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Abstract—Social media forms a central domain for the
production and dissemination of real-time information. Even
though such flows of information have traditionally been
thought of as diffusion processes over social networks, the
underlying phenomena are the result of a complex web of
interactions among numerous participants.

Here we develop alinear Influence Model where rather
than requiring the knowledge of the social network and then
modeling the diffusion by predicting which node will influence
which other nodes in the network, we focus on modeling the
global influence of a node on the rate of diffusion through the
(implicit) network. We model the number of newly infected
nodes as a function of which other nodes got infected in the
past. For each node we estimate an influence function that
quantifies how many subsequent infections can be attributed
to the influence of that node over time. A nonparametric
formulation of the model leads to a simple least squares
problem that can be solved on large datasets.

We validate our model on a set of 500 million tweets and a
set of 170 million news articles and blog posts. We show thalé
Linear Influence Model accurately models influences of nodes
and reliably predicts the temporal dynamics of information
diffusion. We find that patterns of influence of individual
participants differ significantly depending on the type of the
node and the topic of the information.
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influenced) orinactive and active nodes can then spread
the contagion (information, influence, disease) along the
edges of the underlying network. Parameter estimation of
such models is challenging due to the heterogeneity of the
nodes and data sparsity. Only recently has the availaloifity
large social network and corresponding diffusion data made
it possible to estimate such models in practice [14], [30].

When using such models and fitting them to real-world
data one makes several assumptions: (a) complete network
data is available, (b) contagion can only spread over the
edges of the underlying network, (c) the structure of the
network itself is sufficient to explain the observed behav-
ior. However, in many scenarios, the network over which
diffusion takes place is in fact implicit or even unknown.
Commonly, we only observe when nodes got “infected” but
not who infected them. In case of information propagation,
people usually discover new information without expligitl
acknowledging the source. In word of mouth and viral mar-
keting settings, we only observe people purchasing preduct
or adopting new behaviors without explicitly knowing who
was the influencer that caused the adoption or the purchase.
Similarly, in virus propagation, we observe people getting
infected without knowing who infected them. Moreover,
many times an activation of a node is not just a function of

The information we experience comes to us continuouslypa social network but also depends on many other factors

over time, assembled from many small pieces, and conveygle imitation and recency. For example, people prefer the

through social networks as well as other means. The mergy,qq; recent information, and they discover new information
ing of information, network structure, and flow over time 5. a1e decisions by using many different means, like the
opens interesting questions about the large-scale bahiavio gearch engines, media sites, online forums and blogs or
information networks. _ _ employing their social networks. Thus, even though flows of
Even though the diffusion of information has been anjnformation and influence have traditionally been thought o
active research area recently [7], [12], [26], [28], model-55 giffusion processes over underlying social networkd [13
ing the diffusion in social networks has proven to be a[15], [29], [31] existing models and formulations may be

challenging task. It is difficult to obtain large scale diffu 44 constrained to capture the complexity of the underlying
sion data and to identify and track on a large scale th‘?)henomena.

elements, such as recommendations [25], links [27], [28],

tags [8], [7], topics [3], phrases or “memes” [26], that @te Modeling diffusion and temporal variation. Here we

and propagate through networks. Even if one does obtaiaddress the above issues by developing a model of diffusion
large scale real-world diffusion data, however, the isstie owhere no explicit knowledge of the network is necessary.
modeling the underlying process still remains. Traditiypa Rather than predicting which node in the network will
models of diffusion and cascading behavior have formalizednfect which other nodes, we focus on modeling the global
the spread of ideas, information and influence as process@luence a node has on the rate of diffusion through the
taking place on social and information networks [13], [15], (implicit) network. Models of diffusion generally ignorigrte

[31], where each individual node is eithactive (infected, and operate in discrete epochs. Instead, we accuratelylmode



not only the influence each node has on the diffusion but alsand the rate of information diffusion. We find that influence

how the diffusion unfolds over time. functions exhibit distinct shapes depending on the node typ
Consider the diffusion of information in online media, (newspaper, news agency, blog), and the topic of informa-

where no explicit network of who spreads the informationtion. We also find that Twitter users who have the most

to whom exists. As the information propagates, a blogger ofollowers are not the most influential in terms of informatio

a website gets “infected” when it mentions the information.propagation.

