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Abstract 

Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how 

the choice of univariate feature selection methods and classification algorithms may influence the 

performance of genomic predictors under varying degrees of prediction difficulty represented by three 

clinically-relevant endpoints.  

Methods: We used gene expression data from 230 breast cancers (grouped into training and independent  

validation sets) and we examined 40 predictors (five univariate feature selection methods combined with 

eight different classifiers) for each of the three endpoints. Their classification performance was estimated on 

the training set using two different resampling methods and compared with the accuracy observed in the 

independent validation set.  

Results: A ranking of the three classification problems was obtained and the performance of 120 models 

was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the 

validation performance than the cross-validation estimates. The required sample size for each endpoint was 

estimated and both gene-level and pathway-level analyses were performed on the obtained models. 

Conclusions: We showed that genomic predictor accuracy is largely determined by an interplay between 

sample size and classification difficulty. Variations on univariate feature selection methods and choice of 

classification algorithm have only a modest impact on predictor performance and several statistically 

equally good predictors can be developed for any given classification problem. 

�
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Introduction 

Gene expression profiling with microarrays represents a novel tissue analytical tool that has been applied 

successfully to cancer classification and the first generation of genomic prognostic signatures for breast 

cancer are already on the market [1,2,3]. So far, most of the published literature has addressed relatively 

simple classification problems including separation of cancer from normal tissue, distinguishing between 

different types of cancers or sorting cancers into good or bad prognosis [4]. The transcriptional differences 

between these conditions or disease states are often large compared to transcriptional variability within the 

groups and therefore reasonably successful classification is possible. The methodological limitations and 

performance characteristics of gene expression based classifiers have not been examined systematically 

when applied to increasingly challenging classification problems in real clinical data sets. 

 The MicroArray Quality Control (MAQC) (MAQC Consortium project-II: a comprehensive study of 

common practices for the development and validation of microarray-based predictive models) breast cancer 

data set (Table 1) offers a unique opportunity to study the performance of genomic classifiers when applied 

across a range of classification difficulties. One of the most important discoveries in breast cancer research 

in recent years has been the realization that estrogen receptor (ER)-positive and -negative breast cancers 

represent molecularly distinct diseases with large differences in gene expression patterns [5,6]. Therefore, 

gene expression-based prediction of ER status represents an easy classification problem. A somewhat more 

difficult problem is to predict extreme chemotherapy sensitivity including all breast cancers in the analysis. 

This classification problem is facilitated by association between clinical disease characteristics and 

chemotherapy sensitivity. For example, ER-negative cancers are more chemotherapy sensitive than ER-

positive tumors [7]. A third, and more difficult, classification problem is to predict disease outcome in 

clinically and molecularly homogeneous patient populations. Genomic predictors could have the greatest 

clinical impact here, since traditional clinical variables alone are only weakly discriminatory of outcome in 
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these populations.  In the current data set, prediction of chemotherapy sensitivity among the ER-negative 

cancers represents such challenge.  

The goal of this analysis was to assess how the degree of classification difficulty may impact which 

elements of prediction methods perform better. We divided the data into a training set (n=130) and 

validation set (n=100) and developed a series of classifiers to predict (i) ER-status, (ii) pathologic complete 

response (pCR) to preoperative chemotherapy for all breast cancers, and (iii) pCR for ER-negative breast 

cancers. A predictor, or classifier, in this paper is defined as a set of informative features (generated by a 

particular feature selection method) and a trained discrimination rule (produced by applying a particular 

classification algorithm). 

First, we examined if the success of a predictor was influenced by feature selection method. We 

examined five different univariate feature selection methods including three variations of a t-test based 

ranking and two methods that order features based on differences in expression values. It has been shown 

that several different classification algorithms can yield predictors with rather similar performance metrics
 

[8,9,10]. However it remains unknown if the relative performances of different methods may vary 

depending on the difficulty of the prediction problem. We examined this question for eight different 

classifiers representing a broad range of algorithms including linear (LDA), diagonal linear (DLDA) and 

quadratic discriminant analysis (QDA), logistic regression (LREG) and two versions of support vector 

machines (SVM) and k-nearest neighbor (KNN) methods. Altogether, 40 different predictors were 

developed for each of the three classification problems (5 different feature selection methods × 8 different 

classifiers). We were also interested to study to what extent the cross validation classification performance 

is influenced by different data re-sampling methods and the difficulty of the classification problem. We 

estimated the classification performance using 10-times-repeated 5-fold cross validation (10×5-CV) and 

leave-pair-out (LPO) bootstrapping [11] (a method that better accounts for training and testing variability). 
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We calculated performance metrics for each of the 120 predictors (40 predictors × 3 endpoints) and 

compared the estimated accuracy in the training set with the observed accuracy in the independent 

validation set. 

