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Effects of Sample Size in Classifier Design

KEINOSUKE FUKUNAGA, FELLOW, IEEE,

Abstract—This paper discusses the effect of finite sample size on pa-
rameter estimates and their subsequent use in functions. General and
parameter-specific expressions for the expected bias and variance of
the functions are derived. These expressions are then applied to the
Bhattacharyya distance and the analysis of the linear and quadratic
classifiers, providing valuable insight into the relationship between the
number of features and the number of training samples. Also, because
of the functional form of the expressions, we present an empirical ap-
proach which will enable asymptotic performance to be accurately es-
timated using a very small number of samples. Results are experimen-
tally verified using artificial data in controlled cases and using real,
high-dimensional data.

Index Terms—Bhattacharyya distance, classifier degradation, clas-
sifier robustness, linear classifier, parameter estimation errors, quad-
ratic classifier.

I. INTRODUCTION

N practical pattern recognition problems, the parame-

ters of the underlying distributions are unknown and the
number of training samples available frequently is small.
The size of this set of samples, relative to the number of
features used, determines the accuracy of the parameter
estimates and the similarity between the sample set and
the true distribution.

In this paper, we will look at the effect of sample size
on functions of the distributions’ parameters. By viewing
the estimated parameters as random variables, the ex-
pected value of d criterion can be computed by taking the
expectation of the parameters over all possible N-size sets
of training samples. This leads to a general expression for
the expected bias and variance of the function, isolating
the effects of functional form from the underlying distri-
bution.

Pattern recognition research has considered various
questions concerning the relationship between the limited
size of the training set, the number of features, and the
estimation of some performance criterion. A number of
authors, including El-Sheikh and Wacker [1], have inves-
tigated the optimal number of features for a given finite
"design sample size in order to combat the ‘‘peaking phe-
nomenon,’’ the apparent loss of classifiability which ac-
companies an increase in the number of features without
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an increase in the number of training samples. An excel-
lent review of work done in this area is presented in Jain
and Chandrasekaran [2]. Another group of authors has
looked into the effect of the ratio of training sample size
to feature set dimensionality on the expected performance
of an empirically designed classifier used on the true test
distribution. In [3], Raudys and Pikelis catalog the de-
velopment of a number of approximate expressions for the
expected performance of the linear classifier and an exact
expression for the quadratic classifier. Asymptotic expan-
sions for the quadratic classifier have also been developed
by Han [4] and McLachlan [5]. Unfortunately, these
expressions are too complex to provide valuable insight
and their accuracy has not been experimentally verified.
Thus, the relationship between sample size and dimen-
sionality has been inferred through simulation (e.g., [3]
and [6]), the investigation of related criteria (e.g., [7] for
Bhattacharyya distance and [8] for divergence), and a look
at the performance of these classifiers tested on the design
set [9].

By applying our general expression to the Bhattacha-
ryya distance and the classifier error equation, we have
developed a useful framework for the analysis of classifier
performance, design, and testing procedures. This pro-
vides valuable insight into the relationship between di-
mensionality and sample size and the importance of mean
and covariance shifts in measuring separability. Also, we
have developed an empirical approach which will allow
the designer to estimate the asymptotic performance of a
particular type of classifier. This can be used to evaluate
tradeoffs in classifier complexity and performance, and to
determine the ratio of design samples to dimensionality
needed for a particular performance level.

II. Bias AND VARIANCE EXPRESSIONS
A. General Formulation

Let us consider the problem of estimating f(y,, - -,
y.) by f( 91, - - -, §.) where fis a given function, y;’s
are the true parameter values and y;’s are their estimates.
In this section, we will derive expressions for the ex-
pected value and variance of f ( ¥y, - - -, §.), and propose
a new method to estimate f(y;, * - -, y.)- .

Assuming that the deviation of ¥; from y; is small, f(Y)
can be expanded by a Taylor series up to the second-order
terms as -

R o of" 1 ¥f T.)
féf(Y) =f(Y) +WAY+ EU‘ <6Y2 AYAY
(1)
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where Y = [y; -+ - y;]7and ¥ = [$ - 9,17 are the
column vectors of the true parameters and their estimates,
respectively. AY = Y- Y, V7 indicates the transpose of
the vector V, and tr A4 is the trace of a matrix A.

If the estimates are unbiased,

E{ay} =0 (2)
* and subsequently

A 1 [ )
E{f} =f+ou <-6—YZ- E{AYA.Y }>. (3)

Similarly, the variance of f can be derived as

T ’ 2
E{[i AY + 1tr <af AYAYT>

n

Var { 7} 3Y 2 T\ 312

~ %tr <§% E{AYAYT}HZ}

«{(Fr)

i ry
= aYE{A.YAY } 5y

n

(4)

where the approximation from the first line to the secorid
line was made by discarding terms higher than second-
order. '

Equation (3) shows that fis a biased estimate in general
and that the bias depends on 8°f/3Y* and E{AYAY"},
where 8°f/9Y is determined by the functional form of f

and E { AYAY ™1 is determined by p(Y), the density func--

tion of ¥, and N, the number of samples used to compute
Y. Likewise, the variance depends on 9f/dY and
E{AYAYT}.

For many estimators, the effects of p(? ) and N on
E{AYAY"} can be separated as

E{AYAY"} = ¢(N) K(p(?)) (s)
where the scalar g and the matrix K are functions deter-
mined by how Y is computed. Substituting (5) into (3),

E{f} =f+ cg(N) (6)

where ¢ = 5 tr (8%f/3Y> K(p(¥))) is independent of N
and treated as a constant determined by a given underly-
ing problem. This leads to the following procedure to es-
timate f:

1) Change the sample size N as Ny, N,, - - - , N,. For
each N;, compute Y and subsequently f empirically. Re-
peat the experiment M times, and approximate E{ f } with
the sample mean of the M experimental results.

2) Plot these empirical points E{ f} versus g(N).
Then, find the line best fitted to these points. The slope
of this line is ¢ and the y-intercept is the improved esti-
-mate of f. There are many possible ways of selecting a
line. The standard procedure would be the minimum
mean-square error approach. '
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B. Parametric Formulation

In pattern recognition, most of the expressions we
would like to estimate are functions of the expected vec-
tors and covariance matrices. In this section, we will show
how the general discussion of the previous section can be
applied to this particular family of parameters.