In such cases individuals and websites may act in divers@jications. Estimating the influence of a node on the
ways: News wire services play an amplifying role, blogs gitsion process is important as it gives us a direct way
can serve both as early detectors and elaborators (or ech quantify patterns of influence and roles different nodes
chambers), while the mainstream media imparts a dominarjiay in the diffusion of various types of contagions (topics
force in the direction the news cycle takes [23], [16]. Forof jnformation, types of products). The model allows us to
example, some websites may act as “influentials” or early,egjct the future adoption of the contagion and to quantify
adopters [32]. Bloggers and mainstream media are pushinNge rejative influence of nodes, and thus helps us answer
new content into the system in different manners [22], [11],q,estions such as: What is the influence of a particular node?
and often the content generated by blogs is regarded to hg,\ does its influence change over time?
more credible than that from the mainstream media [21].  Eyen though we present our model in the context of
In this paper we aim to develop an understanding of thene information diffusion and adoption in social media,
mechanisms by which the rate of diffusion rises and decaygur work is also applicable to many other settings. Most
over time. What causes certain information cascades to 9royenerally, we can think of a contagion (information, virus,
large and why others remain small? And, what are the rolegnovation) that is spreading through the network but we
of different participants in the dynamics of diffusion? only observe its volume (the number of newly infected

Linear Influence Model (LIM). We consider the temporal Nodes) over time. Now, based on the times when a small
variation in a diffusion-based framework and build on theNUmber of nodes got infected by the contagion we model
view adopted by the literature on social influence [10], [20] the influence of these nodes on the overall volume and the
We formulate theLinear Influence Model (LIMpy starting temporal dynam|cs of the diffusion. This setting naturally
with the assumption that the number of newly infected node&PPlies to viral marketing [6], [18], where we observe peopl
depends on which other nodes got infected in the past. WRUrchasing products or adopting particular behavior witho
then model the number of newly infected nodes as a functio§XPlicitly knowing who was the influencer. Thus, for viral

of the times when other nodes got infected in the past. In thi§1arketing, estimating the influence functions (i.e., homyna
model. each node has amfluence functiorassociated with Subsequent purchases a node influences) is of considerable

it. Then the number of newly infected nodes at timis a  Interest. Similarly, in epidemiology and virus propagatio
function of influences of nodes that got infected before time/V€ Observe people getting sick without usually knowing how
t. Going back to our example of information diffusion, we they got infected [4]. Here our model allows us to estimate
assume that the number of websites (i.e., nodes) that menti¢h® number of subsequent infections produced by each node
particular information depends on which other websitegVithout the knowledge of the network.
mentioned the information beforehand. Then one can view
the website’s influence function as follows: after website
u mentions the information at time this causes additional ~ Next we formally introduce the.inear Influence Model
I,(1) other sites to mention the information in the next time (LIM). Even though our model is widely applicable, we
step,,(2) new mentions after two time steps, and so on. _restric_t our dis_cussion to the setting of information chhm

We show that node influence functions can be efficiently" online media, where we track nodes (blogs, mainstream
estimated by formulating a regression task where the goal i&'€dia, or users on Twitter) mentioning particular pieces of
to learn an influence functiof, (t) for each node: such that information (Twitter hashtags, or short textual phrases).
the overall number of newly infected nodes at timis the ~ Model formulation. Consider a set of nodes that participate
sum of influences of previously infected nodes. We modeln a diffusion process. As the information diffuses, nodes b
influence functions in a non-parametric way and show thatome “infected” when they adopt (mention) the information.
they can be estimated using a simple least squares proceduwge consider the setting where we observe only the tigne

We experiment on two massive real world datasets: avhen a particular node. mentioned the information and
corpus of 500 million Twitter posts, and a set of 172 do not require the knowledge of the underlying network.
million news articles. We model the information diffusioni We define thevolume V(¢), as the number of nodes that
these two datasets by estimating node influence functiongnention the information at timeé. We aim to model the
Experiments show that our model outperforms standard timgolume over time as a function of which other nodes have
series forecasting methods when predicting the magnitudmentioned the information beforehand.

Il. PROPOSEDMETHOD



namics of diffusion. This is especially true in online media
where a diverse set of participants (blogs, newspapers, TV
stations, news agencies) play very different roles and have
very different impacts on the overall dynamics of diffusion

To account for this diversity we use a non-parametric
approach. This way we do not make any assumptions about
the shape of the influence functions and we let the model
estimation procedure find the most appropriate shapes. We
achieve this by considering the time to increase in discrete
intervals (e.g., one hour). Then we can represent an infauenc
function I,,(1) as a non-negative vector of length where
1" value represents the value bf(l). Setting the length of
vector I, to L simply means that the influence of a node
drops to zero aftel. time units.