 

Materials and methods 

Patients and materials 

Gene expression data from 230 stage I-III breast cancers, without individual patient identifiers were 

provided to the MAQC project by the University of Texas M.D. Anderson Cancer Center (MDACC) Breast 

Cancer Pharmacogenomic Program. Gene expression results were generated from fine needle aspiration 

specimens of newly diagnosed breast cancers before any therapy. The biopsy specimens were collected 

sequentially during a prospective pharmacogenomic marker discovery study approved by the institutional 

review board between 2000 and 2008. These specimens represent 70-90% pure neoplastic cells with 

minimal stromal contamination [12]. All patients signed informed consent for genomic analysis of their 

cancer. Patients received 6 months of preoperative (neoadjuvant) chemotherapy including paclitaxel, 5-

fluorouracil, cyclophosphamide and doxorubicin followed by surgical resection of the cancer. Response to 

preoperative chemotherapy was categorized as a pathologic complete response (pCR = no residual invasive 

cancer in the breast or lymph nodes) or residual invasive cancer (RD). The prognostic value of pCR has 

extensively been discussed in the medical literature [13]. Genomic analyses of subsets of this sequentially 

accrued patient population were reported previously [9,14,15]. For each endpoint, we used the first 130 

cases as a training set to develop prediction models and the next 100 cases were set aside as independent 

validation set. Table 1 and Additional file 1 show patient and sample characteristics in the two data sets. 

 

Gene expression profiling 
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Needle aspiration specimens of the cancer were placed into RNAlater™ solution (Qiagen) and stored 

in -80
0
C until further analysis. RNA extraction and gene expression profiling were performed in multiple 

batches over time as described previously [16,17] using Affymetrix U133A microarrays. Gene expression 

data has been uploaded to the Gene Expression Omnibus website under the accession number GSE16716. 

Normalization was performed using MAS 5.0 software with default settings. Quality control assessment of 

the hybridization results were performed with SimpleAffy software by Bioconductor, the percent present 

call had to be >30%, scaling factor < 3, and the 3’/5’ ratios for beta-actin < 3 and for GAPDH < 1.3, these 

quality control metrics are presented for each case in Additional file 2.  

 

Ranking of classification problems by informative feature utility score  

To assess the relative difficulty of the three classification problems that we selected to study we 

adopted an approach similar to [18]. This method defines the utility of a feature i as its Fisher score, 
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where N is the sample size.  This cumulative information score assumes that the features are independent 

and that their effect on the classification performance is additive. This is rarely the case, as features are often 

correlated. Nonetheless, this cumulative information score is a simple and straightforward approach to 

estimate the relative difficulty of a classification problem early in the classifier development process: an 

easier problem tends to have larger values for F than a more difficult problem. 
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Feature selection methods 

There was no pre-filtering of probe sets, all probe sets were considered by the feature ranking 

methods that included: (i) unequal variance t-test  (FS1), (ii) unequal variance t-test with filtering of probe 

sets that were correlated with one another (Pearson correlation > 0.75) to generate independently 

informative features (FS2), (iii) instead of removing the correlated features they were combined into meta-

features by averaging them (FS3), (iv) we also ranked features according to their ratio of between- to 

within-group sum of squares (FS4) and (v) according to the absolute differences in the class means (FS5). 

  

Classification algorithms 

We examined eight classifiers in combination with the above feature selection methods including linear 

discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), quadratic discriminant analysis 

(QDA), logistic regression (LREG), two k nearest neighbors classifiers with k=3 (KNN3) and k=11 

(KNN11), and support vector machines with a radial basis function kernel with two different values for the 

kernel parameter: γ=0.5 (SVM05) and γ=2.0 (SVM2), respectively. Overall, 40 models were developed for 

each of the 3 prediction problems. 

 

Estimation of predictive performance 

Leave N-out cross-validation and other re-sampling methods of the training set are often used to 

select a final predictor for independent validation. Therefore, it is important to understand how resampling-

based predictive performance correlates with predictive performance on independent validation cases. To 

study this question, we used a nested two-level cross-validation scheme, in which the cross-validation in the 
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outer loop had the role of estimating the performance of the whole modeling procedure, while the cross-

validation in the inner loop was used for selecting the optimal number of features [19]. 