Assume that N samples are drawn from each of two n-
dimensional Gaussian distributions with their expected
vectors and covariance matrices given by

M[ = O, E] = ]
M2 = M, Ez = A. (7)

Without loss of generality, any two covariance matrices
can be simultaneously diagonalized to I and A, and a co-
ordinate shift can bring the expected vector of one class
to zero. :

M; and Z; can be estimated without bias by the sample
mean and sample covariance '

1 N
M = — ©
! Nj§l X;
A 1 ol (,) A (l) A T
L= —— 2 (X" —- M) (X, — M;) (8)
N —1j=1

where X;i) is the jth sample vector from class i. Thus, the
parameter vector Y of (1) consists of 2(n + n?) compo-
nents

A

= [ ... 50 L@ ..
Y= [ml my m my Aoy e P

&(2)] T

A3 L
,Olll nn

(9)
A(r)

where #;’ is the ith component of M,, and &,(jr) is the ith
row and jth column component of £,. '
The random variables of (9) satisf?' the following sta-
tistical prop(egties, where Am!” = ml" — m!"” and Aaﬁ,”
r

(r

=& — ooy
1) The sample mean and covariance are unbiased:
E{Am{’} =0, E{Aay’} =o0. (10)
2) Samples from different classes are independent:
E{Am;"Am®} = E{am{"} E{am®} = 0
E{Aaj’Acfl’} = E{aa{"} E{aa} = 0
E{Am"Acl} = E{am{"} E{Aa’}
=0 forr #s. (11)

3) Diagonal I; and £, cause the mean estimate covari-
ances to be diagonal:

E{Am{"Am"} =0, fori # j
AmD2Y 1
E{Am; "} N
E{am®?) = N (12)
‘ N

where \; is the ith diagonal component of A.
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4) The third-order central moments of a Gaussian dis-

tribution are zero:

E{am{"Aaf)’} = 0. (13)

5) The fourth-order central moments,of a Gaussian dis-
tribution are known:

E{A (l)A (l)}
1 for (i #j,i=k,j=1)
N ’ /
B or(i #j,i=1j=k)
——2~—_—.% fori=j=k=1
N-1 N
0 otherwise

E{A (Z)A (2)

My for (i #j,i=kj=1)
N .’ 2

- or (i #j,i=1,j=k)
20] zgﬁ fori=j=k=1
N -1 N
0 otherwise. (14)

Note that in the equal index cases of (14) N — 1 is re-
placed by N for simplicity.

Substituting (9)-(14) into (3), the bias term of the es-
timate, E{Af } = E{ f} — f, becomes

E{Af} = !

n n

+ 20—

i=1j=1 aa(")a (")
i#j

E{A

i=1j=1 aa(')a (")
i)

E{Aaf’Aa)}

875
1 n 2 n 2
=— | 2 97 + s A;
2N [i=1gm? st g2
£33 < Of &f >
i=1i= (A (D) (D (1)
i#;j ! aoz,-j aOl,'j 0 ij 0 ji
n Py
+ A 2
i=1 30‘51'])2
n n 2 2
M Ex 121 <6 (23)8]” <2> + P) (:?)f (2)>)"'>‘f
Pt o Ol,'j aolj,
SR
+i§lm2>\,~J. (15)

Note that the effect of N is successfully separated, and
that g (N ) of (5) becomes 1 /N. This is true for any func-
tional form of f, provided f is a function of the expected
vectors and covariance matrices of two Gaussian distri-
butions. This conclusion can be extended to non- Gaussian
cases in which (13) is satisfied and E { Aa(r)Aa } of (14)
is proportional to 1/N.

Similarly, the variance can be computed from (4), re-

sulting in
n 2 i 2
1 < a i
V= o) S
i=1j=1

2
(1)
%) dory
n 2 7 2
7 n af
; (1) 2+ ; ZJ (2)
Jo i=1j=1 dors:
Il I#[ i
a a. n a
’;) {2)}“\ + 2 ];) 2>\2
aOlu 8oej,- i=1 aa,,
(16)

Note that, in order to calculate the bias and variance, we
only need to compute df/dm”, af/da’, 8%f/0m ,(')2,

lj 2
¥f/da)da’ and af/aa")aa“’ forr=1,2.

Var{f}

n n

+ 202

II1. BHATTACHARYYA DiSTANCE BETWEEN Two
DISTRIBUTIONS

A popular measure of similarity between two distribu-
tions is the Bhattacharyya distance [10]

I O AN
g(Mz—Mr) <—2“”“> (M, — M,)

lzl + I,
2

VTV

B =

(17)
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Since B is a function of M,, M,, £, and £,, it is a member
of the family of functions discussed previously.

If two distributions are Gaussian, the Bhattacharyya
distance gives an upper bound on the Bayes error, e*,

e* < ¢, = VPP ? (18)

where P; is the a priori probability of class i. The first and
second terms of (17), B, and B,, measure the difference
between the two distributions due to the mean and co-
variance shifts respectively.

When M, and £, of (8) are used to compute B, the re-
sulting B differs from its true value. The bias and variance
of B can be obtained using (15) and (16).

A. First Term By:
Since

2
11 + N

aB,/dm” and o°B,/om"*

M =

2
B, (mf” = m{"Y’,

o0 | =—

i

can be easily obtained as

dB, m® — mY 8B, m® — m"
am" 2(L+N)7 am®  2(1+N)
(19)
0’B, 0*B, 1
omV? am®? T2+ N (20)

The computation of 9B, /da’, 9°B, /aa,gl”aa,g” and

a’B,/ 8afjr>6a},-’) are more complex and presented in Ap-
“pendix 1. The results are
0B,

aBl m,-mj

- — 21
b " aa | a(lEryrn) Y
9*B, 3*B, o
o, == 0 fori #j (22)
Qg o da;'0ay;
B, B,
doj ey’ daPoay

o e
A HEN)(LHEN) [N TN
(23)
where m; = m\>) — mP. ’
Substituting (19)-(23) into (15) and (16),

1 Loe mi(1+NN)
E{AB =4y [n i ,.‘;l f=zl (1+N)(1 + )
L1+ m} 2
= (1+2) (24)
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T 4N =11+ N =t
201+ N\)(1 +2)
B. Second Term B,:

Similarly, the partial derivatives for B, are derived in
Appendix 2. They are listed as follows:

(25)

B 0’B
2 =0 and 2 =0 forr=1,2 (26)
o o'
oB. 0y 0y
(21) = 5 - (27)
da; 2(1+ ) 4
JB 6 6;j
(i) - . - (28)
da 2(1 + X)) 4N
3’B 1 1
“—;-2— == _ (29)
90V0a) 4 2(T+ N)(1 + N
0’B 1 1
2 : 2) - (30)
dar; Bl ANN 21+ N)(1 4 N)
8’B, 0’B,
- =0 for i#j. 31
(')oz,g,-l )aoc;,-” 6a,(j2)6a;,»2 ) (31)
Substituting (26)—(31) into (15) and (16),
1 n n
E{AB,} = — -
(AR} = 7y {”(” th-z
L+ A $ LN ]
(T+N)(T+N) =1+ 8)
(32)
;2 I 1\’
Var {Bz} = ;N!gl {(l + N\ a 5>
1 1 :
- 2
<1 N 2>\,.> )‘} (33)

