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ASYMPTOTICS FOR LASSO-TYPE ESTIMATORS

By Keith Knight1 and Wenjiang Fu2

University of Toronto and Michigan State University

We consider the asymptotic behavior of regression estimators that
minimize the residual sum of squares plus a penalty proportional to

∑ �βj�γ
for some γ > 0. These estimators include the Lasso as a special case when
γ = 1. Under appropriate conditions, we show that the limiting distribu-
tions can have positive probability mass at 0 when the true value of the
parameter is 0. We also consider asymptotics for “nearly singular” designs.

1. Introduction. Consider the linear regression model

Yi = β0 + β1x1i + · · · + βpxpi + εi = β0 + xTi �+ εi(1)

where ε1� � � � � εn are i.i.d. random variables with mean 0 and variance σ2.
Without loss of generality, we will assume that the covariates are centered
to have mean 0 and take β̂0 = �Y in which case we can replace Yi in (1) by
Yi − �Y and concentrate on estimating �. Again without loss of generality, we
will assume that �Y = 0.

We estimate � by minimizing the penalized least squares (LS) criterion
n∑

i=1

(
Yi − xTi �

)2 + λn

p∑
j=1

�φj�γ(2)

for a given λn where γ > 0. Such estimators were called Bridge estimators by
Frank and Friedman (1993) who introduced them as a generalization of ridge
regression (which occurs for γ = 2�. The special case when γ = 1 is related
to the “Lasso” of Tibshirani (1996) (hence, the term “Lasso-type” in the title);
in the case of wavelet regression, this approach to estimation is called basis
pursuit [Chen, Donoho and Saunders (1999)]. Some other proposals for penal-
ties are made in Fan and Li (1999). For γ ≤ 1, the estimators minimizing (2)
have the potentially attractive feature of being exactly 0 if λn is sufficiently
large, thus combining parameter estimation and model selection; indeed model
selection methods that penalize by the number of nonzero parameters [such
as AIC and BIC; Linhart and Zucchini (1986)] can be viewed as limiting cases
of Bridge estimation as γ → 0 since

lim
γ↓0

p∑
j=1

�φj�γ =
p∑

j=1

I�φj = 0��
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For a given λn, we will denote the estimator minimizing (2) by �̂n. Of course,
λn = 0 corresponds to the ordinary LS estimator; this estimator will be denoted
by �̂

�0�
n .

We will assume the following regularity conditions for the design,

Cn = 1
n

n∑
i=1

xix
T
i → C�(3)

where C is a nonnegative definite matrix and

1
n

max
1≤i≤n

xTi xi → 0�(4)

Typically in practice, the covariates are scaled so that the diagonal elements
of Cn (and hence those of C) are all identically 1.

The parametrization of the linear model (1) is unique if the matrix Cn is
nonsingular or, equivalently, the design matrix has full rank. It is worth not-
ing, however, that a unique minimum to (2) may exist even if Cn is singular;
indeed, this is one of the benefits of this type of estimation. Define the “equiv-
alence class”

�n = �ζ� ζ = �+ v where Cnv = 0��
where � satisfies (1). When Cn is singular, we could define a unique
parametrization of (1) from the equivalence class �n by defining �0 (for a
given γ > 0) as

�0 = argmin
{ p∑
j=1

�ζj�γ� ζ ∈ �n

}
�

However, this will not be pursued further here; we will assume that Cn is
nonsingular for all n.

An important class of designs is the class of “nearly singular” designs. For
such designs, Cn is nonsingular but may have one or more small eigenval-
ues (indicating the presence of collinearity among the covariates) such that
(asymptotically) Cn → C where C is singular. In practice, nearly singular
designs can arise when many covariates are available, increasing the possi-
bility of nearly linear dependencies between two or more covariates. These
designs are considered in Section 5.

Under conditions (3) and (4) (with C nonsingular), it is well-known that the
LS estimator is consistent and that

√
n
(
�̂
�0�
n − �

)
→d N�0� σ2C−1��

In fact, conditions (3) and (4) can be weakened considerably without losing
asymptotic normality of the LS estimator [Srivastava (1971)]; however, we
will assume the existence of the limit C in (3) throughout the paper. For the
most part, we will assume that C is nonsingular.
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In Section 2, we discuss consistency and limiting distributions of Bridge
estimators while in Section 3, we try to examine the small sample behav-
ior by considering “local asymptotics.” Asymptotics for bootstrapped Bridge
estimation are considered in Section 4. In Section 5, we consider “nearly sin-
gular” designs as defined above. Finally, in Section 6 we try to tie up some
other loose ends by considering Bridge estimation for singular designs as well
as computation of Bridge estimators when γ < 1.

2. Limiting distributions. In this section, as well as in Section 3, we
will assume that the matrix C defined in (3) is nonsingular.

The limiting behavior of the Bridge estimator �̂n can be determined by
studying the asymptotic behavior of the objective function (2). For example, to
consider consistency of �̂n, we will define the (random) function

Zn��� = 1
n

n∑
i=1

(
Yi − xTi �

)2 + λn
n

p∑
j=1

�φj�γ�(5)

which is minimized at � = �̂n. The following result shows that �̂n is consistent
provided λn = o�n�.

Theorem 1. If C in (3) is nonsingular and λn/n → λ0 ≥ 0, then �̂n →p

argmin�Z� where

Z��� = ��− ��TC��− �� + λ0

p∑
j=1

�φj�γ�

Thus if λn = o�n�, argmin�Z� = � and so �̂n is consistent.

