure 1). Top-
N recommendation techniques analyze the user-item matrix
to discover relations between different users or items and
use them to compute the recommendations. Some models,
such as association rule mining based models, can be used to
make top-N recommendations, which we will introduce in
Section 4.

3.3.1. User-Based Top-N Recommendation Algorithms. User-
based top-N recommendation algorithms firstly identify the
k most similar users (nearest neighbors) to the active user
using the Pearson correlation or vector-space model [9, 27], in
which each user is treated as a vector in the m-dimensional
item space and the similarities between the active user and
other users are computed between the vectors. After the k
most similar users have been discovered, their corresponding
rows in the user-item matrix R are aggregated to identify
a set of items, C, purchased by the group together with
their frequency. With the set C, user-based CF techniques
then recommend the top-N most frequent items in C
that the active user has not purchased. User-based top-
N recommendation algorithms have limitations related to
scalability and real-time performance [62].

3.3.2. Item-Based Top-N Recommendation Algorithms. Item-
based top-N recommendation algorithms have been devel-
oped to address the scalability problem of user-based top-N
recommendation algorithms. The algorithms firstly compute
the k most similar items for each item according to the
similarities; then identify the set, C, as candidates of recom-
mended items by taking the union of the k most similar items
and removing each of the items in the set, U , that the user
has already purchased; then calculate the similarities between
each item of the set C and the set U . The resulting set of
the items in C, sorted in decreasing order of the similarity,
will be the recommended item-based Top-N list [62]. One
problem of this method is, when the joint distribution
of a set of items is different from the distributions of
the individual items in the set, the above schemes can

potentially produce suboptimal recommendations. To solve
this problem, Deshpande and Karypis [63] developed higher-
order item-based top-N recommendation algorithms that
use all combinations of items up to a particular size when
determining the itemsets to be recommended to a user.

3.4. Extensions to Memory-Based Algorithms

3.4.1. Default Voting. In many collaborative filters, pair-
wise similarity is computed only from the ratings in the
intersection of the items both users have rated [5, 27]. It
will not be reliable when there are too few votes to generate
similarity values. Also, focusing on intersection set similarity
neglects the global rating behavior reflected in a user’s entire
rating history.

Empirically, assuming some default voting values for the
missing ratings can improve the CF prediction performance.
Herlocker et al. [64] accounts for small intersection sets by
reducing the weight of users that have fewer than 50 items in
common. Chee et al. [13] uses the average of the clique (or
small group) as default voting to extend each user’s rating
history. Breese et al. [9] uses a neutral or somewhat negative
preference for the unobserved ratings and then computes the
similarity between users on the resulting ratings data.

3.4.2. Inverse User Frequency. The idea of inverse user fre-
quency [61] applied in collaborative filtering is that univer-
sally liked items are not as useful in capturing similarity as
less common items. The inverse frequency can be defined
as f j = log(n/nj), where nj is the number of users who
have rated item j and n is the total number of users. If
everyone has rated item j, then f j is zero. To apply inverse
user frequency while using the vector similarity-based CF
algorithm, we need to use a transformed rating, which is
simply the original rating multiplied by the f j factor [9].

3.4.3. Case Amplification. Case amplification refers to a
transform applied to the weights used in the basic collab-
orative filtering prediction. The transform emphasizes high
weights and punishes low weights [9]:

w′i, j = wi, j ·
∣
∣
∣wi, j

∣
∣
∣
ρ−1

, (8)

where ρ is the case amplification power, ρ ≥ 1, and a typical
choice of ρ is 2.5 [65]. Case amplification reduces noise in the
data. It tends to favor high weights as small values raised to a
power become negligible. If the weight is high, for example,

wi, j = 0.9, then it remains high (0.92.5 ≈ 0.8); if it is low, for
example,wi, j = 0.1, then it will be negligible (0.12.5 ≈ 0.003).

3.4.4. Imputation-Boosted CF Algorithms. When the rating
data for CF tasks are extremely sparse, it will be prob-
lematic to produce accurate predictions using the Pearson
correlation-based CF. Su et al. [37, 66] proposed a framework
of imputation-boosted collaborative filtering (IBCF), which
first uses an imputation technique to fill in the missing
data, before using a traditional Pearson correlation-based
CF algorithm on this completed data to predict a specific
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user rating for a specified item. After comprehensively
investigating the use of various standard imputation tech-
niques (including mean imputation, linear regression impu-
tation, and predictive mean matching [67] imputation, and
Bayesian multiple imputation [68]), and machine learning
classifiers [66] (including naı̈ve Bayes, SVM, neural network,
decision tree, lazy Bayesian rules) as imputers for IBCF, they
found that the proposed IBCF algorithms can perform very
effectively in general, and that IBCF using Bayesian multiple
imputation, IBCF-NBM (a mixture IBCF which uses IBCF
using naı̈ve Bayes for denser datasets and IBCF using mean
imputation for sparser ones) [37], and IBCF using naı̈ve
Bayes perform especially well, outperforming the content-
boosted CF algorithm (a representative hybrid CF), and do
so without using external content information.