C. Discussions and Experimental Verification

Table I shows the dependence of E{ AB, } and E{AB,}
onn and k (= N/n) for three different cases. In Case 1,
samples from both classes are drawn from the same source
N(0, I), a Gaussian distribution with zero mean and
identity covariance matrix. In Case 2, the two distribu-
tions share a covariance matrix but differ in the means. In
Case 3, the means are the same, but the covariances are
different. As Table I indicates, for all three cases,
E{AB,} is proportional to 1/k while E{AB,} is pro-
portional to (n + 1) /k. Also, note that E{ AB,} is the
same for Cases 1 and 3 because the sources have the same
mean. Similarly, E{AB,} is the same for Cases 1 and 2
because the sources share a covariance matrix.
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. TABLE I
SAMPLE BiaS EXPRESSIONS FOR THE BHATTACHARYYA DISTANCE

Case 1 Case 2 Case 3
N(O,) N(0,J) N(0,) NM,I)  N(0,) N(0,41)
m; = 2.56

m; m; == 0 m; = 0 (i#1) m; == 0

N N=1 N =1 =4

B, 0 0.82 0

B, 0 0 0.11n

¢ 50% 10% Depends on n
E{AB,)} 0.1251‘:—1 0.125"T+1 o.os—“—;{fL

Since the trend is the same for all three cases, let us
study Case 1 closely. Table I demonstrates that in high
dimensional space (n >> 1) the distortion due to the co-
variance estimate (E{AB,} = 0.125 (n + 1)/k) domi-
nates that caused by the mean estimate (E{AB;} =
0.25/k). Also, since E{AB,} = 0.125 (n + 1) /k, an
increasingly large value of k is required to maintain a con-
stant value of E{B} (= E{B,} + E{B,}) as the dimen-
sionality increases. For example, Table II shows the value
of k required to keep the value of E{B} less than 0.223.
The true Bayes error for this case is 50 percent, and
E{B} = 0.223 gives an upper bound of 40 percent using
(18). Only 16 samples (3.9 times the dimensionality ) are
needed to achieve E{B} = 0.223 in a four-dimensional
space, while 9396 samples (73.4 times the dimensional-
ity ) are needed in a 128-dimensional space. This result is
sharply contrasted with the common belief that a fixed
multiple of the dimensionality such as 5 or 10 could be
used to determine the sample size.

Since the theoretical results of (24) and (32) for bias
and (25) and (33) for variance are approximations, we
have conducted three sets of experiments to verify these
results. The first two cases are Cases 2 and 3 of Table I,
while the third, which will be called Case 4, uses both
mean and covariance differences. Case 4 uses an eight-
dimensional Gaussian data set taken from [6] with a Bayes
error of 1.9 percent, and A;’s and m;’s listed in Table III.

For Cases 2 and 3, the dimensionality ranged from 4 to
64 in powers of 2, and k was selected as 3, 5, 10, 15, 20,
30, 40, and 50. N(= nk) samples were generated from
each class according to the given mean and covariance,
and B, and B, were computed. This procedure was re-
peated 10 times independently, and the mean and standard
deviation were computed. Tables IV, V, and VI present

.a comparison of the theoretical predictions (first lines) and

the means of the 10 trials (second lines) for Cases 2, 3,
and 4 respectively. These tables show that the theoretical
predictions of the biases match the experimental results
very closely.

The third lines of Tables IV, V, and VI present the stan-
dard deviations of the 10 trials. Table VII shows the the-
oretical predictions computed from (25) and (33) for B,
of Case 2 and B, of Case 3. Again the theoretical predic-

877
TABLE 11
VALUES OF k AND N REQUIRED TO MAINTAIN E{B} = 0.223
n 4 8 16 32 64 128
k 3.9 62 107 196 39.6 73.4
N=nk 18 50 172 628 2407 9396
TABLE III
STATISTICS FOR CASE 4
i 1 2 3 4 5 6 7 8
% | 841 12,06 0.12 0.22 1.49 177 035 273
m; | 3.86 3.10 084 084 164 108 0.26 0.01
TABLE IV
Biases OF B FOR CASE 2: (a) B, (B, = 0.82), (b) B,(B, = 0)
n n
4 8 16 32 64 4 8 16 32 64
1.1101 1.0758 1.0587 1.0502 1.0459 0.2083 0.3750 0.7083 1.3750 2.7083
3 1.0730 0.9933 1.0502 1.0754 1.0825 3 02546 0.4106 0.8930 17150 3.2875
0.4688 0.3791 0.2221 0.1551 0.0955 0.0787 0.0653 0.0588 0.0776 0.1083
0.9946 0.9740 0.9638 0.9586 0.9561 0.1250 0.2250 0.4250 0.8250 1.6250
5 1.0941 1.0702 1.0396 0.9659 0.9764 5 01133 0.2791 05244 09252 1.8035
0.3867 0.2745 0.1542 0.1091 0.0733 0.0266 0.0785 0.0581 0.0302 0.0775
0.9080 0.8977 0.8926 0.8900 0.8887 0.0625 0.1125 0.2125 0.4125 0.8125
10 09593 0.9277 0.8421 0.9128 0.8911 10 00803 0.1179 0.2280 0.4365 0.8578
0.2240 0.1424 0.1045 0.0720 9.0709 0.0339 0.0191 0.0218 0.0279 0.0234
0.8791 0.8723 0.8688 0.8671 0.8663 0.0417 0.0750 0.1417 0.2750 0.5417
15 0.8802 0.8705 0.8909 0.8634 0.8730 15 00437 0.0742 0.1416 0.2894 0.5566
k 0.1634 0.1493 0.1053 0.0794 0.0493 0.0243 0.0146 0.0143 0.0257 0.0170
0.8647 0.8595 0.8570 0.8557 0.8551 0.0313 0.0563 0.1063 0.2063 0.4063
20 0.8778 0.8891 0.8261 0.8685 0.8361 20 0.0389 0.0566 0.1078 0.2099 0.4129
0.1356 0.1060 0.0929 0.0455 0.0387 0.0101 0.0140 0.0132 0.0154 0.0058
0.8502 0.8468 0.8451 0.8443 0.8438 0.0208 0.0375 0.0708 0.1375 0.2708
30 0.7901 0.8477 0.8583 0.8436 0.8373 30 0.0190 0.0344 0.0707 0.1416 0.2777
0.0702 0.0992 0.0712 0.0361 0.0366 0.0063 0.0082 0.0097 0.0098 0.0062
0.8430 0.8405 0.8392 0.8385 0.8382 0.0156 0.0281 0.0531 0.1031 0.2031
40 0.7917 0.8251 0.8578 0.8343 0.8444 40 0.0170 0.0282 0.0561 0.1034 0.2061
0.0786 0.1118 0.0522 0.0283 0.0271 0.0072 0.0084 0.0086 0.0046 0.0063
0.8387 0.8366 0.8356 0.8351 0.8348 0.0125 0.0225 0.0425 0.0825 0.1625
50 0.8524 0.8383 0.8364 0.8301 0.8290 50 0.0102 0.0219 0.0417 0.0831 0.1650
0.1060 0.0404 0.0515 0.0475 0.0287 0.0037 ©0.0062 0.0041 0.0060 0.0057
(a) (b)

(st line: Theoretical prediction,
2nd line: The mean of 10 trials,
3rd line: The standard deviation of 10 trials)

tions match the experimental results closely. It should be
noted that the variances for B, of Case 2 and B, of Case
1 are zero theoretically. This suggests that the variances
for these cases come from the Taylor expansion terms
higher than second-order and therefore are expected to be
smaller than the variances for the other cases. This is con-
firmed by comparing the variances between B, and B, of
Cases 2 and 3. Also, note that the variances of B, for Case
3 are independent of n.