Proof. Define Zn as in (5). We need to show that

sup
�∈K

�Zn��� −Z��� − σ2� →p 0(6)

for any compact set K and that

�̂n = Op�1��(7)

Under (6) and (7), we have

argmin�Zn� →p argmin�Z��
For γ ≥ 1�Zn is convex; thus (6) and (7) follow from the pointwise convergence
in probability of Zn��� to Z��� + σ2 by applying standard results [Anderson
and Gill (1982); Pollard (1991)]. For γ < 1�Zn is no longer convex but (6)
follows easily. To prove (7), note that

Zn��� ≥ 1
n

n∑
i=1

(
Yi − xTi �

)2 = Z
�0�
n ���

for all �. Since argmin
(
Z

�0�
n

) = Op�1�, it follows that argmin�Zn� = Op�1�. ✷
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Even though λn = o�n� is sufficient for consistency, we require that λn
grow more slowly for

√
n-consistency of the Bridge estimator. However, if λn

grows too slowly then
√
n��̂n − �� will have the same limiting distribution as√

n
(
�̂
�0�
n − �

)
. In fact, the rate of growth of λn needed to get an “interesting”

limiting distribution depends on whether γ ≥ 1 or γ < 1. Theorem 2 below
indicates that we need λn = O�√n� for

√
n-consistency for γ ≥ 1; Theorem 3

suggests λn = O�nγ/2� is necessary for γ < 1. [In fact, λn = O�√n� suffices
for γ < 1.]

Theorem 2. Suppose that γ ≥ 1. If λn/
√
n → λ0 ≥ 0 and C is nonsingular

then
√
n
(
�̂n − �

) →d argmin�V��
where

V�u� = −2uTW + uTCu + λ0

p∑
j=1

uj sgn�βj��βj�γ−1

if γ > 1,

V�u� = −2uTW + uTCu + λ0

p∑
j=1

�uj sgn�βj�I�βj = 0� + �uj�I�βj = 0��

if γ = 1, and W has a N�0� σ2C� distribution.

Proof. Define Vn�u� by

Vn�u� =
n∑

i=1

[(
εi − uTxi/

√
n
)2 − ε2

i

]+ λn

p∑
j=1

[�βj + uj/
√
n�γ − �βj�γ

]

[where u = �u1� � � � � up�T� and note that Vn is minimized at
√
n
(
�̂n−�

)
. First

note that
n∑

i=1

[(
εi − uTxi/

√
n
)2 − ε2

i

] →d −2uTW + uTCu

with finite-dimensional convergence holding trivially. If γ > 1 then

λn

p∑
j=1

[�βj + uj/
√
n�γ − �βj�γ

] → λ0

p∑
j=1

uj sgn�βj��βj�γ−1�

while for γ = 1, we have

λn

p∑
j=1

��βj + uj/
√
n� − �βj�� → λ0

p∑
j=1

�ujsgn�βj�I�βj = 0� + �uj�I�βj = 0���
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Thus Vn�u� →d V�u� (as defined above) with the finite-dimensional conver-
gence holding trivially. Since Vn is convex and V has a unique minimum, it
follows [Geyer (1996)] that

argmin�Vn� =
√
n
(
�̂n − �� →d argmin�V��

Note that when λ0 = 0�argmin�V� = C−1W ∼ N�0� σ2C−1�. ✷

Proponents of ridge regression (that is, γ = 2) may be disappointed with
the conclusion of Theorem 2 as it gives

√
n
(
�̂n − �

) →d C−1�W − λ0�� ∼ N�−λ0C
−1�� σ2C−1��

which suggests that ridge estimation is inferior to ordinary LS estimation.
However, the asymptotic perspective used here is somewhat unfair to ridge
estimation; see Theorem 4 in Section 3 for a more flattering asymptotic per-
spective of ridge estimation. However, Theorem 2 does illustrate that for γ > 1,
the amount of shrinkage towards 0 increases with the magnitude of the param-
eter being estimated; thus, for “large” parameters, the bias of their estimators
for γ > 1 may be unacceptably large.

Theorem 3. Suppose that γ < 1. If λn/nγ/2 → λ0 ≥ 0 then
√
n
(
�̂n − �

) →d argmin�V��
where

V�u� = −2uTW + uTCu + λ0

p∑
j=1

�uj�γI�βj = 0��

Proof. The proof is similar to that of Theorem 2; however, there are some
added complexities due to the nonconvexity of the objective function. Define

Vn�u� =
n∑

i=1

[(
εi − uTxi/

√
n
)2 − ε2

i

]+ λn

p∑
j=1

[�βj + uj/
√
n�γ − �βj�γ

]
�(8)

Since λn = O�nγ/2� = o�√n�, it follows that

λn��βj + uj/
√
n�γ − �βj�γ� → 0

if βj = 0. Thus

λn

p∑
j=1

[�βj + uj/
√
n�γ − �βj�γ

] → λ0

p∑
j=1

�uj�γI�βj = 0�

and the convergence is uniform over u in compact sets. It follows then that

Vn�·� →d V�·�
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on the space of functions topologized by uniform convergence on compact sets.
To prove that argmin�Vn� →d argmin�V�, it suffices to show that
argmin�Vn� = Op�1� [Kim and Pollard (1990)]. However, note that

Vn�u� ≥
n∑

i=1

[�εi − uTxi/
√
n�2 − ε2

i

]− λn

p∑
j=1

�uj/
√
n�γ

≥
n∑

i=1

[�εi − uTxi/
√
n�2 − ε2

i

]− �λ0 + δ�
p∑

j=1

�uj�γ

= V
�l�
n �u�

for all u and n sufficiently large. Since the quadratic terms in V
�l�
n grow faster

than the �uj�γ terms, it follows that argmin
(
V

�l�
n

) = Op�1�; hence, it follows
that argmin�Vn� = Op�1�. Since argmin�V� is unique with probability 1, the
conclusion follows. ✷

The conclusion of Theorem 3 is quite interesting. It suggests that if γ < 1,
we can estimate nonzero regression parameters at the usual rate without
asymptotic bias while shrinking the estimates of zero regression parameters
to 0 with positive probability. This is in contrast to what happens when γ ≥ 1;
Theorem 2 indicates that nonzero parameters are estimated with some asymp-
totic bias if λ0 > 0.