The procedure in the inner loop is as follows. For each combination of a feature selection method F 

and a classification algorithm C, the number of features j(F,C) in the model was considered as a free-

parameter (within a predefined set of allowable values) and was optimized. In the inner loop, a repeated 

(five times), stratified (to preserve the proportion of the two classes in all training and testing splits), 5-fold 

cross-validation, was used to define the number of features that maximized the AUC. A ranking of the 

features was first obtained by applying F on the reduced internal training set (obtained by leaving aside one 

fold from the current training set). Then the classifier C was trained on the same set, but considering only 

the top j(F,C) features. The predictions on the internal testing set (the left out fold) were recorded and the 

procedure was repeated. At the end, an estimation of the AUC was obtained, corresponding to the given 

combination of F, C, and j(F,C). The procedure was repeated with different folds and an average estimate of 

the AUC was obtained for each F, C, and j(F,C). The optimal number of features j*(F,C) was selected as the 

value j(F,C) yielding the highest average AUC. The number of features allowed for each model was chosen 

a priori, to avoid overfitting of models and to limit the computation time. For the prediction of ER status, the 

feature size was chosen to contain all values between 2 and 15, while for both pCR endpoints, it was 

{2,5,8,…,41}; 41 being almost half the size of the smallest training set (n=85 ER-negative cancer). For a 

pseudo-code that details the schema used for cross-validation [see Additional file 3]. In order to avoid 

adding variability due to random partitioning the data into folds, all estimates were obtained on the same 

splits of the data. 

We investigated two methods in the outer loop. The first method is a stratified 10-times-repeated 5-

fold cross-validation (10×5-CV). In each of the five cross-validation iterations, 80% of the data were first 

used as input to the inner loop procedure for feature selection and training the classifier with the selected 
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features and finally, the remaining 20% of the data were used to test the classifier. The 95% CI for the area 

under the receiver operating characteristics curve (AUC) was approximated by [AUC-1.96SE, 

AUC+1.96SE]. The SE was estimated by averaging the 10 estimates of the standard error obtained from the 

5 different estimates of the AUC produced by the 5-CV. 

The second method in the outer loop is a bootstrap based method, also known as a smoothed version 

of cross-validation [20].  Efron and Tibshirani [20] proposed the leave-one-out bootstrap method on the 

performance metric error rate and their technique was recently extended by Yousef et al. [11]
 
to the 

performance metric AUC. This method uses a leave-pair-out (LPO) bootstrap approach to estimate the mean 

AUC (mean over training sets) and a “delta method after bootstrap” to estimate the variability of the 

estimated mean AUC. We point out that this variability captures both the effect of finite training set size and 

the effect of finite testing set size. In the LPO approach, multiple (n=5000) training sets are obtained by 

stratified bootstrap resampling and each training set is used as input to the inner loop procedure for feature 

selection and training the classifier with the selected features. In testing, any pair of cases (one from the 

positive class and one from the negative class) is tested on the classifiers trained on the bootstrap samples 

that do not contain the two held out cases. The Wilcoxon-Mann-Whitney statistic of the prediction results 

on pairs of cases is averaged over all bootstrap training sets and is used to estimate the mean AUC. An 

advantage of this technique is that it allows for estimating the variability of the AUC estimator using the 

influence function method [11,20]. By assuming that the estimated AUC is asymptotically normal, the 95% 

CI of the AUC can be approximated by [AUC-1.96SE, AUC+1.96SE].  

The estimated performance and the associated CIs from the training and internal assessment process 

are compared with the independent validation performance. The conditional validation performance was 

obtained by selecting features and training the classifier with the training data set and testing on the 

validation data set. This performance is conditional on the particular finite training set and may vary when 
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the training set varies. Therefore, we estimated the mean of this conditional performance where the mean is 

over multiple training sets and are obtained by bootstrapping the training set multiple times and averaging 

the conditional AUCs as tested on the validation set [21]. We also estimated the variability of the 

conditional validation performance and decomposed the variance into two components: the variability due 

to the finite size of the training set and the variability due to the finite size of the test set [21]. The training 

variability reflects the stability of the classifier performance when the training set varies and the testing 

variability reflects the expected performance variation for different test sets. 