In addition to the experimental verification, when n =
1, our theoretical predictions agree with those presented
for univariate Gaussian densities in Jain [7]. Note that,
because of the presence of cross-terms (e.g., A\;A;), Jain’s
univariate expression cannot be applied to the multivar-
iate case by summing the contributions of each feature
even when these features are mutually independent.
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TABLE V

Biases oF B FOR CASE 3: (a) B, (B, = 0), (b) B,(B, = 0.11 n)

NO. 8, AUGUST 1989

TABLE VII
PREDICTED STANDARD DEVIATIONS

n n

4 8 16 32 64 4 8 16 32 64
0.0833 0.0833 0.0833 0.0833 0.0833 0.5796 1.1326 2.2385 4.4503 8.8739

3 0.1435 0.1212 0.1051 0.1118 0.1061 3 0.7129 1.0732 2.4527 4.7841 9.3263
0.0971 0.0633 0.0415 0.0385 0.0160 0.1447 071653 0.2332 0.1893 0.1642
0.0500 0.0500 0.0500 0.0500 0.0500 0.5263 1.0366 2.0572 4.0983 8.1806

5 0.0489 0.0709 0.0579 0.0545 0.0605 $ 0.508f 1.0063 2.1341 4.1041 8.4000
0.0284 0.0314 0.0141 0.0209 0.0071 0.1119 0.1546 0.1129 0.0868 0.1209
0.0250 0.0250 0.0250 0.0250 0.0250 0.4863 0.9646 1.9212 3.8343 7.6606

10 0.0192 0.0267 0.0266 0.0276 0.0262 10 0.4901 0.9463 1.9345 3.8014 7.6630
0.0151 0.0124 0.0066 0.0079 0.0035 0.1016 0.0722 0.0759 0.0702 0.1206
0.0167 0.0167 0.0167 0.0167 0.0167 0.4730 0.9406 1.8758 3.7463 7.4873

15 0.0159 0.0155 0.0207 0.0166 0.0181 15 0.5085 0.9675 1.9030 3.7952 7.5133
k 0.0078 0.0049 0.0106 0.0046 0.0036 k 0.0686 0.0350 0.0567 0.0306 0.0658
0.0125 0.0125 0.0125 0.0125 0.0125 0.4663 0.9286 1.8532 3.7023 7.4006

20 0.0135 0.0156 0.0139 0.0120 0.0141 20 0.4708 0.9331 1.8277 3.7019 7.4049
0.0055 0.0071 0.0036 0.0038 0.0025 0.0658 0.0686 0.0966 0.0394 0.0672
0.0083 0.0083 0.0083 0.0083 0.0083 0.4596 0.9166 1.8305 3.6583 7.3139
30 0.0050 0.0097 0.0085 0.0087 0.0085 30 0.4478 0.9033 1.8656 3.7053 7.3493
0.0037 0.0050 0.0030 0.0014 0.0013 0.0328 0.0646 0.0411 0.0884 0.0531
0.0063 0.0063 0.0063 0.0063 0.0063 0.4473 0.9106 1.7886 3.5769 7.1536
40 0.0066 0.0082 0.0056 0.0062 0.0065 40 0.4713 0.8937 1.8058 '3.6374 7.2596
0.0045 0.0050 0.0021 0.0014 0.0010 0.0444 0.0328 0.0353 0.0563 0.0392
0.0050 0.0050 0.0050 0.0050 0.0050 0.4543 0.9070 1.8124 3.6231 7.2446
50 0.0042 0.0040 0.0054 0.0049 0.0052 50 0.4456 0.8872 1.8116 3.6279 7.2212
0.0037 0.0017 0.0015 0.0008 0.0009 0.0562 0.0506 0.0362 0.0449 0.0610

(@ (b)

(1st line: Theoretical prediction,
2nd line: The mean of 10 trials,
3rd line: The standard deviation of 10 trials)

. TABLE VI . .
BIASES OF B FOR CASE 4: (a) B, (b) B,
Theoretical Experimental
k Mean | St. Dev.
3 1.6453 1.5056 0.4995
5 1.4951 1.5104 0.1650
10 1.3824 - 1.3864 0.1997
15 1.3448 1.3365 0.1886
20 1.3261 1.3266 0.1712
30 1.3073 1.2884 0.1136
40 1.2979 1.3104 0.0658
50 1.2923 1.2997 0.0769
(a)
Theoretical Experimental
k Mean St. Dev.
3 1.4431 1.5695 0.2081
5 1.3002 1.2287 0.1446
10 1.192¢9 1.1638 0.0766
15 1.1572 1.1497 0.0523
20 1.1393 1.1255 0.0539
30 1.1214 , 1.1005 0.0337
40 |- 1.1125 1.1093 0.0405
50 1.1071 1.1063 0.0276
(v)

D. Verification of the Proposed Estimation Procedure

The proposed estimation procedure following (6) was
tested on a set of 66-dimensional, millimeter-wave radar

_ data. The samples were collected by rotating a Camaro
and a Dodge Van on a turntable and taking approximately
8800 readings. Sixty-six range bins were selected and the

ﬁ1 for Case 2 ﬁz for Case 3

k?® 4 8 16 32 64 for all n

3 0.3531  0.2497 0.1765 0.1248 0.0883 0.1732

5 0.2735 0.1934 0.1368 0.0967 0.0684 0.1342
10 0.1934 0.1368 0.0967 0.0684 0.0483 0.0949
15 0.1579  0.1117 0.0790 0.0558 0.0395 0.0775
20 0.1368 0.0967 0.0684 0.0483 0.0342 0.0671
30 0.1117  0.0790 0.0558 0.0395  0.0279 0.0548
40 0.0967 0.0684 0.0483 0.0342 0.0242 0.0474
50 0.0865 0.0612 0.0432 0.0306 0.0216 0.0424

resulting 66 dimensional vectors were normalized by en-
ergy. The vectors were then selected at each half-degree
to form 720-sample sets. The Bhattacharyya distance es-
timated from 720 samples, By, was 2.29 which corre-
sponds to an upper bound of the Bayes error of 5.1% (e,
= 5.1 percent). These 720 samples per class were then
divided into two sets of 360 samples. Since two sets were
available from each class, there were 4 possible combi-
nations of selecting one set from each class and forming
a two-class problem. B was computed for each combina-
tion and the average of the 4 cases was taken. The result-
ing Bygo was 3.27 (e, = 1.9 percent). Since g(N) of (6)
is 1 /N for this case, two equations, Bm =229 =B+
¢/720 and Bsygy = 3.27 = B + ¢ /360, were set up and
solved for B. Note that we replaced E { By, } by By, be-
cause Var {B;,,} was expected to be small from the ex-
perimental results for Cases 2 and 3. The resulting B was
1.31 (¢, = 13.5 percent). On the other hand, when all
available 8800 samples per class were used, Bggy, was
1.51 (e, = 11.0 percent).