3.4.5. Weighted Majority Prediction. The weighted majority
prediction algorithm proposed by Goldman and Warmuth
[69] makes its prediction using the rows with observed data
in the same column, weighted by the believed similarity
between the rows, with binary rating values. The weights
(or similarities, with initialized values of 1) are increased
by multiplying it by (2 − γ) when the compared values are
same, and decreased by multiplying by γ when different,
with γ ∈ (0, 1). This update is equivalent to wii′ =
(2− γ)Cii′ γWii′ , where Cii′ is the number of rows that have
the same value as in row i and Wii′ is the number of rows
having different values. The prediction for a rating on a
certain item by the active user is determined by the rating on
the item by a certain user, who has the highest accumulated
weight value with the active user. This algorithm can be
generalized to multiclass data, and be extended from user-to-
user similarity to item-to-item similarity and to user-item-
combined similarity [70]. One shortcoming of this algorithm
is the scalability, when the user number or item number
grows over a certain large number n, it will be impractical
for the user-to-user or item-to-item similarity computations
to update the O(n2) similarity matrices.

4. Model-Based Collaborative
Filtering Techniques

The design and development of models (such as machine
learning, data mining algorithms) can allow the system to
learn to recognize complex patterns based on the training
data, and then make intelligent predictions for the col-
laborative filtering tasks for test data or real-world data,
based on the learned models. Model-based CF algorithms,
such as Bayesian models, clustering models, and dependency
networks, have been investigated to solve the shortcomings of
memory-based CF algorithms [9, 71]. Usually, classification
algorithms can be used as CF models if the user ratings are
categorical, and regression models and SVD methods and be
used for numerical ratings.

4.1. Bayesian Belief Net CF Algorithms. A Bayesian belief
net (BN) is a directed, acyclic graph (DAG) with a triplet
〈N ,A,Θ〉, where each node n ∈ N represents a random

variable, each directed arc a ∈ A between nodes is
a probabilistic association between variables, and Θ is a
conditional probability table quantifying how much a node
depends on its parents [72]. Bayesian belief nets (BNs) are
often used for classification tasks.

4.1.1. Simple Bayesian CF Algorithm. The simple Bayesian
CF algorithm uses a naı̈ve Bayes (NB) strategy to make pre-
dictions for CF tasks. Assuming the features are independent
given the class, the probability of a certain class given all of
the features can be computed, and then the class with the
highest probability will be classified as the predicted class
[41]. For incomplete data, the probability calculation and
classification production are computed over observed data
(the subscript o in the following equation indicates observed
values):

class = arg max
j∈ classSet

p
(

class j
)∏

o

P
(
Xo = xo | class j

)
. (9)

The Laplace Estimator is used to smooth the probability
calculation and avoid a conditional probability of 0:

P
(
Xi = xi | Y = y

) = #
(
Xi = xi,Y = y

)
+ 1

#
(
Y = y

)
+ |Xi|

, (10)

where |Xi| is the size of the class set {Xi}. For an example of
binary class, P(Xi = 0 | Y = 1) = 0/2 will be (0+1)/(2+2) =
1/4,P(Xi = 1 | Y = 1) = 2/2 will be (2 + 1)/(2 + 2) = 3/4
using the Laplace Estimator.

Using the same example in Table 4, the class set is
{1, 2, . . . , 5}, to produce the rating for U1 on I2 using the
simple Bayesian CF algorithm and the Laplace Estimator, we
have

class= arg max
cj ∈{1,2,3,4,5}

p
(
cj | U2 = 2,U4 = 4,U5 = 1

)

= arg max
cj∈{1,2,3,4,5}

p
(
cj
)
P
(
U2=2 | cj

)
P
(
U4=4 | cj

)

× P
(
U5 = 1 | cj

)

= arg max
cj∈{1,2,3,4,5}

{0, 0, 0, 0.0031, 0.0019} = 4

(11)

in which p(5)P(U2 = 2 | 5)P(U4 = 4 | 5)P(U5 = 1 | 5) =
(2/3)∗ (1/7)∗ (1/7)∗ (1/7) = 0.0019.

In Miyahara and Pazzani [10], multiclass data are firstly
converted to binary-class data, and then converted to a
Boolean feature vector rating matrix. These conversions make
the use of the NB algorithm for CF tasks easier, but bring the
problems of scalability and the loss of multiclass information
for multiclass data. In Miyahara and Pazzani [41], they
applied the simple Bayesian CF model only on binary data.

Because most real-world CF data are multiclass ones,
Su and Khoshgoftaar [11] apply the simple Bayesian CF
algorithm to multiclass data for CF tasks, and found
simple Bayesian CF has worse predictive accuracy but better
scalability than the Pearson correlation-based CF as it makes
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predictions based on observed ratings, and the prediction-
making process is less time-consuming.

The simple Bayesian CF algorithm can be regarded
as memory-based CF technique because of its in-memory
calculation for CF predictions. We put it in this section
for the reason that most other Bayesian CF algorithms are
model-based CFs.

4.1.2. NB-ELR and TAN-ELR CF Algorithms. Because of the
limitations of the simple Bayesian algorithm for CF tasks,
advanced BNs CF algorithms, with their ability to deal with
incomplete data, can be used instead [11]. Extended logistic
regression (ELR) is a gradient-ascent algorithm [31, 73],
which is a discriminative parameter-learning algorithm that
maximizes log conditional likelihood.