Such non-parametric formulation of the Linear Influence
w Model makes no assumptions about the shape of individual
influence functions. This offers great modeling flexibiliag
different nodes can have very different patterns of infleenc
Furthermore, we can study how the shape of the influence
functions varies for different types of nodes or for diffiere

We posit that each node has a particular non-negative tyPes of contagions (e.g., textual phrases of different&)p
influence functior/, (1) associated with it. One can simply Finally, nodes can be grouped based on the shape of their
think of 7,({) as the number of followup mentioristime influence functions to gain further insights into the roles
units after node: adopted the information. Or equivalently, different nodes play in the diffusion process.

after nodeu mentions the information, this triggers an Model parameter estimation. Next we present an efficient
additional 7, (1) mentions in the next time stepl.(2)  procedure to estimate parameters (i.e., influence furation
mentions after two time steps, and so on. Now, we aimof the LIM model. Consider a set &f nodes and the data on

to model the relation between the volunit), and the how K different contagions diffused between the nodes over
influence functions of nodes that mention the information time, where each Contagion can infect any arbitrary subset
at times?,, (t, < t). We simply assume that the volume of nodes. We then represent this data as a large indicator
V(t) is the sum of properly aligned influence functions of function M, 1.(t), whereM,, x(t) = 1 if nodeu got infected

Volume

t-t

Figure 1. The Linear Influence Model models the volume ofudifin
over time as a sum of influences of nodes that got “infecteddreband.

nodesu: by contagionk at time ¢, and O otherwise. Note that the
V(t+1) Z I,(t —t) volume Vi (t) of contagionk at timet is simply defined as
u€A(t) the number of nodes that got infected gt timet. We then

model the voluméd/,(¢) as a sum of influences of nodes

where A(t) denotes the set of already active (infected, in- ot got infectecbeforetime ¢:

fluenced) nodes that got activated prior to time(t, < t).

Figure 1 illustrates the model. The curve on the top u=Nli=L—1
represents the volume(¢) over time, andt,, t,, andt, Vit +1)= > Z My, (t =D, +1) (1)
denote the times when nodes, v and w, got infected. u=1

After the nodes got infected, they each influence additionalhe first summation goes over all the nodes, while the
I,(t — ty), I,(t — t,) and I, (t — t,,) infections at timef.  second goes over the time-length of influence functions.
So the volumel/(¢) at time¢ is the sum of the influences Given the current timg we first check whether node
of the three nodes. got infected with contagiort [-time units ago. If so, then

A natural question then is how to model the individual M, ;(t—1) = 1 and node. contributes its influence adf, (/)
influence functiond,, (1). There are two general approaches.to the total volume.
The first is a parametric approach, where one could as- Next, we show how to estimate the influence functions
sume that functiong, (1) follow a certain parametric form, I, (¢) that most accurately predict volumg (¢t + 1) given
such as an exponentid],(I) = c,e *+! or a power law the particular other nodes that got infected in the past-Gen
I,(l) = ¢, I~ with parameters depending on the nade erally, we will not be interested in estimating the influence
Although such a model would be very clean and simple, itfunctions of all the nodes but will rather model the total
has an important drawback, as it assumes that the influena®lume V' (¢) as a function of a small set oV nodes of
functions of all nodes follow the same parametric form. Thisinterest. Thus}/ (¢) models the total volume over the whole
assumption may be too simplistic to capture the complex dyuniverse of nodes (all online media, all Twitter users,)etc.



VD] . . . . W andj = uL(t+1+1), wherel =0,...,min(L —1,T —t).
ve) (M) o 0 0 1@ Note that matrixM has a block structure where every block
Muy(@) ‘ M, represents a node—contagion pair, and if a nodmt
: infected by contagiork at time ¢ this creates a diagonal
stripe of ones in a blocM i, i.e., M [t + 1,1+ 1] =1,
I0) forl =0,...,L—1 (Fig. 2(a)). This way thd rows ofM,, j,
L account for time and thé columns for how the influence
of a node changes (up tb time units) after it got infected.
V(D) —— Now our aim is to solve a matrix equatidh= M- where
Vi we aim to estimate values of the influence vedtgiven the
(a) Volume vectorV;, of length T, influence vectorl,, of values of the volume vectdv and the influence indicator
length L, and a7 x L lower-triangular blockM , . of influence matrix M. However, due to noise and the fact that the system
indicator matrixM is over-determinedK - T > N - L) we do not expect that
/) — — — (™ an exact solution exists. Thus we aim to find thehat
na 1 ({p = 1P | minimizes the prediction error measured by the Euclidean
Vi [I [I : [I - distance between the true and the predicted volume:
— S —— P L minimize ||V —M 1|3
R Y — .
=|((lp M n Mea o X subjectto 1 >0
b [I [I ' [I — where|| - ||3 denotes the squared Euclidean norm.
- — — " The above optimization problem is called a non-negative
) ”T ) (_—M\ J least squares (NNLS) problem [24] and can be solved
. 0 qo qo . efficiently even for a large number of nodes and contagions.
: U I] : ” The sparse nature of the influence indicator mattixhelps
() I (i ) to further expedite the calculation. We use the Reflective
v M Newton Method [9] which takes less than a second to
(b) Vector V of length K - T, vector| of length L - N, and an solve a problem withK' = 1,000, L = 10, T" = 120,
influence indicator matrM of size K- T"x N - L. and N = 100. In practice we also apply the Tikhonov
Figure 2. The structure of the matrix equativh= M - | regularization [19], which has the effect of smoothing the

non-parametric estimates.