As an alternative to the conditions on λn given in Theorem 3, we can also
consider what happens if λn/

√
n → λ0 ≥ 0 while λn/n

γ/2 → ∞. Suppose that
β1� � � � � βr are nonzero while βr+1� � � � � βp are zero. Then defining Vn�u� as
in (8), it follows that Vn�u� →d V�u� where

V�u� =

−2uTW + uTCu + γλ0

r∑
j=1

�uj�βj�γ/βj�� if ur+1 = · · · = up = 0,

∞� otherwise.

[In fact, since V can be infinite, we can no longer define convergence of Vn to V
via uniform convergence on compact sets but instead define it via epiconver-
gence which allows for extended real-valued functions; see Geyer (1994, 1996),
Pflug (1995) for more details on epiconvergence.] Applying the arguments
given in the proof of Theorem 3, it follows that

√
n
(
�̂n − �

) →d argmin�V�
where the last �p − r� elements of argmin�V� are exactly 0. This result sug-
gests that we could achieve the best of both worlds (at least asymptotically)
by taking λn ∼ λ0n

α/2 where γ < α < 1. However, this latter formulation does
not really capture what happens for finite samples.

When some of the βj’s are exactly 0, the limiting distributions (as given by
Theorems 2 and 3) put positive probability at 0 when γ ≤ 1. We will illustrate
this in the case when γ = 1. Suppose that β1� � � � � βr are nonzero and βr+1 =
· · · = βp = 0. In this case,

V�u� = −2uTW + uTCu + λ0

r∑
j=1

uj sgn�βj� + λ0

p∑
j=r+1

�uj�
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Now rewrite the matrix C, W and u as follows:

C =
(
C11 C12
C21 C22

)
�

where C11 is r× r, C22 is �p− r� × �p− r� and C21 = CT
12;

W =
(
W1
W2

)
�

u =
(
u1
u2

)
�

where W1 and u1 are r-vectors. If V�u� is minimized at u2 = 0 then it follows
that

C11u1 −W1 = −λ0

2




sgn�β1�
���

sgn�βr�


 = −λ0

2
s�β�(9)

and

− λ0

2
1 ≤ C21u1 −W2 ≤ λ0

2
1�(10)

where 1 is a vector of 1’s and the inequalities are interpreted coordinatewise.
Solving for u1 in (9), we get

u1 = C−1
11 �W1 − λ0s���/2�

and substituting into (10), it follows that u2 = 0 if

−λ0

2
1 ≤ C21C

−1
11 �W1 − λ0s���/2� −W2 ≤ λ0

2
1

In the case where β1 = β2 = · · · = βp = 0, this reduces to

−λ0

2
1 ≤W ≤ λ0

2
1�

Note that this same rationale applies for finite samples as well; for example,
�̂n = 0 if and only if −λn1 ≤ 2

∑
i Yixi ≤ λn1.

Example 1. Consider a quadratic regression model

Yi = β0 + β1

(
xi − a

�1�
n

)
s
�1�
n

+ β2

(
x2
i − a

�2�
n

)
s
�2�
n

+ εi

= β0 + β1z1i + β2z2i + εi for i = 1� � � � � n�
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where the xi’s are uniformly distributed over the interval �0�1� with

a
�1�
n = 1

n

n∑
i=1

xi →
1
2
�

a
�2�
n = 1

n

n∑
i=1

x2
i →

1
3

s
�1�
n =

(
1
n

n∑
i=1

�xi − a
�1�
n �2

)1/2

→ 1√
12

�

and

s
�2�
n =

(
1
n

n∑
i=1

�x2
i − a

�2�
n �2

)1/2

→ 2

3
√

5
�

In this case,

Cn → C =
(

1
√

15/16√
15/16 1

)
�

We define estimators β̂nl, β̂n2 to minimize

n∑
i=1

�Yi − �Y−φ1z1i −φ2z2i�2 + λn��φ1�γ + �φ2�γ��

In this example, we will consider the cases γ = 1 and γ = 1/2 with
λn/n

γ/2 → λ0 > 0 and β1 > 0, β2 = 0. Then

√
n

(
β̂nl − β1

β̂n2

)
→d argmin�V��

where

V�u1� u2� = −2�u1W1 + u2W2� + u2
1 +

√
15
2

u1u2 + u2
2 + λ0�u1 + �u2��

for γ = 1,

V�u1� u2� = −2�u1W1 + u2W2� + u2
1 +

√
15
2

u1u2 + u2
2 + λ0�u2�1/2

for γ = 1/2, and �W1�W2� is a zero mean bivariate Normal random vector
with covariance matrix σ2C.

For γ = 1 (assuming that β1 > 0 and β2 = 0), it is fairly straightforward to
evaluate argmin�V� explicitly; letting �Û1� Û2� = argmin�V�, we have three
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cases to consider, depending on the value of

τ�W1�W2� λ0� =
√

15
2

W1 − 2W2 −
√

15
4

λ0�

1. If �τ�W1�W2� λ0�� ≤ λ0 then

Û1 = W1 −
λ0

2
�

Û2 = 0�

2. If τ�W1�W2� λ0� < −λ0 then

Û1 = 16W1 − 4
√

15W2 + �2
√

15 − 8�λ0�

Û2 = 16W2 − 4
√

15W1 + �2
√

15 − 8�λ0�

3. If τ�W1�W2� λ0� > λ0 then

Û1 = 16W1 − 4
√

15W2 − �2
√

15 + 8�λ0�

Û2 = 16W2 − 4
√

15W1 + �2
√

15 + 8�λ0�

For γ = 1/2, an exact representation of the distribution of �Û1� Û2� is more
difficult to obtain but this distribution can be easily simulated.