To compare the ability of the performance estimates of 10×5-CV and the LPO bootstrap to predict 

the performance on the independent set, we used a root mean square error (RMSE) measure, which is 

defined as 
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where F and C index feature selection and classifier respectively, A  denotes mean AUC, the superscript 

“internal” can be “10×5-CV” or “LPO bootstrap”.   

 

Estimation of predictor learning over increasing training set size 

Predictor learning was evaluated for the models that performed nominally the best in independent validation 

for each of the three prediction problems. All two hundred and thirty cases were included in the analysis to 

fit learning curves to these three models. For the ER status endpoint, ten different training sample sizes, 

ranging from n=60 to n=220 by increments of 20, were used to estimate the dependence of the performance 

parameters on the sample size. For each sample size, 10 different random samples were drawn from the full 

set by stratified sampling and 5-fold cross-validation was used to assess the error rate and AUC of the 

models where all the parameters of the models were re-calculated. A similar approach was taken for the 

pCR (n=50, 70, …, 210) and “pCR in ER-negative cancer” predictors (n=25, 40, …, 85). Following the 
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work of Fukunaga [22], the following learning curve model was fit to the resulting 

AUC: zeTrainingSibaY /+= . 

 

Congruence of different predictors at gene and functional pathway level 

We were interested in examining the congruence of informative features that were selected by 

different methods for the same prediction endpoint and also for different endpoints. Both gene-level and 

pathway level analysis was performed as described previously
 
[23]. MetaCore protein function classification 

was used to group genes into protein functions and GeneGo Pathway maps
 
were used for functional 

classification of predictive features. We assessed congruency using Kappa statistics. The input for kappa 

involves “learners” that classify a set of objects into categories. We considered each feature selection 

method as a learner and each probe set as an object. The probe sets used in this analysis are presented in 

Additional file 4. Each probe set from the rank ordered lists is categorized by each feature selection method 

either as 1 (i.e. selected as informative) or 0 (i.e. non-selected). Using such 0/1 matrix for all probe sets × all 

feature selection method for every prediction endpoint as input, we can calculate Cohen’s kappa function for 

the congruency. For pathway-level analysis, we mapped the probe sets to pathway lists by using 

hypergeometric enrichment analysis. The pathways are ranked by enrichment p-values and the top n 

pathways (n equals the number of genes in the input list for comparison and consistency between the two 

levels) were selected for presentation. 

All statistical analysis was performed using R software. 

 

Results 
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Difficulty of the classification problems 

Three distinct classification problems were studied, (i) ER-status prediction including 80 ER-

positive (62%) and 50 ER-negative training cases (38%), (ii) pCR prediction including 33 cases with pCR 

(25%) and 97 cases with residual cancer (75%) for training and (iii) pCR prediction for ER-negative cancers 

including 27 training cases with pCR (54%) and 23 with residual cancer (46%). Figure 1 shows the 

cumulative information scores for the three endpoints: larger cumulative information is an indicator for a 

simpler classification problem. The obtained ranking implies that the 3 endpoints represent different degrees 

of classification difficulty. 

We also assessed the significance of the utility scores using permutation tests (10,000 permutations) 

for computing the raw p-values, followed by Benjamini-Hochberg correction for multiple testing. For the 

ER status endpoint, there were 1,502 features with significant utility scores (p-value < 0.0001), while for the 

pCR (all cases) there were 252 significant features and only 5 features (corresponding to A2M [HGNC:7], 

RNMT [HGNC:10075], KIAA0460 [HGNC:29039], AHNAK [HGNC:347] and ACSM1 [HGNC:18049] 

genes) for pCR among ER-negative cancers. 

 

Effect of feature selection methods and classification algorithms on cross validation performance 

Figure 2 illustrates the average cross validation AUC estimated by 10×5-CV for all predictors, stratified by 

feature selection method (left column). All feature selection methods performed similarly in combination 

with various classification algorithms for a given endpoint. The two non-t test based methods, FS4 and FS5 

showed slightly better performance than t-test based feature selection for the most difficult prediction 

endpoint “pCR on ER-negative cancers” in cross validation but confidence intervals widely overlapped. 

Additional file 5 shows the average error rates and AUCs generated from 10×5-CV for each prediction 

model applied to all three classification problems along with the average number of features selected. 
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Interestingly, the number of selected features did not increase as the prediction problem became more 

difficult. In fact, for the most difficult problem, the number of selected features was lower than for the 

moderately difficult problem. This is probably due to the lack of informative features as the classification 

problem becomes more difficult, fewer features are informative for the outcome (also see Figure 1). 