Extensions: Accounting for novelty. So far, we have
assumed that a node has the same influence regardless of
{%ow early or late in the diffusion they appear. This means
larger than the number of nodes of intere&t & N). at the mflyence of a node is same even if it mentions
{he information very early or very late. However, nodes are

Since timet increases in discrete intervals, we represen . ) . .
. more likely to adopt novel and recent information while
Vie(t), My r(t), and I,(I) as vectors and matrices, and .

. ignoring old and obsolete information. In order to account
formulate a least squares-like problem, where for each nod . .
. ; ) oo or this effect of recency and novelty [33] we introduce a
of interestu the goal is to estimaté values of its influence multiplicative factora(t) that models how much more/less
function, I,,(1),..., I, (L). We show that valueg,(I) can P @

be estimated by a simple matrix equation using the fact thdpﬂuenual a node is at the time when it mentions the

volumeV;,(¢) is a linear function of influencé, (1) (Eq. 1). information. We refer to this model asLIM:

while N denotes a small subset of nodes of interest (e.g
only newspapers, or a small subset of most active Twitte
users). We also assume that the number of contagions

To formulate the matrix equation we first define the u=NI-L1
volume vectolV, the influence vector, and theinfluence Vie(t+1) = a(t) Z Z My, (t = DI (1+1)
indicator matrixM (Figure 2). We compose a column vector u=1l1=0

V of length K -T by simply thinking of volumé/;(¢) of each  Note thata(t) is the same over all contagions. We expect
contagiork as a vecto#/, of lengthT indexed byt, and then  «(t) to start low, quickly peak and then slowly decay. The
concatenating the contagions foe= 1, ..., K. Second, we influence of nodes just before the peak attention will be
compose an influence vectoof length V- L by considering  boosted simply because the information is new and nobody
eachl,(l) as a vectol,, of length L indexed byl, and then  knows about it yet. As time goes by the novelty decays and
concatenating them. Last, we compose a binary influencthe benefit of appearing early in the diffusion wears offt(
indicator matrixM of K - T rows andN - L columns. decreases).

Consider that node, got infected with contagioh at timet. In order to estimatel, (/) and theT values of vector
Then we set entrie§, j) of matrixM to 1 fori = kT (t+1)  «(t) we observe that the resulting matrix equation is convex



both in I,,(I) whena(t) is fixed and ina(t), when, () is  million online sources between September 1 2008 to August
fixed. Thus we use a coordinate descent procedure, wheBl 2009. To ensure that we observe the complete lifetime
we iterate between fixing«(¢) and solving forl, (1), then  of a phrase, we only keep phrases that first appeared after
fixing I, () and solving fora(t). September 5. We choose 1,000 phrases with highest volume
in a 5 day window around their peak volume. For each

Extensions: Accounting for imitation. Another aspect of . . . :
g P phrase, we track which websites mention it during 5 days

information diffusion and adoption is the effect of imi- .
tation [26], where nodes imitate one another because th%rOund its peak volume. e )
information is popular and everyone talks about it. We refer S€cond, we analyze the diffusion of hashtags on Twit-
to the contribution of the imitation as tHatent volumein te_r. Twitter users ofte-_n tag posts with “hashtags” (e.g.,
a sense that this volume is caused not by influence, but b#|knowsomeonethat#llovel|febecaus)e The emergence

other factors. We model the latent volume with an additive®d adoption of hashtags create global cascades in the
factor b(t) and refer to the model as the B-LIM model: Twitter network. We collect a stream of 580 million Twitter

posts (40-50% of all posts) between June 2009 and February

u=NI—L_1 2010. We identify 6 million different hashtags, and then
Vit+1) =b(t)+ > > Myg(t—DL(+1) discard hashtags that do not experience a significant peak in
u=1 [=0 their volume (e.g.musicmondayand goodmorning. We
B-LIM is linear in I, (1) andb(t), and thus we can use a then select 1,000 highest total volume hashtags during the
matrix formulation similar to the one in Figure 2. 5 days around their peak volume. As Twitter users adopt at