TAN-ELR and NB-ELR (tree augmented naı̈ve Bayes [74]
and naı̈ve Bayes optimized by ELR, resp.) have been proven
to have high classification accuracy for both complete and
incomplete data [31, 73].

Applied to CF tasks, working on real-world multiclass
CF datasets and using MAE as evaluation criterion, the
empirical results show that the TAN-ELR CF and NB-
ELR CF algorithms perform significantly better than the
simple Bayesian CF algorithm, and consistently better than
the Pearson correlation memory-based CF algorithm [11].
However, TAN-ELR and NB-ELR need a longer time to train
the models. A solution is to run the time-consuming training
stage offline, and the online prediction-producing stage will
take a much shorter time.

4.1.3. Other Bayesian CF Algorithms. Bayesian belief nets with
decision trees at each node. This model has a decision tree
at each node of the BNs, where a node corresponds to each
item in the domain and the states of each node correspond to
the possible ratings for each item [9]. Their results show that
this model has similar prediction performance to Pearson
correlation-based CF methods, and has better performance
than Bayesian-clustering and vector cosine memory-based
CF algorithms.

Baseline Bayesian model uses a Bayesian belief net with
no arcs (baseline model) for collaborative filtering and rec-
ommends items on their overall popularity [75]. However,
the performance is suboptimal.

4.2. Clustering CF Algorithms. A cluster is a collection of
data objects that are similar to one another within the same
cluster and are dissimilar to the objects in other clusters
[76]. The measurement of the similarity between objects is
determined using metrics such as Minkowski distance and
Pearson correlation.

For two data objects, X = (x1, x2, . . . , xn) and Y =
(y1, y2, . . . , yn), the popular Minkowski distance is defined as

d(X ,Y) = q

√
√
√
√

n∑

i=1

∣
∣xi − yi

∣
∣q, (12)

where n is the dimension number of the object and xi, yi are
the values of the ith dimension of objectX andY respectively,

and q is a positive integer. When q = 1, d is Manhattan
distance; when q = 2, d is Euclidian distance [76].

Clustering methods can be classified into three cate-
gories: partitioning methods, density-based methods, and
hierarchical methods [76, 77]. A commonly-used parti-
tioning method is k-means, proposed by MacQueen [78],
which has two main advantages: relative efficiency and easy
implementation. Density-based clustering methods typically
search for dense clusters of objects separated by sparse
regions that represent noise. DBSCAN [79] and OPTICS
[80] are well-known density-based clustering methods. Hier-
archical clustering methods, such as BIRCH [81], create a
hierarchical decomposition of the set of data objects using
some criterion.

In most situations, clustering is an intermediate step
and the resulting clusters are used for further analysis or
processing to conduct classification or other tasks. Clustering
CF models can be applied in different ways. Sarwar et al. [43]
and O’Connor and Herlocker [42] use clustering techniques
to partition the data into clusters and use a memory-based
CF algorithm such as a Pearson correlation-based algorithm
to make predictions for CF tasks within each cluster.

Using the k-means method with k = 2, the RecTree
method, proposed by Chee et al. [13], recursively splits
the originally large rating data into two sub-clusters as
it constructs the RecTree from the root to its leaves. The
resulting RecTree resembles an unbalanced binary tree, of
which leaf nodes have a similarity matrix and internal nodes
maintain rating centroids of their subtrees. The prediction
is made within the leaf node that the active user belongs to.
RecTree scales by O(n log2(n)) for off-line recommendation
andO(b) for on-line recommendation, where n is the dataset
size and b is the partition size, a constant, and it has an
improved accuracy over the Pearson correlation-based CF
when selecting an appropriate size of advisors (cluster of
users).

Ungar and Foster [12] clusters users and items separately
using variations of k-means and Gibbs sampling [82], by
clustering users based on the items they rated and clustering
items based on the users that rated them. Users can be
reclustered based on the number of items they rated, and
items can be similarly re-clustered. Each user is assigned to
a class with a degree of membership proportional to the
similarity between the user and the mean of the class. Their
CF performance on synthetic data is good, but not good on
real data.

A flexible mixture model (FMM) extends existing clus-
tering algorithms for CF by clustering both users and items
at the same time, allowing each user and item to be in
multiple clusters and modeling the clusters of users and items
separately [15]. Experimental results show that the FMM
algorithm has better accuracy than the Pearson correlation-
based CF algorithm and aspect model [83].

Clustering models have better scalability than typical
collaborative filtering methods because they make predic-
tions within much smaller clusters rather than the entire
customer base [13, 27, 44, 84]. The complex and expen-
sive clustering computation is run offline. However, its
recommendation quality is generally low. It is possible to
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improve quality by using numerous fine-grained segments,
but then online user-segment classification becomes almost
as expensive as finding similar customers using memory-
based collaborative filtering [6]. As optimal clustering over
large data sets is impractical, most applications use var-
ious forms of greedy cluster generation techniques. For
very large datasets, especially those with high dimension-
ality, sampling or dimensionality reduction is also neces-
sary.

4.3. Regression-Based CF Algorithms. For memory-based CF
algorithms, in some cases, two rating vectors may be distant
in terms of Euclidean distances but they have very high
similarity using vector cosine or Pearson correlation measures,
where memory-based CF algorithms do not fit well and need
better solutions. Also, numerical ratings are common in real-
life recommender systems. Regression methods that are good
at making predictions for numerical values are helpful to
address these problems.