Figure 2 also shows the variability of the classification error rates and AUC estimated through 10×5-

CV for all predictors, stratified by classification algorithm (right column). All methods performed similarly.  

The prediction endpoint (i.e. classification difficulty) had the greatest effect on the cross validation AUC. 

The effects of feature selection method and choice of classifier algorithm were modest.  

 

Bootstrap and independent validation results 

Figure 3 shows the estimated AUCs obtained with 10×5-CV (black square), LPO bootstrap (black 

circle), the conditional AUC (blue circle) on the independent validation set and its variability (blue error-bar 

representing ±2SD) and mean (red cross). Additional file 5 includes the internal (10×5-CV and LPO 

bootstrap) and independent validation performance metrics for each predictor. Both internal estimation 

methods yielded AUCs that were very close, well within 2 standard deviations of the mean, to the 

conditional and mean AUCs observed in the independent validation. Internal performance estimates 

generated within the training set only slightly overestimated the performance relative to independent 

validation, indicating both that the modeling approach was correct and that there was no strong batch effect 

between training and validation sets. Simpler linear methods such as LREG, LDA and DLDA performed 

generally well in both internal and independent validation and these methods were among the top five 

nominally best performing models for all prediction endpoints [see Additional file 5]. The non-t test based 

feature selection methods (FS4, FS5) that showed good results in cross validation also performed well in 

independent validation and were included in four of the top five models for each endpoints. However, the 
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95%CI of the point estimates overlap broadly for all predictors and no single strategy emerged as clearly 

superior for any particular endpoint. 

To assess the confidence interval estimation, we calculated the RMSE for the AUC estimates 

obtained with 10×5-CV and LPO bootstrap for all the three endpoints. Leave-pair-out bootstrap performed 

better than 10×5-CV in terms of the agreement with the mean AUC estimated in the independent validation 

set: RMSE for LPO bootstrap were 0.0484, 0.0491 and 0.357 in comparison with 0.0562, 0.0713 and 0.449 

for 10×5-CV for the ER status, pCR and pCR within ER-negative endpoints, respectively. 

 Figure 3 clearly shows that the variability of the estimated classification performance increases as 

the level of classification difficulty increases. This implies that, to achieve the same level of statistical 

precision of the estimated performance, more cases are needed for a more difficult endpoint. Figure 3 also 

shows both the conditional (blue circle) and mean validation AUCs (red cross). The larger the difference 

between the conditional validation AUC and the mean validation AUC, the less stable the predictor is with 

respect to varying the training sets. A quantitative measure of classifier stability is the training variability 

and we have decomposed the variability of the conditional validation AUC shown in Figure 3 into two 

components: training variability and testing variability, and put the results in Additional file 5. 

 

Predictor performance and sample size estimations through learning curves 

To estimate the training set size that is necessary to develop predictors that operate near to their 

respective plateaus, we examined how the performance characteristics of each of the nominally best 

predictors for each endpoint improved as the training set size increased. For ER-status prediction, we 

selected QDA with FS1 (conditional validation AUC=0.939), for pCR prediction including both the ER-

positive and -negative cancers we selected LREG with FS5 (conditional validation AUC=0.805) and for 

pCR in ER-negative cancers we selected LREG with FS4 (conditional validation AUC=0.627). Figure 4 
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shows the observed changes in average AUCs for each of the classifiers as the training set size increased 

from 60 to 220 (or from 25 to 85 for pCR prediction in ER-negative cancers) and the projected 

improvements for assumed larger training sets. The results indicate that for the easiest problem (ER) the 

predictor seems to perform already at its best with a sample size around 80-100. For the moderately difficult 

problem (pCR), the steady increase of the learning curve suggests that the performance of the model can be 

improved by increasing the sample size, beyond the highest value currently tested (220). For the pCR in ER-

negative cancer endpoint, the learning curves manifested a very modest and gradual improvement in 

performance between training sample sizes of 25-85, suggesting that either too few samples were available 

for a reliable estimation of the learning curve or that there is limited information in the mRNA space to 

predict this particular outcome with the methods applied in this analysis. The learning curve that had a slope 

significantly different from 0, was the one for the pCR endpoint (p-value=0.001), (ER endpoint: p-

value=0.05; pCR in ER-negative endpoint: p-value=0.365).  