Discussions and further extensions.Another direction most1% (.)f the hashtags, we mitigate this data SparS|_ty Issue
) . . o by grouping users into groups of 100 users. We consider 100
for extensions is to introduce an additional parameter for
: o . groups and model each group as a node. We then model
each contagion to explicitly model for the attractiveness . ) .
. . . : the collective behavior of each group by aggregating all the
of different contagions, arguing that some contagions are ) o
o ) . ; . ; mentions within the group.
a priori more interesting, attractive and easier to diffuse
alternative approach would be for nodes to have multipleExperimental setup. Volume Vi (t) of a contagionk can
influence functions depending on the type or topic of thenaturally be viewed as a time series. We thus evaluate our
contagion. LIM model on a time series prediction task, where we
Last, we note that our model can be used for “prediction"observe the nodes that got infected withup to timet¢ and
and as well as “explanation.” So far we have introduced theim to predict the volumé/, (¢ + 1) of the contagiork at
model in the prediction setting, where we observe a smalfuture timet + 1.
subset of NV nodes that got infected up to timend want to To evaluate the model we employ 10-fold cross validation.
predict the total volume ovetll nodes in the future time+  We split contagions (hashtags, memes) into 10 folds, use 9
1. However, we can also use the model for explanation in théolds to estimate the model parameters and evaluate on the
sense that we observe a small number of nallethat got  remaining fold. For each contagidnin the evaluation fold,
infected up to time, and we are then interested in predicting we predict the volum&’, (¢t+1) of contagionk at timet+1.
the total volume at the current tinte This formulation does We then measure the difference between the true volume and
not predict (forecast) the total volume in next time step butpredicted volumeFy(t +1) = Vi (t + 1) — Vi(t + 1), and
it rather predicts the total volume at the current time stereport the relative errog/zk ¢ Ek(t)Q/\/Zk ¢ Vie(t)?.
based on wh_lch nodes_ are cu_rrently mfe_cted. We co_nS|der In all of our experiments, we usk
both formulations to be interesting and valid; howeverhia t
rest of the paper we only consider the predictive formutgtio
where we aim to predict the future total volume at titael
based on observing which nodes got infected in the past.

= 1,000 contagions,

one hour as the time unit, and set= 10 (i.e., influence of

a node decays to zero after 10 hours). Since contagions have

very short life spans, we set the length of the volume time

series to 5 days (i.€[' = 120). For each contagion, we set

the start { = 0) of Vj(¢) to be first time when the volume

, . of the contagion is twice the average volume in previous
In this section, we evaluate the performance of LIM Ong jine steps. This has the effect that we start to observe

two different datasets. We first describe the datasets and thy,o \olume of the time series just before it starts to peak

experimental setup, and then evaluate LIM on a time serie@See Figure 5(a) for example). We also allow each node to

prediction problem. mention the phrase or hashtag multiple times during a time
Dataset description.First, we consider modeling the diffu- unit, i.e., M, (t) can be more thaa.

sion of short textual phrases over the online media space. We model the total volumé/,(¢) of a contagion based
We apply the Memetracker [26] methodology and extracton the influence ofV = 100 nodes. Note that this is an
343 million short textual phrases from a set of 172 million extremely small fraction of the total number of nodes. In
news articles and blog posts collected from more than Memetracker, for example, we have more than 1 million

IIl. EXPERIMENTS
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AR 6.82% 7.08% 8.43% 7.21% 8.47% 8.30% || 7.41%
ARMA 6.65% 7.71% 8.29% 6.85% 8.07% 8.71% || 7.75%
IV 13.89% 12.42% 11.41% 20.06% 6.22% 6.24% || 14.31%
B-LIM 15.38% 15.19% 12.24% 21.27% 8.15% 6.09% || 15.71%
LM 15.50% 14.59% 11.50% 20.08% 7.13% 6.71% || 15.26%

Table |
REDUCTION IN PREDICTION ERROR OVERL-TIME LAG PREDICTOR ONMEMETRACKER DATA FOR SIX TYPES OF SHAPES OF VOLUME OVER TIME

different websites (nodes) that participate in the diffusi results. First, notice that AR is equivalent to LIM with the
and we aim to model the total number of sites that willsame influence function for all nodes. Our results suggest
mention the phrase based on the information about mentiorteat nodes have very different levels of influence and that
from only 100 highest volume sites. Similarly, in Twitter we we obtain a substantial benefit from the non-parametric
model the hashtag volume over the 25 million active user@pproach. Moreover, we also observe that LIM gives better
based only on the information about 10,000 users, which isesults for modeling the adoption of textual phrases inr@nli
only 0.04% of the total active users. media than for modeling the adoption of Twitter hashtags.
These results suggest that there are a relatively small aumb
of media sites that have large influence on the adoption of
_ . . textual phrases, while the influence of top Twitter users on
predictor simply takes the volume at the current time as th‘fhe adoption of Twitter hashtags is smaller. These results

prediction for the volume at the next timi, (¢+1) = Vi(t). align well with the two-step theory of information flow [22],

we .also consider twq standard time series regression m?tt}\ihich has been developed in sociology to reconcile the role
ods: the Autoregressive Model (AR), and the Autoregressw%f the media with the observation that in many scenarios

Moving Average Model (ARMA) [5] both of ordeL. The individuals are influenced by the neighbors in their social

AR mOd?rI] 'St eﬁl#:/alen;to z;\]spe(t:;]al case (?f fll‘IM wh(?re V;’.enetworks as well as by the mainstream media. The theory
assume that all the nodes have the same Influénce TUNCUoR. a4 5 “two-step flow” as the information and influence