Tables 1 and 2 give the means, variances and correlations of Û1 and Û2

as well as P�Û2 = 0� for various values of λ0 (scaled by σ). As one might
expect, the asymptotic variances of β̂n1 and β̂n2 decrease as λ0 increases. On
the other hand, the asymptotic bias of β̂n1 becomes increasingly negative as
λ0 increases while the asymptotic bias of β̂n2 increases away from zero then
decreases to 0 as λ0 increases.

Figures 1, 2, and 3 show scatterplots of random samples of 500 drawn from
the limiting distributions for the LS estimator �λ0 = 0�, λ0 = 1�0 for γ = 1,
and λ0 = 0�5 for γ = 1/2, respectively (with σ2 = 1). [These values of λ0 for the
different values of γ give approximately equal values of P�Û2 = 0�.] To facili-
tate comparison, the same values of �W1�W2� were used to generate the three

Table 1
Properties of the distribution of argmin�V� for γ = 1 and various values of λ0

�0
�

E�Û1�
�

E�Û2�
�

Var�Û1�
�2

Var�Û2�
�2 Corr�Û1� Û2� P�Û2 = 0�

0.0 0.00 0.00 16.00 16.00 −0�968 0.000
0.1 −0�68 0.65 11.90 11.62 −0�957 0.156
0.2 −1�14 1.07 8.89 8.49 −0�944 0.290
0.5 −1�71 1.50 6.16 5.53 −0�915 0.488
1.0 −1�93 1.47 5.78 5.10 −0�909 0.525
2.0 −2�33 1.37 5.36 4.71 −0�901 0.550
5.0 −3�51 1.04 4.40 3.63 −0�876 0.624
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Table 2
Properties of the distribution of argmin�V� for γ = 0�5 and various values of λ0

�0
�3/2

E�Û1�
�

E�Û2�
�

Var�Û1�
�2

Var�Û2�
�2 Corr�Û1� Û2� P�Û2 = 0�

0.0 0.00 0.00 16.00 16.00 −0�968 0.000
0.1 0.00 0.00 14.86 14.78 −0�966 0.193
0.2 0.00 0.00 13.73 13.57 −0�963 0.303
0.5 0.00 0.00 10.77 10.41 −0�952 0.529
1.0 0.00 0.00 7.06 6.46 −0�926 0.745
2.0 0.00 0.00 3.09 2.21 −0�821 0.930
5.0 0.00 0.00 1.05 0.04 −0�197 0.999

scatterplots. These scatterplots illustrate the effect of Bridge estimation rela-
tive to LS estimation from an asymptotic point of view. In LS estimation, the
strong correlation between the two variables means that overestimation of β1
is generally accompanied by underestimation of β2 (and vice versa); moreover,
this effect holds regardless of the true values of β1 and β2. In contrast, Lasso
estimation �γ = 1� compensates for underestimation of β1 by overestimation
of β2 but effectively sets the estimate of β2 to zero if β1 is overestimated.
For γ = 1/2, the shrinkage to zero in the estimation of β2 is more selective
and “larger” estimates are essentially unchanged from their corresponding LS
estimates. Also note that there is a “no man’s land” in the distribution of Û2
when γ = 1/2; for each λ0, there is an open interval I�λ0� = �0� c�λ0�� [with
c�λ0� > 0] such that P��Û2�� ∈ I�λ0�� = 1. For λ0 = 1/2, c�λ0� ≈ 0�86. ✷

How well do the asymptotic distributions approximate finite sample dis-
tributions? There are a number of factors involved including the accuracy of

Fig. 1. Sample of 500 from the limiting distribution of the LS estimator in Example 1.
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Fig. 2. Sample of 500 from the limiting distribution of the Bridge estimator in Example 1 with
γ = 1 and λ0 = 1. The probability that Û2 is strictly less than 0 is approximately 4�1×10−5, which

explains the absence of negative Û2 values.

Fig. 3. Sample of 500 from the limiting distribution of the Bridge estimator in Example 1 with
γ = 1/2 and λ0 = 1/2.
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normal approximations; however, the key factor here would seem to be the
extent to which the asymptotic penalty in V�u� (defined in Theorems 2 and 3)
approximates the true penalty term. For example, when γ ≤ 1, these approxi-
mations may not be particularly good for finite samples as the function �x�γ is
not particularly smooth when x is close to 0. This is addressed to some extent
in the next section.

3. Local asymptotics and small parameters. A distinguishing feature
of Bridge estimation for γ ≤ 1 is the possibility of obtaining exact 0 parameter
estimates. In the previous section, we showed that the limiting distributions
have positive mass at 0 when the true parameter value is 0 but are absolutely
continuous (with respect to Lebesgue measure) otherwise. In this section, we
will try to illustrate how this “exact 0” phenomenon can occur in finite samples
when the true parameter is small but nonzero.

To do this, we will assume that we have a triangular array of observations.
That is, define

Yni = �T
nxni + εni for i = 1� � � � � n�(11)

where for each n, εn1� � � � � εnn are i.i.d. random variables with mean 0 and
variance σ2. We assume that the xni’s satisfy the conditions

1
n

n∑
i=1

xnix
T
ni → C(12)

for some positive definite matrix C and

1
n

max
1≤i≤n

xTnixni → 0�(13)

these are the obvious analogues of (3) and (4).
Suppose that �n = �+ t/

√
n and define �̂n to minimize

n∑
i=1

�Yni −�Txni�2 + λn

p∑
j=1

�φj��(14)

This formulation allows us to examine the asymptotic properties of Bridge
estimators when one or more of the regression parameters are close to 0 but
nonzero. The idea here is to get a hint of the small sample behavior of Bridge
estimation.

Theorem 4. Assume the model (11) with �n = �+ t/
√
n and assume that

(12) and (13) are satisfied. Let �̂n minimize (14) for some γ > 1.