A regression method uses an approximation of the
ratings to make predictions based on a regression model. Let
X = (X1,X2, . . . ,Xn) be a random variable representing a
user’s preferences on different items. The linear regression
model can be expressed as

Y = ΛX +N , (13)

where Λ is a n × k matrix. N = (N1, . . . ,Nn) is a random
variable representing noise in user choices, Y is an n × m
matrix with Yij is the rating of user i on item j, and X is a
k×m matrix with each column as an estimate of the value of
the random variable X (user’s ratings in the k-dimensional
rating space) for one user. Typically, the matrix Y is very
sparse.

To remedy this, Canny [52] proposed a sparse factor
analysis, which replaces missing elements with default voting
values (the average of some nonmissing elements, either
the average by columns, or by rows, or by all), and uses
the regression model as the initialization for Expectation
Maximization (EM) [85] iterations. According to Canny
[52], the sparse factor analysis has better scalability than Pear-
son correlation-based CF and Personality Diagnosis (PD), a
representative hybrid CF algorithm [86], and better accuracy
than singular value decomposition (SVD) [23]. Sparse factor
analysis also protects user privacy, as it supports computation
on encrypted user data [52].

Vucetic and Obradovic [87] proposed a regression-
based approach to CF tasks on numerical ratings data that
searches for similarities between items, builds a collection
of simple linear models, and combines them efficiently to
provide rating predictions for an active user. They used
ordinary least squares to estimate the parameters of the linear
regression function. Their experimental results show the
approach has good performance in addressing the sparsity,
prediction latency and numerical prediction problems of
CF tasks. Lemire and Maclachlan [88] proposed slope one
algorithms to make faster CF prediction than memory-based
CF algorithms.

4.4. MDP-Based CF Algorithms. Instead of viewing the
recommendation process as a prediction problem, Shani
et al. [14] views it as a sequential optimization problem
and uses a Markov decision processes (MDPs) model [89] for
recommender systems.

An MDP is a model for sequential stochastic decision
problems, which is often used in applications where an agent
is influencing its surrounding environment through actions.
An MDP can be defined as a four-tuple: 〈S,A,R,Pr〉, where
S is a set of states, A is a set of actions, R is a real-valued
reward function for each state/action pair, and Pr is the
transition probability between every pair of states given each
action.

An optimal solution to the MDP is to maximize the
function of its reward stream. By starting with an initial
policy π0(s) = arg maxa∈AR(s, a), computing the reward
value function Vi(s) based on the previous policy, and
updating the policy with the new value function at each step,
the iterations will converge to an optimal policy [90, 91].

In Shani et al. [14], the states of the MDP for the
CF system are k tuples of items, with some null values
corresponding to missing items; the actions of the MDP
correspond to a recommendation of an item; and the rewards
in the MDP correspond to the utility of selling an item,
for example, the net profit. The state following each recom-
mendation is the user’s response to that recommendation,
such as taking the recommended item, taking the non-
recommended item, or selecting nothing. To handle the large
action space, it is assumed that the probability that a user
buys an item depends on his current state, item, and whether
or not the item is recommended, but does not depend on the
identity of the other recommended items.

Working on an Israeli online bookstore, Mitos, the
deployed MDP-recommender system produced a much
higher profit than the system without using the recom-
mender. Also, the MDP CF model performs much better
than the simpler Markov chain (MC) model, which is simply
an MDP without actions [14].

The MDP-Based CF model in Shani et al. [14] can
be viewed as approximating a partial observable MDP
(POMDP) by using a finite rather than unbounded win-
dow of past history to define the current state. As the
computational and representational complexity of POMDPs
is high, appropriate approaches to tackling these problems
must be developed, which are generally classified into three
broad strategies: value function approximation [92], policy
based optimization [84, 93], and stochastic sampling [94].
The application of these strategies to CF tasks may be an
interesting direction of future research.

4.5. Latent Semantic CF Models. A Latent semantic CF
technique relies on a statistical modeling technique that
introduces latent class variables in a mixture model setting
to discover user communities and prototypical interest
profiles. Conceptionally, it decomposes user preferences
using overlapping user communities. The main advantages
of this technique over standard memory-based methods are
its higher accuracy and scalability [7, 95].
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The aspect model, proposed by Hofmann and Puzicha
[83], is a probabilistic latent-space model, which models
individual ratings as a convex combination of rating factors.
The latent class variable is associated with each observed pair
of {user, item}, with the assumption that users and items are
independent from each other given the latent class variable.
The performance of the aspect model is much better than the
clustering model working on the EachMovie dataset [96].

A multinomial model is a simple probabilistic model for
categorical data [9, 97] that assumes there is only one type
of user. A multinomial mixture model assumes that there are
multiple types of users underlying all profiles, and that the
rating variables are independent with each other and with
the user’s identity given the user’s type [98]. A user rating
profile (URP) model [97] combines the intuitive appeal of the
multinomial mixture model and aspect model [83], with the
high-level generative semantics of Latent Dirichlet Allocation
(LDA, a generative probabilistic model, in which each item
is modeled as a finite mixture over an underlying set of
users) [99]. URP performs better than the aspect model and
multinomial mixtures models for CF tasks.