ARMA uses AR with an additional ingredient, the moving “flows” from the mass media through opinion leaders to the

averaget mOdelth\f use tlra|rt1|ng fotlr(]js tto tefst|||(”jnateh mOdj{Bublic. In our context here, the results suggest that while
parameters, an en evaluate on ine lest fold, Where weo edia space is occupied by relatively few very influgéntia

predict the volume _at time + 1 given the time series of media sites (LIM predicts well the diffusion of Memetracker
volume V(t) up to timet. phrases), the most active Twitter users have less influence
Time series prediction problem. We evaluate our LIM on the overall adoption of hashtags. In addition, notice tha
model on the task of predicting the volume of a conta-a-LIM and B-LIM further increase the performance over
gion over time. We evaluate three versions of the LIMthe LIM on the Memetracker dataset. This means that the
model (i.e., LIM, B-LIM, and a-LIM) and compare the novelty of a phrase and imitation are important factors in
performance with the three time series forecasting methodée diffusion of textual phrases. On Twitter B-LIM slightly
(1-time lag predictor, AR and ARMA). The purpose of outperforms LIM, while a-LIM performs poorly, which
these experiments is not to build a perfect time seriedints that diffusion of hashtags is also driven by imitaion
predictor. Rather, we aim to evaluate whether the modelingvhile recency does not play much role.
assumptions of LIM are reasonable and to what degree the Table | also shows the performance of models based on
observed dynamics of diffusion can be attributed to thethe shape of the volume over time. Our previous research
influence of nodes. found that there are 6 distinct types of temporal variation
Table | shows the relative reduction in error over the 1-in online media [2]. We cluster the volume curves into 6
time lag predictor on the Memetracker data for all phrases¢lusters and Table I plots the temporal pattern of the cehtro
and also for phrases grouped based on the shape of ti €ach cluster. We note that AR and ARMA give even
volume over time [2]. While AR and ARMA give 7.5% per_formance improvement over all types of vplume curves,
improvement, LIM and its variants outperform AR and While the family of LIM models performs particularly well
ARMA by a factor of two. We find the results to be similar 0N Phrases that exhibit a very abrupt spike in their volume.
for predicting the adoption of Twitter hashtags (table not-M can accurately model sudden spikes in adoption of
shown for brevity) where AR and ARMA give about 1% textual phrases that are influenced by large media sites.

improvement over 1-time lag predictor, while LIM gives Analysis of influence functions.Our experiments so far
6.1% error reduction (B-LIM 6.3%q-LIM 3.5%). demonstrated that LIM reasonably models information dif-
There are several interesting observations about thedesion in online media. We now proceed to investigate how

Baseline methods.We compare the performance of LIM
with three time series prediction methods. First, a 1-tiawe |
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Figure 3. Average influence functions of five types of welssitéewspapers (News), Professional Blogs (PB), Televi§iarf), News Agencies (Agency),
and Personal Blogs (Blogs). The number in brackets denbeesotal influence of a media type.

the influence of various types of nodes changes depending Now, we estimate the influence functions of 22 media sites
on the topic of the information and the type of a node. (VN = 22) on each of the six topics, by fitting LIM with the

Memetracker dataset consists of a wide range of medighrases in the topic. We plot the average influence function
sites from traditional mass media such as newspapers, n@f sites of that particular type. Note that the influence
tionwide TV stations and press agencies, to modern onlinéinctions model the influence per mention, whereas we are
independent news sites, professional and personal blog#iterested in the amount of total influence that each type of
Since the credibility of information depends on the type ofmedia has on the diffusion of phrases. In order to obtain
the source [21], we are interested in estimating the inflaencthe total influence, therefore, we normalize the influence
of a different types of media on the diffusion and adoptionfunctions of each type with the average number of the
of textual phrases. Similarly to having different types of mentions of phrases on particular topic.