(a) If λn/
√
n → λ0 ≥ 0 then

√
n��̂n − �n� →d argmin�V��

where

V�u� = −2uTW + uTCu + λ0

p∑
j=1

uj sgn�βj��βj�γ−1�
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(b) If � = 0 and λn/n
γ/2 → λ0 ≥ 0 then
√
n��̂n − �n� →d argmin�V��

where

V�u� = −2uTW + uTCu + λ0

p∑
j=1

�uj + tj�γ�

Theorem 5. Assume the model (11) with �n = �+ t /
√
n and assume that

(12) and (13) are satisfied. Suppose that �̂n minimizes (14) for γ ≤ 1 where
λn/n

γ/2 → λ0 ≥ 0.

(a) For γ = 1,
√
n��̂n − �n� →d argmin�V�

where

V�u� = −2uTW + uTCu + λ0

p∑
j=1

�uj sgn�βj�I�βj = 0� + �uj + tj�I�βj = 0��

(b) For γ < 1,
√
n��̂n − �n� →d argmin�V��

where

V�u� = −2uTW + uTCu + λ0

p∑
j=1

�uj + tj�γI�βj = 0��

The proofs of Theorems 4 and 5 are essentially the same as those of
Theorems 2 and 3. Theorem 4 suggests that the advantages of using a penalty
with γ > 1 are limited to situations where all the regression parameters are
relatively small (compared to n); for example, for ridge estimation �γ = 2�,
part (b) of Theorem 4 gives

√
n��̂n − t /

√
n� →d �C+ λ0I�−1�W − λ0 t�

∼ N�−λ0��C+ λ0I�−1 t� σ2�C+ λ0I�−1 C�C+ λ0I�−1��
which suggests that by choosing λ0 judiciously, we could make the mean square
error of xT�̂n smaller than that of xT�̂�0�

n . On the other hand, if one or more
of the parameters is “large” then part (a) of Theorem 4 indicates that the bias
suggested by Theorem 2 would still persist.

In contrast, when γ ≤ 1, Theorem 5 suggests that “small” parameters may
be estimated as exactly 0 even when “large” parameters are present. For exam-
ple, suppose that βnj = tj/

√
n and take γ ≤ 1; then the limiting distribution

of
√
n�β̂nj−tj/

√
n� (given by Theorem 5) puts positive probability mass at −tj

and so the limiting distribution of
√
nβ̂nj puts positive probability mass at 0,

irrespective of the values of the other parameters. Thus, Theorem 5 indicates
that “small” parameters may be estimated as exactly 0 in finite samples even
when “large” parameters are present.
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4. Bootstrapping. Attaching standard error estimates to Bridge param-
eter estimates is nontrivial especially when γ ≤ 1. For the Lasso �γ = 1�,
Tibshirani (1996) gives an approximation of the covariance matrix of the esti-
mators. However, his approximation leads to standard error estimates of 0
when the estimate is 0, which is clearly unsatisfactory; Osborne, Presnell and
Turlach (1998) give an alternative approximation that leads to apparently
more satisfactory standard error estimates. However, these approximations
to the covariance matrix implicitly assume that the estimators are approx-
imately linear transformations, which is clearly not the case when γ ≤ 1.
An alternative approach to obtaining standard error estimates is to use the
bootstrap.

In regression models, there are effectively two approaches to bootstrapping
depending on whether the design is considered fixed or random.

1. (Random design). We draw a bootstrap sample �Y∗
1�x

∗
1�� � � � � �Y∗

n�x
∗
n� with

replacement from ��Y1�xi�� � � � � �Yn�xn��.
2. (Fixed design). The bootstrap sample is �Y∗

1�x1�� � � � � �Y∗
n�xn� where

Y∗
i = �Y+ �̃T

nxi + ε∗i for i = 1� � � � � n

with ε∗1� � � � � ε
∗
n sampled with replacement from “residuals” �e1� � � � � en� and

�̃n some estimator of � (not necessarily a Bridge estimator).

Using the bootstrap sample, we can then obtain a bootstrap Bridge esti-
mator of � (call it �̂∗

n) by minimizing an appropriate version of (2) for some
γ and λn. The idea is that the bootstrap distribution of

√
n��̂∗

n − �̃n� should
approximate the sampling distribution of

√
n��̂n−�n� where �̂n is the Bridge

estimator minimizing (2).
The asymptotics of approach (2) are quite simple. Assume that

√
n��̃n −

�� →d U and the set of residuals sampled from has mean 0. For each bootstrap
sample, we will centre the Y∗

i ’s by their sample mean. Define.

V∗
n�u� =

n∑
i=1

[�ε∗i − uTxi/
√
n�2 − �ε∗i �2

]+ λn

p∑
j=1

[�β̃nj + uj/
√
n�γ − �β̃nj�γ

]
�

Conditional on �̃n, the randomness of V∗
n comes from the bootstrap sampling

producing the ε∗i ’s. The idea here is exactly the same as before: if V∗
n converges

to some V∗ then the bootstrap distribution of argmin�V∗
n� = √

n��̂∗
n − �̃n�

should converge (in some sense) to that of argmin�V∗�. What complicates mat-
ters is the fact that there are two layers of randomness: one due to the original
sample (reflected through �̃n) and one due to the bootstrap sampling.

We will assume the conditions on λn stated in Theorems 2 and 3; that is,
λn/

√
n → λ0 ≥ 0 if γ ≥ 1 and λn/n

γ/2 → λ0 ≥ 0 if γ < 0. The simple case is
when all of the βj’s are nonzero. Then β̂nj →p βj = 0. Thus

V∗
n�u� = −2uTW∗

n + uTCnu + λ0

p∑
j=1

ujsgn�βj��βj�γ−1 +R
�γ�
n �u� if γ ≥ 1
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and

V∗
n�u� = −2uTW∗

n + uTCnu +R
�γ�
n �u� if γ < 1�

where R
�γ�
n �u� = op�1� for each u and W∗

n has a limiting Normal distribution
(with covariance matrix C). From this it follows that

P∗(√n��̂∗
n − �̃n� ∈ A

) →p P�argmin�V� ∈ A��
where V is as defined in Theorems 2 or 3.