Although the radar data is not guaranteed to be Gauss-
ian, the above results indicate that the prediction of the
true B from a relatively small number of samples (720 per
class for the 66-dimensional space) seems possible. Also,
note that Bsey, By, and Bggoo are significantly different.
Without the proposed compensation, Bsg, and B, could
not provide a useful upper bound of the Bayes error.

IV. CLASSIFIER DEGRADATION

An even more important measurement in pattern rec-
ognition is the expected performance of a given classifier.
The discriminant functions for some of the popular clas-
sifiers, including the linear and quadratic classifiers, are
functions of M,, M,, L, and L,. Thus, they are the mem-
bers of the family of functions presented in Section II.
However, unlike the Bhattacharyya distance, the degra-
dation of the expected classifier performance due to a fi-
nite sample size comes from two sources: the finite sam-
ple set-used for design and the finite number of test
samples. Thus, we need to study their effects separately.

A. Effect of Test Sample Size

When the design and test samples are independent, the
effect of test sample size is well-understood. Let us as-
sume that a classifier is given and ¢; (i = 1, 2) is the true
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probability of error from class i (w;). In order to estimate
€;, IN; samples from w; are drawn and tested by the given
classifier and the number of misclassified samples 7; is
counted. The random variables 7, and 7, are independent
and each is binomially distributed as [10]: '

PI‘{7A'1 =T],%2=7'2} =

(34)

¢; is estimated by 7;/N; and subsequently, the total prob-
ablhty of error is estimated by

z i

(35)

2

where P; is the a priori probability of w;. The expected
value and variance are known:

E{é} = €

2
Var {&¢} = 2 P} ————E“(IN_ ).

(36)

(37)

B. Expression of e
The effect of design sample size is much harder to ana-
lyze. In order to discuss this subject, we need to express
the probability of error € in terms of the classifier. Let us
assume that the classifier is defined as
wl

| h(X) = 0.

w2

(38)
The characteristic function of A for w; is
¢i(w) = E{e’" |} = S e Op(X) dX  (39)
P i

where § indicates the entire n-dimensional space and
pi(X) is the density function of X for w;. Since the char-
acteristic function of % is the Fourier transform of the den-
sity function of & (except for the sign of jw), the density
function of % for w;, ¢; (X ), can be obtained by the inverse
Fourier transform as

+ o0
ql(h) = % S_m d)i((.i))e-jwh dO) (40)
The probabilities of error for w; and w, are
® 0
o=l aman=1-[ qma (@)
0
€ = S_w q.(h) dh. (42)

According to Fourier transform theory, the integration in
the A-space can be converted to multiplication by 1 /jw in
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the w-space. That is,
{
)= | _atna
+ oo
S ——(bi‘(w) e dow.

Jw

_%(0) 1
2 27T

Inserting g;(0) into (41) and (42), and realizing that (39)
guarantees ¢;(0) = 1,

(43)

€ = Pie; + Pyey
1
+ P, — !
2 27
+oo .
i S ¢2(°’)d

Jjw
1 1 (T [ e
SN
2 2mi-» Js jw
. [Plpl(X) - P2p2(X)] dX dw. (44)

When the design sample size is finite, the parameters Y of
the distributions are estimated and the discriminant func-
tion is based on these estimated parameters Y. That is,

h(X) = h(X, ¥) is a random variable shifted from h(X,

Y). Taking the expectatlon with respect to ¥,

1 S*“S E{e/0}
N

- d(‘l)“‘Pz“
Jw 2T

E - + —
{ } 2T J-o Jjw
- [Pip(X) — Pypy(X)] dX dw.  (45)
Treating /") as fin (3)
E{ejwﬁ()()}
- Ii i e onX)
= ¢/ + = E{Ay;
¢ 2i=1j=1 Qy;dy, {ayiay}
L L
= glwh(X) +J ejwh(x DY
2 i=1j=1
*h(X oh(X) dn(X
[ (X) |, , 9h(X) Oh( )}E{Ayiﬁ\yj}'
a)’ia}’j dy; a)’j
(46)

Substituting (46) into (45) and realizing E{Ae} = E{¢}

— €,

E{a) = g &2 p E {a%m

—oo ay,ay,
9h(X) ah(X)}
w——= 22N EL Ay Ay,
ayi ayj { J}
X /" OPp|(X) — Pypy(X)] dX dow.

(47)

Equation (47) is a very general expression for E{Ae}
which is valid regardless of the selection of A (X ), P; and
pi(X). The term E { Ay;Ay;} gives the effect of the sam-
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ple size N. Therefore, if (5) is satisfied, E{Ae} can be
expressed by cg (N ) where ¢ is determined by h(X), P;,
and p;(X), and the proposed estimation procedure fol-
lowing (6) can be applied. Furthermore, if #(X) is a
function of M; and I;, g(N ) becomes 1 /N.

C. The Quadratic Classifier for Gaussian Distributions

When a quadratic classifier is designed from N training
samples, drawn from two simultaneously diagonalized
distributions, N(0, I') and N(M, A), with a priori prob-
abilities P, = P, = 0.5, the discriminant function can be
found as

~ A T A
h(X) = QL(X - M) X, l(X - M)
A T _ - A
— (X - M) Ly N(X — M,) + Ln | £

— 3 1n |5, (48)
where M, and E are estimated by (8). Formmg Y as in (9),
we only need o compute 9k /dm”, dh/da 9,
h/om?, 9h/0ada( and 3*h/dc <’>aaj,’), since
E{Ay;Ay;} = 0 for other combmatlons

With M; and L; given in (7), these partial derivatives
can be easily computed and are listed in Appendix 3. Sub-
stituting these results into (47),

1 L L
'2' {S‘] 2 [ ] {Ayiij}
i=1j=1
2
= [(n + 1) E}l { e _)\imi) }
+]wlin + —2- lzi j%l
2 2
. {x?x} + (x — m))\l();f - m) }ﬂ
' 1
& X,fq(X, w). (49)
Thus, (47) may be rewritten as
E{¢) =+ (50)

where

1
C(I:E

- [Pipi(X) (51)

That is, c, is determined by the underlying distributions,
and stays constant for experiments with various sample
sizes. Thus, as was proposed in Section II, we may choose
various values of Nas Ny, - - - , N,, and measure ¢. Com-

+ o0
S S f;[(Xa w)ejwh(X)
—~00 S

- PZPZ(X)] dX dw.
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puting E{&} from several independent trials, we may
solve (50) for € and c, by a line fit technique.