media, we also have different types of textual phrases. The Figure 3 gives the influence functions for the five types
intuition here is that different participants in online ned of media and six topics. In the legend of the figure, we also
discourse may have different influences depending on thgompute the total influence of a media type by summing the
topic of the debate [11]. In this respect we categorize &xtu values of their influence functions. Notice that in general
phrases into six different topics. For each topic, we thennfluence functions tend to decay rapidly over time. While
estimate the influence functions of various types of siteshe decay is particularly pronounced for business and poli-
(blogs, newspapers, etc.). tics, for entertainment or sports the influence seems to last
For the purpose of the experiment, we identify five typessomewhat longer. Similarly, the influence of bloggers tends
of media: Newspapers (New York Times, USA Today), Pro-to be lower at start, but tends to last longer (in particudbar f
fessional blogs (Salon, Huffingtonpost), TV stations (ABC, entertainment and technology). This confirms the intuition
CBS), News agencies (AP, Reuters) and (personal) Blogghat blogs tend to be echo chambers while mainstream
In total we select 22 sites, and group them in the above fivenedia play the dominant force in the news cycle [23].
groups (the extended version of the paper [1] gives a fullThis is further confirmed by the fact that politics, business
list). In order to find topics of textual phrases, we noticatth technology and the nation tend to be dominated by news
several news sites specify the topic of an article in the URLagencies. Professional blogs are the second in terms of tota
For each phrase, we simply list the URLs of all the articlesinfluence in politics and national news, newspapers are the
that mention the phrase, and count which of the topic namesecond in business, and personal blogs are in technology. In
(Politics, Nation, Entertainments, Business, Technolagg  entertainment and sports, the situation is somewhat revers
Sports) appears in the URLs. When a single topic dominates;or entertainment it is the personal blogs that are the most
we consider the phrase to belong to that particular topic. influential, while for sports it is the professional blogs
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Figure 4. Influence functions of the New York Times (NYT), té@ll Street Journal (WSJ), and USA Today (USA).

followed by the newspapers. 1,000 highest volume textual phrases aNd= 100 websites
We repeat the same experiment with different settingthat mentioned most of these phrases. We then fit the B-LIM
where we model the total volume over time based only ofnodel, and in Figure 5(a) we plot the latent voluhie) as
three major U.S. newspapers: The New York Times (NYT),a function oft. On the plot we also show the appropriately
The Wall Street Journal (WSJ), and USA Today. Note thascaled average phrase volumié(t) = (1/K) Y, Vi(t).
this model is particularly simplistic as it tries to modekth Here, we index the time so that the chronological median
diffusion of a textual phrase across the entire news medi&f the mentions of each phrase occurg at 0. Notice that
space based only on the information about three [i.e; 3)  the latent volume tightly follows the average volume over
media sites. Figure 4 gives the influence functions for thdime, especially on the upward part. We also observe that the
three newspapers on the six topics. The USA Today is thénitation effect reaches its maximum just before the phrase
most influential for sports and entertainment. However, wehas its peak volume (i.eb(t) peaks just befor& (t) does).
find the strong influence of the USA Today on technol- Given these results we also compute an average number of
ogy somewhat surprising. While the New York Times hasmentions of a phrase per websitd,, (t) = 3", M, x(t). We
influence mostly in politics and business, the Wall Streethen find the media site with the highest correlat|on of the
Journal has more influence in national news, surprisingly imumber of mentiong7,,(¢) with the imitationb(t). We find
entertainment but not much in business. that it is the Associated Press (AP) that best approximates
All in all, these results agree with the intuition and arethe amount of imitation over time(t). This confirms that
also consistent with the two-step flow model, coming fromarticles that appear on AP are automatically distributegr ov
sociology and political science. Moreover, it is intenegti hundreds of sites (that subscribe to AP’s news feed) within
that our model is able to detect and distinguish the finea few hours.
differences between the roles that different types of medi

play in disseminating information of different topics. %ccountmg for novelty. We also evaluate the effects of

recency and novelty on the diffusion of textual phrases in
Accounting for imitation. As we noted in the time series online media. We fita-LIM which estimates the recency
prediction task (Table 1), the variants of the linear influen factor «(t) as well as the individual influence functions.
model that explicitly account for imitation (B-LIM) and Figure 5(b) plots the recency facter(t) as a function
recency (-LIM) tend to perform slightly better than the of ¢. We observe some volatility in the recency factor
straight LIM model. This is particularly the case in diffasi  |ong before its peak. Our intuition is that, in this period,
and adoption of textual phrases related to news, wherghe information is still developing with additional events
imitation and recency play important roles. controversies and other external factors that make)
We first explore the imitation. As before we takké = unpredictable. However, the rest of the recency faot@)
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can be very nicely explained. We notice that, for about ten

hours, the effect of recency is the strongest and only Iate?OCUSGd on online media and adoption of short textual

starts to slowly decay, with slower decay than the uptake. phrases, we find that the mainstream media holds the most

To gain further insights into how effects of recency andinfluential position in the dissemination of news content. O
novelty decay over time, we fit an exponential decayingthe other hand, hashtags on Twitter are a very different type
functiona(t) ~ ce~, and finde = 0.93 andA = 0.0215 to of contagions. Hashtags are not news but rather socially con
give the best fit. As shown in Figure 5(b), the exponentialtagious tags tha‘F are adopted in a distri_butgd manner withou
decay function very closely approximatest). Based on a central supervision. Therefore, the diffusion of hashiag
the value of decay parametar we can estimate the half- mostly governed by the Twitter social/information network