 

Functional analysis of predictive features 
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Our results demonstrate that several different feature sets can yield predictors with statistically 

similar performance [8,9,10,24]. This may occur because the various probe-sets that represent different 

genes capture information from the same complex molecular pathways that determine a particular clinical 

outcome [25]. In other words, different features measure different components of the same informative 

biological pathway. To test this concept we mapped each of the 15 feature sets used in the final validation 

models to known biological pathways. The different feature sets selected for a particular prediction endpoint 

had a high level of congruency at both the gene and the pathway levels across all the five different ranking 

methods (Table 2). The selected gene sets and pathways were also rather similar to each other for the ER 

and pCR prediction endpoints. However, the genes and pathways predictive of pCR in ER-negative cancers 

were very different from the other two informative gene sets. 

 Additional file 6 contains the pathway enrichment tables for the three endpoints including pathways with 

enrichment p values <0.1. Thirty-two pathways contributed to the prediction of ER status, 36 to pCR prediction and 

11 to pCR prediction within ER-negative cancers across the five feature selection methods. For the ER endpoint, 

development, cell adhesion, cytoskeleton remodeling, DNA damage, apoptosis and ER transcription factor activity 

were the most significant pathway elements common to all informative feature sets. We also noted that most pathways 

that were involved in pCR prediction (31 out of 36) were the same as those involved in ER status prediction. This is 

consistent with the known association between pCR rate and ER-status [7]. Estrogen receptor-negative cancers had 

significantly higher pCR rate than ER-positive cancers (54% pCR in ER-negative cancers vs. 7.5% pCR in ER-

positive cancers, chi-square test p-value = 1.068e-08). The pathways that were selected for prediction of pCR in ER-

negative cancers were distinct from the pathways that were predictive of pCR in all patients and included immune 

response-related pathways (IL-2 and T-helper cell activation), opioid receptor signaling, and endothelial cell-related 

pathways. 

 

Discussion 
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The goal of this analysis was to examine how the choice of univariate feature selection method and 

classification algorithm may influence the performance of predictors under varying degrees of classification 

difficulty. We examined the influence of changing two critical components, feature selection and 

classification algorithm in the predictor development process for three different prediction problems that 

represented three levels of difficulty in a clinically annotated human breast cancer data set. Classification of 

breast cancer into ER-positive or -negative categories is an easy classification problem; the large number of 

informative probe sets and high information content of the features allow clear separation of the groups. The 

AUC values for the 40 different prediction models for this endpoint ranged from 0.875 to 0.939 in the 

independent validation set. Prediction of pCR across all breast cancers including both ER-negative and ER-

positive cases represented a slightly more difficult prediction problem with AUCs ranging between 0.61-

0.80 in the validation set. Prediction of pCR in the molecularly more homogeneous ER-negative breast 

cancer subpopulaton proved to be the most difficult classification challenge: the validation AUCs ranged 

from 0.34 to 0.62. No predictor development strategy emerged as clearly superior for any of the 

classification problems. The 95%CI of the prediction accuracies overlaped broadly for most of the 

predictors.�However, LDA, DLDA, LREG and QDA classification algorithms were consistently among the 

best performing models for each problem. Interestingly KNN3 and SVM methods were often among the 

worst performing models in independent validation, eventhough these reached relatively high AUC values  

in cross validation. It is possible that further fine tuning of parameters for these more complex classifiers (in 

the sense of implementable decision boundary) could have improved predictive performance. We only 

examined radial function kernel for SVM with two a priori set kernel parameters �=0.5 and 2.0, and the 

parameter C (cost of misclassification) was also fixed at 10. Fixing these parameters may have resulted in 

"less than optimally trained" models that could lead to added variability in the performance of the 

classifiers. Also, we only examined two versions of KNN with a priori set k of 3 and 11, and found that 
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KNN11 outperformed KNN3. Low values of k yield local classifiers with low bias but high variance while 

higher values lead to more global classifiers with higher bias and lower variance; exploring a broader range 

of k values could have optimized prediction results. Optimizing the parameters �� or k is not a 

straightforward task. It should be done within the inner cross-validation process, just as is done with feature 

selection. Fine tuning different model parameters outside of the two-stage cross-validation process would 

lead to model-selection bias, or optimization bias [19]. 