The above technique was applied to the radar data. The
entire 8800-sample set was divided into two groups, each
consisting of 4400 samples. When one group was used to
design a quadratic classifier and the other was used for
testing, the error &9 was 17.2 percent. Then, 720 sam-
ples were selected from the design group and used to de-
sign a quadratic classifier. The entire 4400 samples of the
test group were tested, resulting in €;59 = 21.4 percent.
Such a large number of test samples was used to eliminate
the variation of ¢ due to test sample size. The same ex-
periment was performed for 360 samples. Since there were
two groups of 360 samples from 720 samples for each
class, four error estimates were obtained; they were av-
eraged, resulting in &g, = 25.4 percent. &, and the av-
eraged &35 were used to obtain e by solving (50), resulting
in e = 17.4 percent. This result is very close to &y =
17.2 percent, and confirms that we can predict the poten-
tial performance of the quadratic classifier even if the
available sample size is relatively small for a high dimen-
sional space.

Although we do not need to know the value of ¢, to
conduct the above experiment to estimate e, ¢, can be
computed by carrying through the integration of (5 1). Let
us consider the simplest case, Case 2 of Table I, in which
pi(X) and p,(X) are Gaussian N(0, I) and N(M, I),
respectively. Then, e/*"(X) p:(X) may be rewritten as

e/ (X)=—\/.§-e ﬁ/SN(,,< > B> Ny(joM, I)
(52)
jwh(X _\/? -B/8 1
e ”Pz(X)—TE‘ ﬁ/N<2 B>
Ny((1 + jw)M, I) (53)

where 8 = M"M. N, (a, b) and Nyx(D, K) are Gaussian
density functions of w and X with the expected value of a
and variance b for N, and the expected vector D and co-
variance matrix K for Ny.
Smcefq(w X) is a linear combination ofx“ ”(a b =

4) as is seen in (49), | f,(X, w) Nx(-, ) dX is the linear
combination of the moments of Ny( -, -). The result of
the integration becomes a polynomial in w

V(@) = 5 (o)) F B0a) + 5 (n + 5+ 36) (o)

¢§m+5+wxmf

+ i [n(n +7) + (5n + 9)B + 62](ju)

- (n+1)8

> (54)
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where — and + of F are fori = | and 2, respectively.
Again, the | v;(w) N, (-, ) dw is a linear combination
of the moments of N, (-, -). Thus, ¢, forPp =P, = 0.5
is

e P/3

1
C, e
" 421B

-[# + <1 +§>n+ <%—§— 1>} (55)

E{&} can be predicted theoretically by ¢ + c,/N. Ta-
ble VIII lists the theoretical predictions for various N and
k (= N/n) for the distribution parameters given in Case
2 of Table I. These parameters yield 8 = 2.56 and ¢ =
0.1 (10 percent). Also shown in Table VIII are experi-
mental results verifying these predictions. For each com-
bination of n and k, N samples were generated from each
class and used to design a quadratic classifier which was
then tested on true distributions. Novak developed an al-
gorithm which numerically computes the error of any dis-
criminant function with a quadratic form tested on two
Gaussian distributions [11]. This procedure was repeated
10 times. The second and third lines in Table VIII show
the means and standard deviations of the experimental re-
sults. The theoretical prediction accurately reflects the ex-
perimental trends. Also, the standard deviations are small.
Notice that as n gets larger, k must increase to maintain
the same performance, since ¢, is proportional to n* for n
>> 1. This conclusion agrees with Pipberger’s experi-
mental results [6] and the numerical tables in Raudys and
Pikelis [3]. Together, these present design guidelines sig-
nificantly different from the traditional rules of thumb
which suggest a particular fixed value of k for all values
of n.

D. The Linear Classifier for Gaussian Distributions

The analysis of the linear classifier proceeds in a similar
fashion. Fisher’s linear discriminant function is

h(X) = (M, — M) T 'x

+ 3(M{Z'M, — MIT7'M,)  (56)
where L = (Iy + Z,) /2. Again, we assume, without loss
of generality, that M, = 0, M, = M, £, =Jand L, = A.

The partial derivatives of h can be computed as is shown
in Appendix 4. Thus, (47) becomes

Efe} = ety (57)
- [Pip(X) — Pypy(X)] dX dw (58)
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TABLE VIII
QUADRATIC CLASSIFIER DEGRADATION FOR CASE 2

n

4 8 16 32 64
0.1450 0.1689 0.2115 0.3067 0.4894

3 0.1668 0.2041 0.2204 0.2673 0.3131
0.0351 0.0235 0.0289 0.0195 0.0133
0.1270  0.1414 0.1691 0.2240 0.3336

5 0.1403 0.1640 0.1734 0.2081 0.2554
0.0211 0.0186 0.0091 0.0057 0.0074
0.1135 0.1207 0.1345 0.1620 0.2168

10 0.1152 0.1240 0.1366 0.1573  0.1934
0.0081 0.0061 0.0070 0.0054 0.0085
0.1090 0.1138 0.1230 0.1413 0.1779

15 0.1086 0.1184 0.1232 0.1415 0.1658
k 0.0044 0.0061 0.0042 0.0053 0.0042
0.1067 0.1103 0.1173 0.1310 0.1584
20 0.1077 0.1105 0.1190 0.1393 0.1513
0.0021 0.0023 0.0051 0.0022 0.0032
0.1045 0.1069 0.1115 0.1207 0.1389
30 0.1054 0.1071 0.1114 0.1307 0.1365
0.0019 0.0021 0.0020 0.0019 0.0022
0.1034 0.1052 0.1086 0.1155 0.1292
40 0.1037 0.1057 0.1087 0.1156 0.1275
0.0024 0.0013 0.0013 0.0013 0.0018
0.1027 0.1041 0.1069 0.1124 0.1234
50 0.1025 0.1044 0.1068 0.1125 0.1221
0.0013 0.0010 0.0013 0.0009 0.0007

(1st line: Theoretical prediction, 2nd line: The mean of 10 trials,
3rd line: The standard deviation of 10 trials)

11 =N (1 + N)m,
X = >, | AR i Sal A A
fi(X,0) = % L o @ m) S
mi " 1 + >\l>\j jl
(1+N\)i=t L+ N

jw : x? (x; — m-)2)\-
+ 1 [4 2 L 4 L

20 = (1 + ) (1 +X)

+ 2] . .
S (A1 + )

. {mt-(2xj - m;) + m(2x; — ml-)}:|. (59)