If one or more of βj’s is 0 then the argument given above still works for
γ > 1 but fails for γ ≤ 1; a more sophisticated argument is needed for this
latter case. Suppose that

√
n��̃n − �� → U a.s. Then under the conditions on

λn given above, we have for γ = 1,

V∗
n�u� = −2uTW∗

n + uTCnu

+λ0

p∑
j=1

�ujsgn�βj�I�βj = 0� + ��uj +Uj� − �Uj��I�βj = 0�� +R�1�
n �u�

and for γ < 1,

V∗
n�u� = −2uTW∗

n + uTCnu + λ0

p∑
j=1

��uj +Uj�γ − �Uj�γ�I�βj = 0� +R�γ�
n �u��

where R�γ�
n �u� = o�1� with probability 1. From this, it follows that

P∗(√n��̂∗
n − �̃n� ∈ A

) → P∗�argmin�V∗� ∈ A� a.s.�

where for γ = 1,

V∗�u� = −2uTW∗ + uTCu + λ0

p∑
j=1

�ujsgn�βj�I�βj = 0� + �uj +Uj�I�βj = 0��

and for γ < 1,

V∗�u� = −2uTW∗ + uTCu + λ0

p∑
j=1

�uj +Uj�γI�βj = 0��

Note the parallels between these results and the results of Section 3.
In our case, we do not have almost sure convergence of

√
n��̃n − �� but

rather convergence in distribution; however, by the Skorokhod representation
theorem [(cf.) van der Vaart and Wellner (1996)], given Un →d U there exists
a probability space and random elements �U′

n�, U′ having the same distribu-
tions as �Un�, U such that U′

n → U′ a.s. From this fact, we can deduce that

P∗(√n��̂∗
n − �̃n� ∈ A

) →d P∗�argmin�V∗� ∈ A��
where probability in the limit is in fact a random variable if βj = 0 for at least
one j. On the other hand, if βj = 0 for all j then the limiting probability is
nonrandom and is the same as that given in Theorems 2 and 3.
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The asymptotic results presented above indicate that the bootstrap may
have some problems in estimating the sampling distribution of Bridge esti-
mators for γ < 1 when some true parameter values are either exactly 0 or
close to 0; in such cases, bootstrap sampling introduces a bias (due to �̃n) that
does not vanish asymptotically. One possible solution is to choose an estimator
�̃n that has P�β̃nj = 0� ≈ 1 when βj = 0 but P�β̃nj = 0� ≈ 0 when βj = 0;
there are a variety of ways to do this, for example, by using a consistent model
selection procedure. While this may seem attractive from an asymptotic view-
point, such an approach may cause more problems in practice than it solves.

5. Asymptotics for nearly singular designs. In this section, we will
consider the asymptotic behavior of Bridge estimators when the design is
nearly singular. More precisely, suppose that Cn [as defined in (3)] is non-
singular but tends to a singular matrix C. In particular, we will assume that

an�Cn −C� → D(15)

for some sequence �an� tending to infinity where D is positive definite on the
null space of C (that is, vTDv > 0 for nonzero v with Cv = 0). (Note that D
is necessarily nonnegative definite on the null space of C so that it is not too
stringent to require it to be positive definite on this null space.)

The consistency and limiting distribution arguments given in Section 2
require that the functions Z and V (defined in Theorems 1, 2 and 3) have
unique minimizers. When the matrix C is singular this is not generally the
case. For example, define V�u� as in Theorem 2. If γ > 1 then u ∈ argmin�V�
satisfies

Cu − λ0τ�W��� = 0(16)

for some function τ. If v lies in the null space of C then clearly u + tv ∈
argmin�V� for any t and so argmin�V� consists of a single point if, and only if,
C is nonsingular. Likewise, when γ = 1, u ∈ argmin�V� satisfies a modification
of (16), namely

Cu − λ0τ�W��� � 0�(17)

where now τ is possibly a set-valued function (or multifunction). Again u+tv∈
argmin�V� for any v in the null space of C and so (17) has a unique solution
if, and only if, C is nonsingular.

When γ < 1, the situation is somewhat more complicated. Define V�u� as
in Theorem 3. In general, if C is singular then argmin�V� will not be unique;
if u ∈ argmin�V� and v lies in the null space of C then for some nonzero t,
V�u� = V�u+tv�. However, suppose that βr+1 = · · · = βp = 0 and that the null
space of C is spanned by the standard basis vectors er+1� � � � � ep; then we have

V�u� = V0�u1� � � � � ur� + λ0

p∑
j=r+1

�uj�γ�
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which has a unique minimizer. Note that this condition on the null space
of C implies that the strongest collinearity in the design is restricted to the
covariates that have no influence on the response.

We will now consider the asymptotic behavior of nearly singular designs
under fairly weak conditions. We will assume that Cn is nonsingular for all n
and satisfies (15) for some sequence �an�. Define bn = �n/an�1/2 and redefine
Vn to be

Vn�u� =
n∑

i=1

[�εi − uTxi/bn�2 − ε2
i

]+ λn

p∑
j=1

��βj + uj/bn�γ − �βj�γ
]

(18)

Note that since bn = o�√n�, the estimators will have a slower rate of conver-
gence than when C is nonsingular.

Theorem 6. Assume a nearly singular model with Cn satisfying (15). Let
W be a zero mean multivariate Normal random vector such that Var�uTW� =
uTDu > 0 for each nonzero u satisfying Cu = 0.