 An interesting observation was that simple feature selection methods that ranked features based on 

difference in means performed very well in both cross validation and independent validation relative to the 

more commonly used t-statistic based ranking. Four out of the top five models for each prediction problem 

used features selected by the non-t test based methods. However, it is important to recognise that all of the 

feature selection methods that we examined represented univariate filtering approaches that rank features 

individually and independent of the classification method. It is possible that non-parametric or multivariate 

feature selection methods could yield different results. Penalized feature selection methods, which embed 

feature selection in the classifier fitting step may also have advantages because features that might not be 

discriminatory individually could be jointly predictive in combination with other features. At least one paper 

suggested that multivariate sparse penalized likelihood methods including lasso and elastic net might have a 

slight edge compared to univariate filtering [26]. Other publications that compared several univariate and 

multivariate feature selection methods in public cancer data sets using 10-fold cross validation estimates 

found that simple univariate feature selection methods often outperformed more complex multivariate 

approaches [27,28].  

Our data demonstrates that many different feature sets and classification methods can yield similarly 

accurate predictors for a given endpoint. When we mapped the feature sets generated by five different 

univariate feature selection methods to biological pathways, each method tended to identify similar genes 
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and pathways. The biological patways that were implicated in ER-status or pCR prediction were distinct 

from the pathways that were predictive of pCR in ER-negative cancers. This pathway level analysis is 

hypothesis generating and will require further laboratory validation to determine the importance of the 

identified pathways (e.g. immune response, endothelial cell regulation, G-protein signaling, etc.) in the 

biology of chemotherapy response in ER-negative breast cancer. 

To estimate potential improvements in predictive performance of the nominally best predictors for 

each classification problem, we pooled all cases and carried out a series of split sample training and 

validation analyses where the predictors were trained on increasingly larger data sets. For the easy 

classification problem (ER-status), relatively small sample sizes (80-100 samples) were enough for 

constructing excellent predictors. In contrast, for the moderately difficult problem (pCR prediction), the 

accuracy of the model steadily improved as the sample size increased. For the most difficult problem, pCR 

prediction in ER-negative cancer, a minimal improvement was observed over a range of 25 to 85 training 

cases. It is important to note that the pCR and ER status predictors trained on 80 cases already showed good 

or excellent conditional AUCs  (0.65 and 0.94, respectively). This modest performance and limited 

improvement of the pCR predictor for ER-negative cancer may be due to (i) too small sample size for 

trainig or (ii) the incompletness of the mRNA expression based feature space, meaning that this class 

separation problem cannot be fully accomplished by using information only from the available probes using 

the methods that we applied. However, fitting learning curves to preliminary data sets could assisst 

investigators to estimate sample size requirements for a particular prediction problem for any give model. 

 

Conclusions 

This analysis confirms that it is possible to build multi-gene classifiers of clinical outcome that hold 

up in independent validation. Predictor performance is largely determined by an interplay between training 
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sample size and classification difficulty. Variations on univariate feature selection methods and choice of 

classification algorithm had only a modest impact on predictor performance and it is clear that within our 

statistical precision, several equally good predictors can be developed for each of our classification 

problems. Pathway level analysis of informative features selected by different methods revealed a high level 

of congruency. This indicates that similar biological pathways were identified as informative for a given 

prediction endpoint by the different univariate feature selection methods. The independent validation results 

also showed that internal 10×5-CV and LPO bootstrap both yielded reasonably good and only slightly 

optimistic performance estimates for all the endpoints. 
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Figure legends 

Figure 1. Relative complexity of the three prediction problems. 

The cumulative information values have been scaled such that the maximum value is 1. In order to make the 

curves comparable and to take into account the sample size, the ratio between the number of features used in 

the cumulative information (F) and the sample size is used on the horizontal axis. Larger values of the 

cumulative information indicate simpler problems. 

 

Figure 2.  Boxplots of the estimated AUC, stratified by feature selection and by classification methods.  
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The boxplots show the mean AUC in 10 times 5-fold CV. The left column contains the estimated AUC 

stratified by feature selection method and the right column contains the estimated AUC stratified by 

classification method. 

 

Figure 3. Graphical summaries of the estimated and observed AUCs for each of the 120 models.  

For each combinations of feature selection method and classification algorithm the AUCs +/- 2 standard 

deviations are plotted. Mean AUCs obtained from 10×5-CV (black square), LPO bootstrap (black dot) and 

the conditional (blue circle) and mean (red cross) validation AUC are shown. 