Again, ¢; is determined by the underlying distributions,
and € can be estimated from experiments with various N.
Also, since f;(X, w) is a linear combination of x%(a =
2), ¢; can be theoretically computed for Case 2 of Table
I, resulting in

¢ = L e_ﬁ/8[< §>n - }
I 2225 1+ 2 1] (60)
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TABLE IX
LINEAR. CLASSIFIER DEGRADATION FOR CASE 2

n

4 8 16 32 64
0.1273  0.1287 0.1294 0.1298 . 0.1300

3 01437 0.1436 0.1336 0.1302 0.1319
0.0365 0.0174 0.0135 0.0081 0.0040
0.1164 0.1172 01177 0.1179 0.1180

5 0.1165 0.1223 0.1207 0.1199 0.1207
0.0128  0.0153 0.0071 0.0048 0.0041
0.1082 0.1086 0.1088 0.1089 0.1090

10 0.1050 0.1089 0.1093 0.1086 0.1092
0.0030 0.0041 0.0024 0.0021 0.0019
0.1055 0.1057 0.1059 0.1060 0.1060

15 0.1048 0.1080 0.1064 0.1058 0.1064
k 0.0030 0.0032 0.0027 0.0013 0.0012
0.1041 0.1043 0.1044 0.1045 0.1045
20 0.1039 0.1039 0.1058 0.1040 0.1045
0.0021 0.0018 0.0026 0.0011 0.0008
0.1027 0.1029 0.1029 0.1030 0.1030
30 0.1036 0.1033 0.1027 0.1033 0.1028
0.0023 0.0021 0.0009 0.0006 0.0006
0.1020 0.1022 0.1022 0.1022 0.1022
40 0.1022 0.1027 (.1021 0.1023 0.1022
0.0021 0.0014 0.0009 0.0005 0.0004
0.1016 0.1017 0.1018 0.1018 0.1018
50 0.1016 0.1021 0.1018 0.1018 0.1017
0.0011 0.0007 0.0005 0.0004 0.0003

(1st line: Theoretical prediction, 2nd line: The mean of 10 trials,
3rd line: The standard deviation of 10 trials)

Equation (60) was experimentally verified in the same
manner as (55). The results are shown in Table I1X.
Comparison of (55) and (60) reveals an important dis-
tinction between quadratic and linear classifiers. For Case
2, the two covariances are the same. Thus, if the true un-
derlying parameters are used, the quadratic classifier of
(48) becomes identical to the linear classifier of (56).
However, when the estimated covariances are used, )51 *+
£, even though L, = I,. Thus, the classifier of (48) dif-
fers from that of (56). As a result, E{Ae} for quadratic
is proportional to n*/N (= n /k) while E { Ae} for linear
is proportional to n/N (= 1/k) as in (55) and (60) when
n >> 1. Although it depends on the values of n and 3,
we may generally conclude that ¢, is larger than ¢, for n
>> 1. This implies that many more samples are needed
to properly design a quadratic classifier than a linear clas-
sifier. Novak reported in [11] that the linear classifier is
more robust (less sensitive to parameter estimation errors)
than the quadratic classifier, particularly in high dimen-
sional spaces. Our results support his claim both theoret-
ically and experimentally.
Also note that for large n, ¢;/N is proportional to 1/k.
_This indicates that, as far as the design of a linear clas-
sifier is concerned, a fixed multiple could be used to de-
termine the sample size from the dimensionality. This co-
incides with the conclusions of many reports in the past.
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However, (60) indicates that the value of the multiple de-
pends on 3, which measures the separability between two
distributions with a common covariance matrix.

V. CONCLUSIONS

The main purpose of this paper was to investigate the
effect of finite sample size parameter estimates on the
evaluation of a family of functions. To this end, we have
presented general expressions for the expected bias and
variance in terms of the statistical properties of the param-
eter estimates.

Applying these expressions to the Bhattacharyya dis-
tance has provided insight into the relationship between
the dimensionality and the number of training samples and
their effect on measuring separability due to mean and
covariance shifts. Applying them to-classifier evaluation
equations, we have derived explicit expressions for the
degradation of the ‘quadratic and linear classifiers. This
provides a new guideline for the selection of the number
of samples or features necessary for a certain level of clas-
sifier performance. We have provided theoretical evi-
dence that, as the dimensionality increases, covariance-
based similarity measures and the quadratic classifier re-
quire an increasing multiple of samples. We have also
presented support for the claim that the linear classifier is
more robust. '

Finally, the form of the bias expression allows the de-
pendence on the sample size to be separated from the dis-
tribution-specific terms. Since the distribution and dimen-
sion are fixed for a given sample set, an empirical
approach was employed to use estimates of expected per-
formance for different sized samples to find an estimate
of the asymptotic performance. This allows relatively
small sample sets to provide accurate, unbiased estimates.

APPENDIX 1
COMPUTATION OF THE DERIVATIVES OF B,

In order to compute the derivatives of B, we need the
following formula for matrix differentiation [12].
9A™! A
=—A"'—A" = —47U(, j)a™!
da;; da;
where a; is the i, j component of a matrix A4, and I(i, j)
is a matrix with an i, j component of 1 and all other com-
ponents equal to 0. The s, r component of (A1) is

(A1)

94~ - -1
1: aaij }Sl - _[A ]S,'[A ]jf' (Az)
Applying (A1) repeatedly,.
0’4"
——— =4"! 94 A7, j)A™!
aa;jaak[ E)ak,
94
+ AT, AT — A
(i) day
= A"k, 1) A7I(i, A
+ A7) AT Ik, DA™ (A3)
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and

0*47! . N .
[aaijaaldlx =14 ]Jk[A ]u[A ]j,
+ [A—l]“[AMl]jk[A'_]]l[

In the computation of the derivatives of B, with respect
toof,leed =5 = (L, +5,)/2and M = M, — M,
from (7).

From (17), (Al), and (A2)

(A4)

B L g LB gy
oat” 8 2 9a'”
ij Y
1 — _
= ——M'T7UG, )M
16
— 1 : . -1 -1
6.2 2 [ELIET] mom,
L s s 28 25

mgm,

—Rs=lt=l 1+ )\,1 + )\J

A+ N1+ )
where 6; = 0 or 1 depending oni # jori = j and m; is
the ith component of M.
Also from (17), (A3), and (A4)
9B, =1MT E—ll(i>j)§—11(isf)§—1
aa,(j’)aal(j’) 8 2 2

+ 5! I(Z’J) Tl [(lh])E—IJM

2 2
| - _
- Tésgl 1§| [E l]Si[E ]]ji[z l]jtmsm[
1 &« 28, 26, 26
— Z Z si 'ji )j
16s=1=11 + N, 14+ N1+ )\jmsmt.
Likewise,
OB _
(r)q (r)
1o s 10, J) <2 I(j, i) =
g™ [ 2 2
s 10, 1) w1 10, J) =-
: ! Yy UM
+ X > 5
_ i n Zn: 26“' 261] 26“ m
32 s=11=1 1+)\i1+)\j1+>\i sy

N 205 28 28,
T+ N1+ A1+ N,

m; m
{(1 N (s A1+ xi)J'
(A7)

B
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Equations (AS), (A6), and (A7) are shown in (1), (22),
and (23) respectively.