4.6. Other Model-Based CF Techniques. For applications in
which ordering is more desirable than classifying, Cohen
et al. [100] investigated a two-stage order learning CF
approach to learning to order. In that approach, one first
learns a preference function by conventional means, and then
orders a new set of instances by finding the total ordering that
best approximates the preference function, which returns a
confidence value reflecting how likely that one is preferred
to another. As the problem of finding the total ordering is
NP-complete, a greedy-order algorithm is used to obtain
an approximately optimal ordering function. Working on
EachMovie [96], this order learning CF approach performs
better than a nearest neighbor CF algorithm and a linear
regression algorithm.

Association rule based CF algorithms are more often
used for top-N recommendation tasks than prediction ones.
Sarwar et al. [27] describes their approach to using a
traditional association rule mining algorithm to find rules
for developing top-N recommender systems. They find the
top-N items by simply choosing all the rules that meet
the thresholds for support and confidence values, sorting
items according to the confidence of the rules so that items
predicted by the rules that have a higher confidence value
are ranked higher, and finally selecting the first N highest
ranked items as the recommended set [27]. Fu et al. [101]
develop a system to recommend web pages by using an
a priori algorithm to mine association rules over users’
navigation histories. Leung et al. proposed a collaborative
filtering framework using fuzzy association rules and multi-
level similarity [102].

Other model-based CF techniques include a maximum
entropy approach, which clusters the data first, and then in a
given cluster uses maximum entropy as an objective function
to form a conditional maximal entropy model to make
predictions [17]. A dependency network is a graphical model
for probabilistic relationships, whose graph is potentially

cyclic. The probability component of a dependency network
is a set of conditional distributions, one for each node
given its parents. Although less accurate than Bayesian
belief nets, dependency networks are faster in generating
predictions and require less time and memory to learn
[75]. Decision tree CF models treat collaborative filtering
as a classification task and use decision tree as the clas-
sifier [103]. Horting is a graph-based technique in which
nodes are users and edges between nodes are degrees
of similarity between users [104]. Multiple multiplicative
factor models (MMFs) are a class of causal, discrete latent
variable models combining factor distributions multiplica-
tively and are able to readily accommodate missing data
[105]. Probabilistic principal components analysis (pPCA)
[52, 106] determines the principal axes of a set of observed
data vectors through maximum-likelihood estimation of
parameters in a latent variable model closely related to
factor analysis. Matrix factorization based CF algorithms
have been proven to be effective to address the scalability
and sparsity challenges of CF tasks [33, 34, 107]. Wang
et al. showed how the development of collaborative filtering
can gain benefits from information retrieval theories and
models, and proposed probabilistic relevance CF models
[108, 109].

5. Hybrid Collaborative Filtering Techniques

Hybrid CF systems combine CF with other recommendation
techniques (typically with content-based systems) to make
predictions or recommendations.

Content-based recommender systems make recommen-
dations by analyzing the content of textual information,
such as documents, URLs, news messages, web logs, item
descriptions, and profiles about users’ tastes, preferences, and
needs, and finding regularities in the content [110]. Many
elements contribute to the importance of the textual content,
such as observed browsing features of the words or pages
(e.g., term frequency and inverse document frequency), and
similarity between items a user liked in the past [111]. A
content-based recommender then uses heuristic methods or
classification algorithms to make recommendations [112].
Content-based techniques have the start-up problem, in
which they must have enough information to build a reliable
classifier. Also, they are limited by the features explicitly asso-
ciated with the objects they recommend (sometimes these
features are hard to extract), while collaborative filtering
can make recommendations without any descriptive data.
Also, content-based techniques have the overspecialization
problem, that is, they can only recommend items that score
highly against a user’s profile or his/her rating history [21,
113].

Other recommender systems include demographic-based
recommender systems, which use user profile information
such as gender, postcode, occupation, and so forth [114];
utility-based recommender systems and knowledge-based rec-
ommender systems, both of which require knowledge about
how a particular object satisfies the user needs [115, 116].
We will not discuss these systems in detail in this work.
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Hoping to avoid limitations of either recommender
system and improve recommendation performance, hybrid
CF recommenders are combined by adding content-based
characteristics to CF models, adding CF characteristics to
content-based models, combining CF with content-based or
other systems, or combining different CF algorithms [21,
117].

5.1. Hybrid Recommenders Incorporating CF and Content-
Based Features. The content-boosted CF algorithm uses naı̈ve
Bayes as the content classifier, it then fills in the missing
values of the rating matrix with the predictions of the
content predictor to form a pseudo rating matrix, in which
observed ratings are kept untouched and missing ratings
are replaced by the predictions of a content predictor.
It then makes predictions over the resulting pseudo rat-
ings matrix using a weighted Pearson correlation-based CF
algorithm, which gives a higher weight for the item that
more users rated, and gives a higher weight for the active
user [16] (see an illustration in Table 5). The content-
boosted CF recommender has improved prediction perfor-
mance over some pure content-based recommenders and
some pure memory-based CF algorithms. It also overcomes
the cold start problem and tackles the sparsity problem
of CF tasks. Working on reasonably-sized subsets instead
of the original rating data, Greinemr et al. used TAN-
ELR [31] as the content-predictor and directly applied the
Pearson correlation-based CF instead of a weighted one
on the pseudo rating matrix to make predictions, and
they achieved improved CF performance in terms of MAE
[118].