This way Twitter users with “too high” number of followers,

life time 7 such thata(7) is a half of «(0). We find the _ " o
half-life to be 32.2 hours, which is about a day and a haIfWh'Ch usually correspond to celebrities and organizations
’ may be very influential in propagating the “information”

and suggests that people consume news on daily basis. ) AN )
g9 Peop y contagions such as news, but not in diffusing more “social”

Influence of users on Twitter.Last we explore the influence contagions such as hashtags.
functions of Twitter users. Since the Twitter data is very
sparse in a sense that each user mentions relatively few IV. CONCLUSION
different tags, we consider a set 10,000 Twitter users, and We started with an assumption that the diffusion of infor-
aggregate them into 100 groups of 100 users. We considenation and other contagions is governed by the influence
two different types of grouping. First, we order users by theof individual nodes. Instead of focusing on the network
amount of their activity (hashtag volume) and second weopology and formulating a problem of predicting which
order them based on the number of their followers. We fitnode will infect which other individual nodes, we develop
B-LIM and examine the relation between the hashtag voluma Linear Influence model, where the influence functions of
and the influence they have on the adoption of hashtagimdividual nodes govern the overall rate of diffusion thgbu
across the whole Twitter network. the network. We developed an efficient model parameter
Figure 6(a) shows the amount of influence of usersestimation method that is based on simple least squares-
grouped based on their total volume. All groups tend tolike formulation. Adopting a non-parametric modeling of
have similar form of total influence. The group with the the influence functions allowed us to accurately model and
third largest volume has the most total influence, while thepredict how diffusion unfolds over time.
highest volume group has the lowest. Similarly, Figure 6(b) We experimented with a set of 500 million tweets and a set
shows the influence functions of users grouped based oof 170 million news media articles. Besides demonstrating
their total number of followers (i.e., in-degree) in the e  that LIM outperforms classical time series prediction meth
social network. Surprisingly, we find that the Twitter usersods, we also gain a number of insights. For example, we
with the intermediate number of followers have much higheridentified influence functions of various websites and found
influence than the highest in-degree nodes. While our esulthat they heavily depend on the type of the website and
are somewhat different from literature in viral marketimgla the topic of the information. Furthermore, we also observed
word of mouth [32], [25] which often assumes nodes withthat the imitation and novelty have a strong force on the
the highest follower count to be most influential, our result adoption of short textual phrases in online news media. As
are consistent with the recent findings [7] which suggesthe adoption of short, news-related textual phrases appear
that users with the highest follower count are not the mosbe highly governed by the influence of the few large media
influential in terms of information diffusion. Rather, user websites, the adoption of Twitter hashtags is governed by a
with the number of followers of around 1,000 tend to bemuch larger set of active users, each of which has relatively
most effective in diffusion and adoption of hashtags. less influence. Moreover, we also observe that users with the
The results on Twitter nicely align with the experiments most followers are not the most influential in propagating
on Memetracker data. As the Memetracker experimenthashtags.



Our work opens up a new framework for the analysis[14] A. Goyal, F. Bonchi, and L. Lakshmanan. Learning inflcen
of the dynamics of the information diffusion and influence
in (implicit) social and information networks. Our models [15]
are broadly applicable to general diffusion process, ag the
do not require knowledge of the underlying network. An
interesting venue for future work is to extend the model tol16]
allow for non-linear effects and to automatically discover
the types of roles different participants have in the diffas
of information.
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ARMA 1.40% 0.11% 0.83% 2.65% -0.12% -0.09% | 0.87%
LIM 15.16% -25.50% -19.03% -15.47% -18.50% -9.64% | 6.21%
B-LIM 15.36% -25.74% -19.08% -15.38% -18.12% -10.77% | 6.22%
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Table Il

REDUCTION IN PREDICTION ERROR OVERL-TIME LAG PERDICTOR ONTWITTER DATA FOR SIX TYPES OF SHAPES OF VOLUME OVER TIMESEE THE
MAIN TEXT FOR THE DESCRIPTION FOR MODELS

Website

nytimes.com
online.wsj.com
washingtonpost.com
usatoday.com
boston.com
huffingtonpost.com
salon.com

TV cbs.com

abc.com
reuters.com

ap.org

wikio.com
forum.prisonplanet.com
blog.taragana.com
freerepublic.com
gather.com
blog.myspace.com
leftword.blogdig.net
bulletin.aarp.org
forums.hannity.com
wikio.co.uk
instablogs.com

Table Il
FIVE TYPES OF WEBSITES

Type

Newspaper

Professional blog

News Agency

Blogs

APPENDIX

Details for some websites in Table Ill.Counting the men-
tions from Associated Press (AP) is tricky as AP transmts it
article to other websites before it posts on its site. We toun
the mentions from "breitbart.com” as the surrogate of the
mentions from AP, because a mention from "breitbart.com”
is the duplicate of an AP article in most cases, and it
precedes other duplicates of the AP article. For the TV
stations (ABC and CBS), we aggregate all the mentions from
their local affiliates.