 

Figure 4. Learning curves for the best predictors for each three endpoints. 

For each endpoint, the learning curve of the best performing model on the validation set was estimated by 5 

fold cross-validation for gradually increasing sample sizes. The plot shows both the estimated performance 

for different sample sizes and the fitted curve. The QDA classifier required more than 60 samples, so the 

minimal sample size for it was 80. Note the non-linear scale of the x-axis. 
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Tables 

Table 1. Patient characteristics in the training and validation sets 

 Training set (n=130) Validation set (n=100) p-value 
Median age 51 years (28-79) 50 years (26-73)  
Race   0.804 
 Caucasian 85 (65%) 68 (68%)  
 African American 13 (10%) 12 (12%)  
 Asian 9 (7%) 7 (7%)  
 Hispanic 21 (16%) 13 (13%)  
 Mixed 2 (2%) 0  
Cancer histology   0.047 
 Invasive ductal (IDC) 119 (92%) 85 (85%)  
 Mixed ductal/lobular (IDC/ILC) 8 (6%) 8 (8%)  
 Invasive lobular (ILC) 1 (0.7%) 7 (7%)  
 Others 2 (1.3%) 0  
Tumor size   0.643 
 T0 1 (1%) 2 (2%)  
 T1 12 (9%) 8 (8%)  
 T2 70 (54%) 62 (62%)  
 T3 21 (16%) 13 (13%)  
 T4 26 (20%) 15 (15%)  
Lymph node stage   0.935 
 N0 39 (30%) 27 (27%)  
 N1 60 (46%) 47 (47%)  
 N2 14 (11%) 13 (13%)  
 N3 17 (13%) 13 (13%)  
Nuclear grade (BMN)   0.005 
 1 2 (2%) 11 (11%)  
 2 52 (40%) 42 (42%)  
 3 76 (58%) 47 (47%)  
Estrogen Receptor   0.813 
 Estrogen Receptor positive 80 (62%) 60 (60%)  
 Estrogen Receptor negative 50 (38%) 40 (40%)  
HER-2   <0.001 
 HER-2 positive 33 (25%) 7 (7%)  
 HER-2 negative 96 (74%) 93 (93%)  
Neoadjuvant therapy   0.005 
 Weekly T×12 + FAC×4 112 (86%) 98 (98%)  
 3-weekly T×4 + FAC×4 18 (14%) 2 (2%)  
Pathologic complete response (pCR) 33 (25%) 15 (15%) 0.055 

Estrogen Receptor: cases where >10% of tumor cells stained positive for ER with immunohistochemistry 

(IHC) were considered positive.  HER-2: cases that showed either 3+ IHC staining or had gene copy number 

>2.0 were considered HER-2 "positive". T= paclitaxel, FAC = 5-fluorouracil, doxorubicin, and 

cyclophosphamide. The p-values for the association tests were obtained from chi-square test unless the 

number of cases was less than 5 in any category, in which case Fisher's exact test was used. 
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Table 2. Congruencies across different endpoints and different feature selection methods 

Same endpoint but different FS 

Endpoint Gene-level Level of canonical pathway maps 

ER status 0.541 0.573 

pCR 0.544 0.572 

pCR(ER-) 0.593 0.532 

Same FS but different endpoints 

FS Gene-level Level of canonical pathway maps 

FS1 0.300 0.290 

FS2 0.299 0.274 

FS3 0.291 0.278 

FS4 0.295 0.291 

FS5 0.272 0.282 

 

The table shows that kappa statistics (i.e. congruency) are high for different feature selection methods for 

the same endpoint but are low for the same feature ranking method for different endpoints. Both gene level 

and pathway level analysis shows similar results. 
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Additional files 

Additional file 1 

Title: Supplemental Table S1 

Description: Clinical data for all the patients in the training and validation sets.  

 

Additional file 2  

Title: Supplemental Table S2 

Description: Quality control results.  

 

Additional file 3 

Title: Supplemental Table S3 

Description: Pathways mapping for all endpoints.  

 

Additional file 4 

Title: Supplemental methods 

Description: Pseudo-code description of the two-level external cross-validation scheme. 

 

Additional file 5 

Title: Supplemental Table S4 

Description: Features (probesets) selected in the 120 models.  

 

Additional file 6 

Title: Supplemental Table S5 
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Description: Estimated and validation performance of all models 
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