Ansari et al. [8] propose a Bayesian preference model
that statistically integrates several types of information useful
for making recommendations, such as user preferences, user
and item features, and expert evaluations. They use Markov
chain Monte Carlo (MCMC) methods [119] for sampling-
based inference, which involve sampling parameter estima-
tion from the full conditional distribution of parameters.
They achieved better performance than pure collaborative
filtering.

The recommender Fab, proposed by Balabanović and
Shoham [117], maintains user profiles of interest in web
pages using content-based techniques, and uses CF tech-
niques to identify profiles with similar tastes. It can then
recommend documents across user profiles. Sarwar et al.
[120] implemented a set of knowledge-based “filterbots”
as artificial users using certain criteria. A straightforward
example of a filterbot is a genrebot, which bases its opinion
solely on the genre of the item, for example, a “jazzbot”
would give a full mark to a CD simply because it is in the jazz
category, while it would give a low score to any other CD in
the database. Mooney and Roy [121] use the prediction from
the CF system as the input to a content-based recommender.
Condiff et al. [113] propose a Bayesian mixed-effects model
that integrates user ratings, user, and item features in a single
unified framework. The CF system Ripper, proposed by Basu
et al. [71], uses both user ratings and contents features to
produce recommendations.

Table 5: Content-boosted CF and its variations (a) content data
and originally sparse rating data (b) pseudorating data filled by
content predictor (c) predictions from (weighted) Pearson CF on
the pseudo rating data.

(a)

Content information Rating matrix

Age Sex Career zip I1 I2 I3 I4 I5

U1 32 F writer 22904 4

U2 27 M student 10022 2 4 3

U3 24 M engineer 60402 1

U4 50 F other 60804 3 3 3 3

U5 28 M educator 85251 1

(b)

Pseudo rating data

I1 I2 I3 I4 I5

2 3 4 3 2

2 2 4 3 2

3 1 3 4 3

3 3 3 3 3

1 2 4 1 2

(c)

Pearson-CF prediction

I1 I2 I3 I4 I5

2 3 4 2 3

3 4 2 2 3

3 3 2 3 3

3 3 3 3 3

1 3 1 2 2

5.2. Hybrid Recommenders Combining CF and Other Rec-
ommender Systems. A weighted hybrid recommender com-
bines different recommendation techniques by their weights,
which are computed from the results of all of the available
recommendation techniques present in the system [115].
The combination can be linear, the weights can be adjustable
[46], and weighted majority voting [110, 122] or weighted
average voting [118] can be used. For example, the P-
Tango system [46] initially gives CF and content-based
recommenders equal weight, but gradually adjusts the
weighting as predictions about user ratings are confirmed or
disconfirmed. The strategy of the P-Tango system is similar
to boosting [123].

A switching hybrid recommender switches between rec-
ommendation techniques using some criteria, such as con-
fidence levels for the recommendation techniques. When the
CF system cannot make a recommendation with sufficient
confidence, then another recommender system such as a
content-based system is attempted. Switching hybrid recom-
menders also introduce the complexity of parameterization
for the switching criteria [115].

Other hybrid recommenders in this category include
mixed hybrid recommenders [124], cascade hybrid recom-
menders [115], meta-level recommenders [110, 115, 117, 125],
and so forth.
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Many papers empirically compared the performance of
hybrid recommenders with the pure CF and content-based
methods and found that hybrid recommenders may make
more accurate recommendations, especially for the new user
and new item situations where a regular CF algorithm cannot
make satisfactory recommendations. However, hybrid rec-
ommenders rely on external information that is usually not
available, and they generally have increased complexity of
implementation [110, 115, 126].

5.3. Hybrid Recommenders Combining CF Algorithms. The
two major classes of CF approaches, memory-based and
model-based CF approaches, can be combined to form
hybrid CF approaches. The recommendation performances
of these algorithms are generally better than some pure
memory-based CF algorithms and model-based CF algo-
rithms [22, 86].

Probabilistic memory-based collaborative filtering (PMCF)
combines memory-based and model-based techniques [22].
They use a mixture model built on the basis of a set
of stored user profiles and use the posterior distribution
of user ratings to make predictions. To address the new
user problem, an active learning extension to the PMCF
system can be used to actively query a user for additional
information when insufficient information is available. To
reduce the computation time, PMCF selects a small subset
called profile space from the entire database of user ratings
and gives predictions from the small profile space instead
of the whole database. PMCF has better accuracy than the
Pearson correlation-based CF and the model-based CF using
naı̈ve Bayes.

Personality diagnosis (PD) is a representative hybrid CF
approach that combines memory-based and model-based CF
algorithms and retains some advantages of both algorithms
[86]. In PD, the active user is assumingly generated by
choosing one of the other users uniformly at random and
adding Gaussian noise to his or her ratings. Given the active
user’s known ratings, we can calculate the probability that
he or she is the same “personality type” as other users, and
the probability he or she will like the new items. PD can also
be regarded as a clustering method with exactly one user per
cluster. Working on EachMovie [96] and CiteSeer [127], PD
makes better predictions than Pearson correlation-based and
vector similarity-based CF algorithms and the two model-
based algorithms, Bayesian clustering and Bayesian network,
investigated by Breese et al. [9].