(a) If γ > 1 and λn/bn → λ0 ≥ 0, then

bn��̂n − �� →d argmin�V�u�� Cu = 0��
where

V�u� = −2uTW + uTDu + λ0

p∑
j=1

ujsgn�βj��βj�γ−1�

(b) If γ = 1 and λn/bn → λ0 ≥ 0, then

bn��̂n − �� →d argmin�V�u�� Cu = 0��
where

V�u� = −2uTW + uTDu + λ0

p∑
j=1

�uj sgn�βj�I�β = 0� + �uj�I�βj = 0���

(c) If γ < 1 and λn/b
γ
n → λ0 ≥ 0 then

bn��̂n − �� →d argmin�V�u�� Cu = 0��
where

V�u� = −2uTW + uTDu + λ0

p∑
j=1

�uj�γI�βj = 0��

Proof. The proofs of (a), (b) and (c) are essentially the same as before.
Define Vn as in (18). Then in each case, for u in the null space of C, we have
Vn�u� →d V�u� while for u outside this null space, Vn�u� →p ∞. ✷



ASYMPTOTICS FOR LASSO-TYPE ESTIMATORS 1373

Example 2. Consider a design with

Cn =




1 ρn · · · ρn
ρn 1 · · · ρn
���

���
� � �

���
ρn · · · ρn 1


 �

where ρn → 1 and an�1 − ρn� → ψ > 0. In this case, �Cn� converges to a
matrix C (of all 1’s) and an�Cn −C� → D where

D =




0 −ψ · · · −ψ
−ψ 0 � � � −ψ
���

���
� � �

���
−ψ · · · −ψ 0


 �

If the matrices are p × p then the null space of C is the space of vectors u
with u1 + · · · + up = 0. For the sake of illustration, let’s suppose that β1 = 0,
β2 = · · · = βp = 0 and take γ < 1. Then the limiting objective function V in
Theorem 6 is

V�u� = −2uTW + uTDu + λ0��u2�γ + · · · + �up�γ� for u1 + · · · + up = 0�

where

λ0 = lim
n→∞λn

(
an

n

)γ/2

�

The limiting distribution of �n/an�1/2��̂n − �� is simply Û = argmin�V�u� �
u1 + · · · + up = 0�. Each component of Û has positive probability mass at 0
and these components must sum to 0. Thus, if one uses Bridge estimation
as a method for model selection (that is, estimate the number of nonzero
parameters) then asymptotically the probability of selecting the true model
is P�Û = 0�.

When p = 2 (with β1 = 0 and β2 = 0), it is relatively straightforward
to compute the limiting distribution. In this case, define u = u1 = −u2 and
W = W1 = −W2 (since u1+u2 = 0 and W1+W2 = 0) where W ∼ N�0� ψ�. Then

V�u� = 2ψu2 − 4uW+ λ0�u�γ�
It is possible to show (see Lemma A in the Appendix) that V is minimized at
0 if

�W�2−γ ≤ λ0ψ
1−γ

(
2 − γ

2

)(
2 − γ

2 − 2γ

)1−γ
�

otherwise, V is minimized at Û satisfying

ψÛ+ λ0γ

4
�Û�γ
Û

= W�
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Fig. 4. Densities for λ = 0 (solid line), λ = 0�5 (dotted line) and λ = 1 (dashed line); for
λ = 0�5 and λ = 1; these are the densities of the absolute continuous part of the distribution
as the distribution in these cases has positive probability mass at 0.

The density of the absolutely continuous part of Û is

f�u� = 4ψ− λ0γ�1 − γ��u�γ−2

4
√

2πψ
exp

[
− 1

2ψ

(
ψu+ λ0γ

4
�u�γ
u

)2]
�

whenever ∣∣∣∣ψu+ λ0γ

4
�u�γ
u

∣∣∣∣
2−γ

≥ λ0ψ
1−γ

(
2 − γ

2

)(
2 − γ

2 − 2γ

)1−γ
(19)

and

�u�2−γ ≥ λ0

4ψ
γ�1 − γ��(20)

Setting ψ = 1 and γ = 1/2, the densities of the absolutely continuous part
of Û for λ0 = 0�0�5 and 1 are given in Figure 4; for these parameter values
P�Û = 0� = 0, 0.448 and 0.655, respectively. Note that when λ0 > 0, these
densities have a “gap” [that is, f�u� = 0] for values of u violating either or
both of (19) and (20). ✷

6. Other issues.

Singular designs. In developing our asymptotic results, we have assumed
almost exclusively in the previous sections that the matrix Cn [defined in (3)]
is nonsingular for each n and hence that the parametrization in (1) is unique.
In most situations, this is a reasonable assumption as a singular design can
be made nonsingular by judiciously removing covariates or reparametrizing
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the model. However, in some problems, singular designs are unavoidable. For
example, in epidemiologic age-period-cohort studies of disease rates, singular
designs result due to linear relationship among different variables [Kupper,
Janis, Karmous and Greenberg (1985)]. Also in chemometric studies, singu-
lar designs result due to the number of parameters exceeding the number of
observations [Frank and Friedman (1993)].

When λn > 0 and γ > 1, the objective function (2) is strictly convex and
hence has a unique minimizer �̂n; this may be true even for γ ≤ 1. In this
section, we will consider n fixed and consider the behavior of the estimator as
λ = λn → 0.

