Mixture Models

Data Mining and Statistical Learning
Group Discussion



Napels Crab

® Pearson (1894) studied the ratio of "forehead"
breadth to body length for 1000 crabs sampled at
Naples by Professor W.F.R. Weldon
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Mixture Distribution

® Assumes datais ani.i.d sample from some population
described by a mixture distribution

p(x) =) mpr(; Ok)
k=1

® A Mixture Gaussian distribution is commonly used

p(x) =Y 7N (k, Sk)
=1



Mixture Distribution

® Another way to understand the mixture distribution:

Zi, ~ v+, 0k)

([1,---,Ig) ~ multinomial (1,7, -+ ,TK)

K
e — ZIka
le=1l

e X follows a mixture distribution p(x) = Zle TPk (2; OF)



One Example

Counts
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p(z) = 0.9N(—3,1%) + 0.1N(0,0.3°)



More Examples

® Mixture of six Gaussians

® Number of points from
each Gaussian:

< Multinormail (400,
i Grsisal6)

® Mean and SD of each
Gaussian randomly
sampled from

% unif([-5, 5] x[-5, 5]) and
< unif(0,0.8)
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Use of Mixture Model

® Parametric Density Estimation

K
p(x) = #Frpr(w;Or)
k=1

® Nonparametric (kernel) Density Estimation

e C(lassification or Clustering

max P([y = 1|x)
k=1, ,K



Use of Mixture Model

® Density Estimation

e C(lassification or Clustering

—
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Application of Mixture Model

® Astronomy

® Genetics

® Medical Science
e ComputerVision

® Speech Recognition



Parameter Estimation

® Method of Moment
® Maximum Likelihood Estimation

® Bayesian inference of the posterior distribution
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Method of Moment

Pearson (1894) used MoM to estimate a mixture
Gaussion distribution with two components on the
Napels Crab data

Express the moments M*(m,0) = E(X")of p(x) in
terms of the parameters (7, @) by theoretically
calculation

- —
Compute the empirical moments M~ = (>, X})/n
from observation

—t

Find estimate (7, ) by solving M*(rr, §) = M
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MoM for Mixture Models

e Consider the simplest Mixture Distribution: Mixture of
two univariate Gaussians

Five parameters: (my, 1,01, ti2,02)

One may match the first five moments and solve for the
parameters

The calculation can be converted as computing a
suitable root of a ninth-degree polynomial

The solution is not guaranteed to exist or to be unique

® Expression for estimates of three univariate Gaussians
was obtained in 5o’s, but very hard to compute

® Infeasible for large dimension or # of components

12



Maximum Likelihood Estimate

® MLE is very commonly used technique in fitting
mixture models

® Given the density function
K
p(x) = mpr(x; Or)
and observations x_, ...,k;nl, the likelihood is:
L(rm,0) = I, pro(z)

e Optimization routine is usually needed to find the
solution that maximizes the likelihood function
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Optimization

® In general, an optimization problem tries to find the
maximum of a function f(a), in this case the likelihood
function

® Grid Searching

® Bisection

® Coordinate Ascent
e Newton-Raphson

® Alotmore......



Expectation/Maximum Algorithm

® EM algorithm is tied to models with incomplete
observations

® Suppose the ideal observations T ~ P, with density Pa (%)
e However, we observed S = S(T') ~ Qqwith density Ga(S)

® S represents part of T, and the rest of Tis "missing”
and its “reconstruction” is part of the process of
estimating a by maximum likelihood
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Mixture Distribution

® Another way to understand the mixture distribution:

Zi ~ v+, 0k)

(I1, -+ ,Ig) ~ multinomial (1,7, -+ ,TK)

K
X =Y L7
® Inthis case, k=1

T= I, ,Ix, 21, ,Zg) S=X

a:(ﬂ-h”' 77TK7917°" 7‘9K)
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How does EM work?
Define

J(alag) = Fq, <log

Initialize with a,1q = O

p(T, @)
p(T, Oé())

| S(T) = s>

E-step: compute J(a|ag) for as many values of @ as
needed. If this is difficult, the EM algorithm is
probably not suitable

M-step: maximize J(a|ag)as a function of @. Again, if
difficult, EM may not be appropriate

Set Qpew = argmax J(a|aqq), reset Qold = Qpew

and repeat the E and M steps until converge
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An Example

e Consider the simplest Mixture Distribution: Mixture of
two univariate Gaussians

® Five parameters: a = (71, (41,01, (42, 02)
® Initialization: & = (1, 11,61, fi2, 02)
® E-step: compute the responsibilities

- T1Pp1,61 (Ti)
ﬁlgbﬂl,&l <:CZ) + (1 — ﬁl)qbﬂm&z (QZZ)

which is a estimate of

Yi :E(Ii,llOé,Xz') :P( i,1 = 1‘0( X)
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An Example

® M-step: compute the weighted means and variances:

e e e 52 _ D Vs — )
i mn A ]_ S n A
27;21 Yi 27:1 Vi

iy = > i1 (1 = %)z Yo 0= = )
D =) Y =)

5 —

and the mixing probability 71 = >, ; %:/n

® [terate the E-step and M-step until convergence
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Example Revisited

Counts
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p(z) = 0.9N(—3,1%) + 0.1N(0,0.3°)
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Initialization

EM algorithm is a local optimization method that is
guaranteed to converge to a local maximum

Since the likelihood functions of most mixture models
are not a concave function, the local maximum found
by the EM algorithm may not be the global maximum

Actually, the result from the EM algorithm is highly
sensitive to the initialization

How to do a good job in initialization?

e try multiple random starting location
® use results from other fast method, e.g. Kmeans
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Combinational Algorithms

Each point x; is assigned to one of K clusters through a
many-to-one mapping k = C(i)

The quality of the clustering assignment C is measured by a
loss function

WEe) = 53 Y Y daay)

k=1C(i)=k C(j)=k

Direct optimization of W(C) is computationally infeasible
even for datasets of ordinary size

K-means algorithm is one of the most popular iterative
descent method try to find the minimum of W((C)
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K-means Algorithms

® Given number of clusters K and an initial set of K seed
points (serve as the centroid of clusters)

1. Partition the items into K initial clusters by assigning each
point to its closest center

2. Recalculate the mean for each cluster, use it to replace the
centriod that is use to generate the current cluster

® repeat steps1and 2 until convergence

® One may replace the mean by median in step 2 to get
K-median algorithm
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K-means Algorithms

® Something you should know about K-means:
e Converges very fast
® User need to provide the number of groups
® A local optimization routine, sensitive to initial values

e Should be started with many different random choices of
initial values

Initial Centroids Initial Partition Iteration Number 2 Iteration Number 20
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EM with Kmeans initialization

® EMis also alocal optimization routine, which is

sensitive to initialization

® |n practice, EM is usually initialized with the results

from a K-means algorithm

Data

EM (k-means)
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Napels Crab

® A single Weibull component is also an acceptable fit

F N

Plot #*013 Data: Pearson's crabs Components: Weibull
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