As an ensemble classifier is able to give more accurate
prediction than a member classifier, a hybrid CF system that
combines different CF algorithms using an ensemble scheme
will also be helpful to improve predictive performance of CF
tasks [118].

6. Evaluation Metrics

The quality of a recommender system can be decided on
the result of evaluation. The type of metrics used depends
on the type of CF applications. According to Herlocker
et al. [60], metrics evaluating recommendation systems can

be broadly classified into the following broad categories:
predictive accuracy metrics, such as Mean Absolute Error
(MAE) and its variations; classification accuracy metrics, such
as precision, recall, F1-measure, and ROC sensitivity; rank
accuracy metrics, such as Pearson’s product-moment correla-
tion, Kendall’s Tau, Mean Average Precision (MAP), half-life
utility [9], and normalized distance-based performance metric
(NDPM) [128].

We only introduce the commonly-used CF metrics
MAE, NMAE, RMSE, and ROC sensitivity here. For other
CF performance metrics of recommendation quality, see
[60]. There are other evaluations of recommender systems
including usability evaluation [129] and so forth.

6.1. Mean Absolute Error (MAE) and Normalized Mean
Absolute Error (NMAE). Instead of classification accuracy
or classification error, the most widely used metric in CF
research literature is Mean Absolute Error (MAE) [3, 60],
which computes the average of the absolute difference
between the predictions and true ratings

MAE =
∑
{i, j}
∣
∣
∣pi, j − ri, j

∣
∣
∣

n
, (14)

where n is the total number of ratings over all users, pi, j is
the predicted rating for user i on item j, and ri, j is the actual
rating. The lower the MAE, the better the prediction.

Different recommender systems may use different
numerical rating scales. Normalized Mean Absolute Error
(NMAE) normalizes MAE to express errors as percentages
of full scale [3]:

NMAE = MAE

rmax − rmin
, (15)

where rmax and rmin are the upper and lower bounds of the
ratings.

6.2. Root Mean Squared Error (RMSE). Root Mean Squared
Error (RMSE) is becoming popular partly because it is
the Netflix prize [20] metric for movie recommendation
performance:

RMSE =
√
√
√
√

1
n

∑

{i, j}

(
pi, j − ri, j

)2
, (16)

where n is the total number of ratings over all users, pi, j
is the predicted rating for user i on item j, and ri, j is the
actual rating again. RMSE amplifies the contributions of the
absolute errors between the predictions and the true values.

Although accuracy metrics have greatly helped the field
of recommender systems, the recommendations that are
most accurate are sometimes not the ones that are most
useful to users, for example, users might prefer to be
recommended with items that are unfamiliar with them,
rather than the old favorites they do not likely want again
[130]. We therefore need to explore other evaluation metrics.
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Table 6: Confusion matrix.

Actual Predicted

Positive Negative

Positive TruePositive FalseNegative

Negative FalsePositive TureNegative

6.3. ROC Sensitivity. An ROC (Receiver Operating Charac-
teristic) curve is a two-dimensional depiction of classifier
performance, on which TPR (true positive rate) is plotted
on the Y-axis and FPR (false positive rate) is plotted on
the X-axis. For the confusion matrix in Table 6, we have
TPR = TruePositive/(TotalPositive), and FPR = FalsePosi-
tive/(TotalNegative). By tuning a threshold value, all the items
ranked above it are deemed observed by the user, and below
unobserved, thus the system will get different prediction
values for different threshold values to draw the ROC curve
of {FPR, TPR} points [60].

Generally, if one ROC curve is consistently dominant
over another, the system represented by the former curve has
better prediction performance. But in actual situations, ROC
curves may intersect with each other.

Variations of the ROC metric include GROC (global
ROC) and CROC (customer ROC) [29].

ROC sensitivity is a measure of the diagnostic power of
a CF system. Operationally, it is given by the Area Under the
ROC Curve (AUC). The calculation of AUC can be the actual
area under the ROC curve for binary class problems. We can
also use the strategy from [131] to estimate AUC:

AUC = S0 − n0(n0 + 1)/2
n0n1

(17)

where n0 and n1 are the numbers of negative and positive
examples respectively, and S0 = Σri , where ri is the rank of ith
positive example in the ranked list. From the above equation,
the AUC is essentially a measure of the quality of a ranking.

For multiclass problems, we can use estimated AUC,
which can be the weighted average of the AUCs obtained by
taking each class as the reference class in turn (i.e., making
it class 0 and all other classes class 1). The weight of a class’s
AUC is the class’s frequency in the data [129, 132].

The performance of the recommender system with a
bigger AUC value is better.

7. Conclusions

Collaborative filtering (CF) is one of the most successful rec-
ommender techniques. Broadly, there are memory-based CF
techniques such as the neighborhood-based CF algorithm;
model-based CF techniques such as Bayesian belief nets CF
algorithms, clustering CF algorithms, and MDP-based CF
algorithms; and hybrid CF techniques such as the content-
boosted CF algorithm and Personality diagnosis.