Define �̂λ to minimize the objective function

n∑
i=1

�Yi − xTi ��2 + λ
p∑

j=1

�φj�γ(21)

and note that if �̂λ minimizes (21) it also minimizes

hλ��� = 1
λ

[ n∑
i=1

�Yi − xTi ��2 −
n∑

i=1

(
Yi − xTi �̂

�0�
)2
]
+

p∑
j=1

�φj�γ�(22)

where �̂�0� is a LS estimator of �, that is, �̂�0� satisfies

n∑
i=1

xi
(
Yi − xTi �̂

�0�
)
= 0�

It is easy to see that as λ → 0, hλ in (22) epiconverges to the function

h0��� =
{∑p

j=1 �φj�γ� if
∑n

i=1 xi�Yi − xTi �� = 0,
∞� otherwise

(23)

and hence if argmin�h0� is unique (as would be the case if γ > 1),

�̂λ → �̂0 = argmin
{ p∑
j=1

�φj�γ�
n∑

i=1

xi�Yi − xTi �� = 0
}

(24)

as λ → 0. When γ = 2, the estimator �̂0 defined in (24) is simply a projec-
tion of the possible estimators onto the space spanned by the eigenvectors
of Cn with positive eigenvalues; this estimator is called the intrinsic estima-
tor by Fu (1999). If we view �̂0 as a regularized LS estimator then �̂λ can
be used to approximate �̂0 by taking λ close to 0. Effectively, we are using
an unconstrained optimization problem [minimizing hλ in (22) for small λ] to
approximate a constrained optimization problem [minimizing h0 in (23)]; this
is a standard trick in optimization [Fiacco and McCormick (1990)].
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Computation. To this point, we have not explicitly mentioned computation
of the estimators. For γ > 1, the objective function is a smooth convex func-
tion and numerical algorithms such as Newton–Raphson or reweighted least
squares work very well. For γ = 1, the objective function is also convex and so
methods such as those discussed in Tibshirani (1996), Fu (1998) and Osborne,
Presnell and Turlach (1998) can be used. In the context of wavelet regression,
algorithms have been proposed by Chen, Donoho and Saunders (1999) and
Sardy, Bruce and Tseng (1998).

When γ < 1, the objective function (2) is no longer convex and so com-
putation of �̂ is nontrivial, particularly if p is large; the objective function
can have multiple local minima at which it is nondifferentiable. Here we will
briefly describe some simple algorithms for computing Bridge estimates when
γ < 1; a more detailed treatment will be given elsewhere.

Although the objective function is generally nontrivial to minimize, it is
interesting to note that the one variable problem is quite easy to solve. For
example, given α and λ > 0, define

g�u� = u2 − 2αu+ λ�u�γ�
It is simple to verify (see Lemma A in the Appendix) that g is minimized at
u = 0 if and only if

λ ≥ 2
2 − γ

(
2 − 2γ
2 − γ

)1−γ
�α�2−γ�

Otherwise, g is minimized at u = û satisfying g′�û� = 0 and g′′�û� > 0. This
latter equation can be solved in a variety of ways including the fixed-point
iteration:

û�0� = α�

û�k� = α− λγ

2
�û�k−1��γ
û�k−1� � k = 1�2�3� � � � �

The feasibility of the one-variable problem suggests that a Gauss–Seidel or
ICM [Besag (1986)] algorithm (which iteratively minimize one variable at a
time) might be appropriate to compute �̂n. This is true to some extent (as the
objective function decreases at each iteration) but with some caveats. Due to
the nature of the objective function, it is very easy for a naive Gauss–Seidel
algorithm to get “trapped” in a local minimum. However, this can be avoided to
some extent by keeping estimates away from 0 until it is absolutely necessary
to set them to 0. Alternatively, we can try multiple starting points in different
parts of the parameter space.

A second approach is to solve a sequence of ridge regression problems. For
example, starting with the ridge regression �γ = 2�, estimate

�̂�0� =
( n∑

i=1

xix
T
i + λI

)−1( n∑
i=1

Yixi

)
�
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We can define successive estimates by

�̂�k� = 7
(
�̂�k−1�)( n∑

i=1

Yixi

)
�

for k = 1�2�3� � � � where

7��� = D���
(
D���

( n∑
i=1

xix
T
i

)
D��� + λI

)−1

D���

and D�φ� is a diagonal matrix with diagonal elements �φ1�1−γ/2� � � � � �φp�1−γ/2.
Again the sequence ��̂�k�� does not necessarily converge to the global mini-
mum but seems to work quite well if multiple starting points are used.

APPENDIX

Let g�u� = u2 − 2αu + λ�u�γ where λ ≥ 0 and 0 < γ ≤ 1. If α = 0 then
argmin�g� = 0; thus we shall focus on the case where α = 0.

Lemma A. Suppose that α = 0. Then 0 ∈ argmin�g� if, and only if,

λ ≥ �α�2−γ
(

2
2 − γ

)(
2�1 − γ�

2 − γ

)1−γ
�

Moreover, if γ < 1 then argmin�g� = 0 if and only if we have strict inequality
above.

Proof. Define

h�t� = g�αt� = α2�t2 − 2t+ λ�t�γ�α�γ−2��
For t < 0, h′�t� < 0 and thus h�t� is strictly decreasing on the interval �−∞�0�.
For t > 1, h′�t� > 0 and so h�t� is strictly increasing on the interval �1�∞�.
Thus argmin�g� = tα for some t ∈ �0�1�.

If 0 ∈ argmin�g� then we must have

�α�2−γ�t2 − 2t� + λtγ ≥ 0

for all 0 ≤ t ≤ 1. In other words,

λ ≥ �α�2−γ max
0≤t≤1

t1−γ�2 − t��

Using calculus, it is easy to verify that the right-hand side above is maximized
for t = 2�1 − γ�/�2 − γ� and so 0 ∈ argmin�g� if and only if

λ ≥ �α�2−γ
(

2
2 − γ

)(
2�1 − γ�

2 − γ

)1−γ
�

Moreover, if γ < 1 and α = 0, then strict inequality implies that argmin�g�=0.
If equality holds then argmin�g� = �0�2α�1 − γ�/�2 − γ��; note that this set
contains a single point when γ = 1. ✷
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