APPENDIX 2
COMPUTATION OF THE DERIVATIVES OF B,

From [12], if a matrix A4 is symmetric

aln IAI _A—lT_A—l
oa 7T (A8)
or
J1n |A| B
T (49)
Using (A1),
#ln|A| o4 |
= = —A"I(k, 1)A™"
aAaak, aak, (k, )A (AIO)
or
9 In |A| 1 1 1
—_— = - - - = — - -1
da;day (471, D™, (471, [47'],.

(A11)

Since B, = 31In |E| — §1n | I | — 4 | ;| from (17) and
L= (X +Ly)/2,

B, 11 =, 1 125 1

=--[E7]. - = L= i

dall 225 5 By 41 + )\, 4%
(A12)

B, 11 —_ 1 1 25 1 9;

==21% S =—-—23 _ -4

o) 2215y 2[5, 41+ N 4N\
' (A13)

Equations (A12) and (A13) are shown in (27) and 28),

‘respectively.

The second order derivatives of B, are obtained by using
(A11): '

0’B, 11 = - 1
e = 5 ETLET 4+ - [E7YL[E5Y
0o 2 By 4 g IR,
(A14)
0’B, 11 - = 1
——= = = [T [T+ >[5 [0
aaf-;’aa}{) 24 [ ]’1[ ]f’ 4 [ ]‘1[ ]J’
(A15)
Therefore,
) _
_(3”1’2_m -1 2 2 1 (A1)
o By 81+ N1 +)N 4
B, _ 1 2 2 111
3(13?)3&5]2) 81+ N1 +N 4NN
(A17)
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_ OB, =0 fori#j _T0) ——I—(X ~ M) [551G, j) (i ;!
aa’(j,-)aaj(ir) . (A18) P (2)3 (2) ) 2 2 > J 2 s J ) &2
Equations (A16)-(A18) are shown in (29)-(31). + E{'I(i,j) E{'I(i, j)E{‘](X — M)
APPENDIX 3 1., ~
THE DERIVATIVES OF h FOR THE QUADRATIC T2 (X215 ]jj
CLASSIFIER
The derivatives of & with respect to m." can be obtained 11 fori # j (A26)
easily from (48) as follows: 2 NN

0n(X) _ 0h(X) _ . Ih(X) _ 1 Thsmlyrs i\ pmlr) 5 oyt
a—m“ - _El (X - M]), 3M2 - —22 (X - M2) aal(j])aaj(ll) - E (X - M[) [El I(l’]) El I(]’ Z)El
2 : (A19) +ET0, D) B )BT (X - M)
3 —4 I 5 = — 9 . 1
oM} 0M; -5 [ET,[E0,
Using M, =0, M, = M, L, = I, and £, = A of (7),
1 n n
oh(X oh(X L —m —~ Z 8,8::6; +
((1)) = —x,, ((2)) _x m (A21) 2 - § (8505 6;0x, %, + &, g 0ii 00X x;)
om; am; A )
Ph(X (X 1 ~ 5 09
fl)z) -1, fm) = ——.  (A22) 2"
om; om; Ai 1 1
= = (x? 2y — = 5.
In order to derive the derivatives with respect to oz,(j ) D) (xi + x) 5 0 (A27)
we need the derivatives for matrix inversion as in Appen- pens (X) ;
dix 1‘ and the derivatives of the log-determinant as in Ap- o= 5 (X - MZ)T[E{II(i,j) ', i)z,
pendix 2. They can be computed as follows: doj dayj; 2
1 (s iy y=lyr: cyye—l _
) — (= )81, ) 5 ) AU DG DT )
C!,-j 1
L -5 [0,
5 [El ]U n n
1 .\l ]J 61!
1 1 = _5 g =Z )\ }\ )\ (‘x‘ - ms)('xt - mt)
L e, )> Lo
oh(X 1 ) === (x —m)(x, — m, et
- OO0 = L (x — )51, ) 57X — M) Ry 2NN
ij 1 :_1<(x—m) ( j)> 0;;
2 2
___2_[251][] 2 AN )\)\ 2}\1)\1
A28
(x5 —m)(x —m) 13 A4 . fons into (4 btai ( )
=5 A, BEEY ( ) Plugging all these equations into (47), we obtain (49).
32h( X) APPENDIX 4
m = (X M) [El_ll(i,j) (i, )BT THE DERIVATIVES OF & FOR THE LINEAR CLASSIFIER
The derivatives of 4 with respect to m; " can be obtained
+ 3L 7)) 0T GET X - M) from (56) as follows:
1 oh(X) — 3l -1
E[E‘ S 1, oM, - LTX + 7'M, (A29)
n n 1 ah(X) o—1 -1
= — = 8.8. ——— =135 - L M A
220 8885 5 8by oM, X 2 (A30)
1 o h(X) —_
=3 fori # j (A25) PYYE: =y (A31)




FUKUNAGA AND HAYES: SAMPLE SIZE IN CLASSIFIER DESIGN

Th(X) _ 5o

oM3> ’
UsingM, =0, M, = M,Z, =1,Z, = A,andL = (] +
A)/2,

(A32)

oh(X 2x; oh(X 206 — m;
_—% - -= ) ((2)) = b = m) (A33)
om; I+ N am! 1+ X\
2 2
X 2 *h(X 2
ahfng _ , (23 _ (as)
The derivatives with respect to a,(j') are computed as fol-
lows:
h 1 —
a”::——MﬁTVQJ)E”QX;A@
aa,.,’ 4
1 & & 28, 25
= —— 2 _
4s5=1:=11 +)\,-1+)\ij( X = m)
m;(2x; — my)
- A3
(T+2)(1+N) (A35)
O’k |- _ B
(R e — _MT E—ll -, . 2—11 .7 . E_l
aalﬂj’)aa’(jr) 8 [ (l ]) (l ])
+ 70, ) TG, )T (2X — M)
LS 28 2 2
4s=1:1=11 +>\11 +>\jl +>\j
: ms(2x, . mr)
=0 fori # j (A36)
0*h 1 _ _ B
J e — _MT E—]I ., . E_ll ,’ . E_]
9oy 8 [Z7(, ) (J, 1)

+T7(j, ) TG, )T (2X — M)
i 25si 26] 25i1

T+ N1+ N1+ N
205 28 2%

L+ NL+NT+ N

V] =

1
8 s

I t=1

ms(le - ml)

__m(2x —my) m;(2x; — m;)
(T+N)(T+N) (1400 +N)
(A37)

Plugging all these results into (47), we obtain (59).
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