As a representative memory-based CF technique, neigh-
borhood-based CF computes similarity between users or
items, and then use the weighted sum of ratings or simple
weighted average to make predictions based on the similarity
values. Pearson correlation and vector cosine similarity are

commonly used similarity calculations, which are usually
conducted between co-rated items by a certain user or
both users that have co-rated a certain item. To make top-
N recommendations, neighborhood-based methods can be
used according to the similarity values. Memory-based CF
algorithms are easy to implement and have good perfor-
mances for dense datasets. Shortcomings of memory-based
CF algorithms include their dependence on user ratings,
decreased performance when data are sparse, new users and
items problems, and limited scalability for large datasets, and
so forth [11, 42, 133]. Memory-based CF on imputed rating
data and on dimensionality-reduced rating data will produce
more accurate predictions than on the original sparse rating
data [24, 25, 37].

Model-based CF techniques need to train algorithmic
models, such as Bayesian belief nets, clustering techniques, or
MDP-based ones to make predictions for CF tasks. Advanced
Bayesian belief nets CF algorithms with the ability to deal
with missing data are found to have better performance than
simple Bayesian CF models and Pearson correlation-based
algorithms [11]. Clustering CF algorithms make recommen-
dations within small clusters rather than the whole dataset,
and achieve better scalability. An MDP-based CF algorithm
incorporates the users’ action of taking the recommendation
or not into the model, and the optimal solution to the
MDP is to maximize the function of its reward stream. The
MDP-based CF algorithm brings profits to the customized
system deploying it. There are downsides of model-based CF
techniques, for example, they may not be practical when the
data are extremely sparse, the solutions using dimensionality
reduction or transformation of multiclass data into binary
ones may decrease their recommendation performance, the
model-building expense may be high, and there is a tradeoff
between prediction performance and scalability for many
algorithms.

Most hybrid CF techniques combine CF methods
with content-based techniques or other recommender sys-
tems to alleviate shortcomings of either system and to
improve prediction and recommendation performance.
Besides improved performance, hybrid CF techniques rely
on external content information that is usually not available,
and they generally have increased complexity.

It is always desirable to design a CF approach that is
easy to implement, takes few resources, produces accurate
predictions and recommendations, and overcomes all kinds
of challenges presented by real-world CF applications, such
as data sparsity, scalability, synonymy, privacy protection,
and so forth. Although there is no cure-all solution available
yet, people are working out solutions for each of the
problems. To alleviate the sparsity problem of CF tasks,
missing-data algorithms such as TAN-ELR [31], imputation
techniques such as Bayesian multiple imputation [68], and
dimensionality reduction techniques such as SVD [23]
and matrix factorization [107] can be used. Clustering CF
algorithms and other approaches such as an incremental-
SVD CF algorithm [38] are found promising in dealing with
the scalability problem. Latent semantic indexing (LSI) is
helpful to handle the synonymy problem. And sparse factor
analysis is found helpful to protect user privacy [52].
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Besides addressing the above challenges, future CF
techniques should also be able to make accurate predictions
in the presence of shilling attacks and noisy data, and be
effectively applied in fast-growing mobile applications as
well.

There are many evaluation metrics for CF techniques.
The most commonly used metric for prediction accuracy
include mean absolute error (MAE), recall and precision, and
ROC sensitivity. Because artificial data are usually not reliable
due to the characteristics of CF tasks, real-world datasets
from live experiments are more desirable for CF research.
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[107] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Investigation
of various matrix factorization methods for large recom-
mender systems,” in Proceedings of the IEEE International
Conference on Data Mining Workshops (ICDM ’08), pp. 553–
562, Pisa, Italy, December 2008.

[108] J. Wang, S. Robertson, A. P. de Vries, and M. J. T. Reinders,
“Probabilistic relevance ranking for collaborative filtering,”
Information Retrieval, vol. 11, no. 6, pp. 477–497, 2008.

[109] J. Wang, A. P. de Vries, and M. J. T. Reinders, “Unified
relevance models for rating prediction in collaborative
filtering,” ACM Transactions on Information Systems, vol. 26,
no. 3, pp. 1–42, 2008.

[110] M. J. Pazzani, “A framework for collaborative, content-based
and demographic filtering,” Artificial Intelligence Review, vol.
13, no. 5-6, pp. 393–408, 1999.

[111] T. Zhu, R. Greiner, and G. Haubl, “Learning a model of a
web user’s interests,” in Proceedings of the 9th International
Conference on User Modeling (UM ’03), vol. 2702, pp. 65–75,
Johnstown, Pa, USA, June 2003.

[112] M. Pazzani and D. Billsus, “Learning and revising user
profiles: the identification of interesting web sites,” Machine
Learning, vol. 27, no. 3, pp. 313–331, 1997.

[113] M. K. Condiff, D. D. Lewis, D. Madigan, and C. Posse,
“Bayesian mixed-effects models for recommender systems,”
in Proceedings of ACM SIGIR Workshop of Recommender
Systems: Algorithm and Evaluation, 1999.

[114] B. Krulwich, “Lifestyle finder: intelligent user profiling
using large-scale demographic data,” Artificial Intelligence
Magazine, vol. 18, no. 2, pp. 37–45, 1997.

[115] R. Burke, “Hybrid recommender systems: survey and experi-
ments,” User Modelling and User-Adapted Interaction, vol. 12,
no. 4, pp. 331–370, 2002.

[116] R. H. Guttman, Merchant differentiation through integrative
negotiation in agent-mediated electronic commerce, M.S. the-
sis, School of Architecture and Planning, MIT, 1998.
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