Mixture Models

Data Mining and Statistical Learning Group Discussion

Napels Crab

 Pearson (1894) studied the ratio of "forehead" breadth to body length for 1000 crabs sampled at Naples by Professor W.F.R. Weldon

Mixture Distribution

 Assumes data is an i.i.d sample from some population described by a mixture distribution

$$p(x) = \sum_{k=1}^{K} \pi_k p_k(x; \theta_k)$$

A Mixture Gaussian distribution is commonly used

$$p(x) = \sum_{k=1}^{K} \pi_k N(\mu_k, \Sigma_k)$$

Mixture Distribution

Another way to understand the mixture distribution:

$$Z_k \sim p_k(\cdot, \theta_k)$$

$$(I_1, \dots, I_K) \sim multinomial(1, \pi_1, \dots, \pi_K)$$

$$X = \sum_{k=1}^K I_k Z_k$$

• X follows a mixture distribution $p(x) = \sum_{k=1}^{K} \pi_k p_k(x; \theta_k)$

One Example

$$p(x) = 0.9N(-3, 1^2) + 0.1N(0, 0.3^2)$$

More Examples

- Mixture of six Gaussians
- Number of points from each Gaussian:
 - Multinormail (400, 1/6, ..., 1/6)
- Mean and SD of each Gaussian randomly sampled from
 - ❖ unif([-5, 5] x [-5, 5]) and
 - unif(o,o.8)

Use of Mixture Model

Parametric Density Estimation

$$\hat{p}(x) = \sum_{k=1}^{K} \hat{\pi}_k p_k(x; \hat{\theta}_k)$$

- Nonparametric (kernel) Density Estimation
- Classification or Clustering

$$\max_{k=1,\cdots,K} P(I_k = 1|x)$$

Use of Mixture Model

- Density Estimation
- Classification or Clustering

Application of Mixture Model

- Astronomy
- Genetics
- Medical Science
- Computer Vision
- Speech Recognition
- ...

Parameter Estimation

Method of Moment

Maximum Likelihood Estimation

Bayesian inference of the posterior distribution

Method of Moment

- Pearson (1894) used MoM to estimate a mixture Gaussion distribution with two components on the Napels Crab data
- Express the moments $M^t(\pi,\theta) = E(X^t)$ of p(x) in terms of the parameters (π,θ) by theoretically calculation
- Compute the empirical moments $\overline{M}^t = (\sum_{i=1}^n X_i^t)/n$ from observation
- Find estimate $(\hat{\pi}, \hat{\theta})$ by solving $M^t(\pi, \theta) = \overline{M}^t$

MoM for Mixture Models

- Consider the simplest Mixture Distribution: Mixture of two univariate Gaussians
 - Five parameters: $(\pi_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$
 - One may match the first five moments and solve for the parameters
 - The calculation can be converted as computing a suitable root of a ninth-degree polynomial
 - The solution is not guaranteed to exist or to be unique
- Expression for estimates of three univariate Gaussians was obtained in 50's, but very hard to compute
- Infeasible for large dimension or # of components

Maximum Likelihood Estimate

- MLE is very commonly used technique in fitting mixture models
- Given the density function

$$p(x) = \sum_{k=1}^{K} \pi_k p_k(x; \theta_k)$$

and observations $x_1, ..., x_n$, the likelihood is:

$$L(\pi, \theta) = \prod_{i=1}^{n} p_{\pi, \theta}(x)$$

 Optimization routine is usually needed to find the solution that maximizes the likelihood function

Optimization

- In general, an optimization problem tries to find the maximum of a function f(a), in this case the likelihood function
 - Grid Searching
 - Bisection
 - Coordinate Ascent
 - Newton-Raphson
 - A lot more

Expectation/Maximum Algorithm

- EM algorithm is tied to models with incomplete observations
- Suppose the ideal observations $T \sim P_{\alpha}$ with density $p_{\alpha}(t)$
- ullet However, we observed $S\equiv S(T)\sim Q_{lpha}$ with density $q_{lpha}(s)$
- S represents part of T, and the rest of T is "missing" and its "reconstruction" is part of the process of estimating α by maximum likelihood

Mixture Distribution

Another way to understand the mixture distribution:

$$Z_k \sim p_k(\cdot, heta_k)$$
 $(I_1, \cdots, I_K) \sim multinomial(1, \pi_1, \cdots, \pi_K)$ $X = \sum_{k=1}^K I_k Z_k$ In this case

In this case,

$$T = (I_1, \dots, I_K, Z_1, \dots, Z_K) \qquad S = X$$
$$\alpha = (\pi_1, \dots, \pi_K, \theta_1, \dots, \theta_K)$$

How does EM work?

Define

$$J(\alpha|\alpha_0) \equiv E_{\alpha_0} \left(\log \frac{p(T,\alpha)}{p(T,\alpha_0)} \mid S(T) = s \right)$$

- Initialize with $\alpha_{old} = \alpha_0$
- ullet E-step: compute $J(lpha|lpha_0)$ for as many values of lpha as needed. If this is difficult, the EM algorithm is probably not suitable
- M-step: maximize $J(\alpha|\alpha_0)$ as a function of α . Again, if difficult, EM may not be appropriate
- Set $\alpha_{new} = \arg\max J(\alpha|\alpha_{old})$, reset $\alpha_{old} = \alpha_{new}$ and repeat the E and M steps until converge

An Example

- Consider the simplest Mixture Distribution: Mixture of two univariate Gaussians
 - Five parameters: $\alpha = (\pi_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$
- Initialization: $\hat{\alpha} = (\hat{\pi}_1, \hat{\mu}_1, \hat{\sigma}_1, \hat{\mu}_2, \hat{\sigma}_2)$
- E-step: compute the *responsibilities*

$$\hat{\gamma}_i = \frac{\hat{\pi}_1 \phi_{\hat{\mu}_1, \hat{\sigma}_1}(x_i)}{\hat{\pi}_1 \phi_{\hat{\mu}_1, \hat{\sigma}_1}(x_i) + (1 - \hat{\pi}_1) \phi_{\hat{\mu}_2, \hat{\sigma}_2}(x_i)}$$

which is a estimate of

$$\gamma_i = E(I_{i,1} | \alpha, X_i) = P(I_{i,1} = 1 | \alpha, X_i)$$

An Example

M-step: compute the weighted means and variances:

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{n} \hat{\gamma}_{i} x_{i}}{\sum_{i=1}^{n} \hat{\gamma}_{i}} \qquad \hat{\sigma}_{1}^{2} = \frac{\sum_{i=1}^{n} \hat{\gamma}_{i} (x_{i} - \hat{\mu}_{1})^{2}}{\sum_{i=1}^{n} \hat{\gamma}_{i}}$$

$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{n} (1 - \hat{\gamma}_{i}) x_{i}}{\sum_{i=1}^{n} (1 - \hat{\gamma}_{i})} \qquad \hat{\sigma}_{2}^{2} = \frac{\sum_{i=1}^{n} (1 - \hat{\gamma}_{i}) (x_{i} - \hat{\mu}_{2})^{2}}{\sum_{i=1}^{n} (1 - \hat{\gamma}_{i})}$$

and the mixing probability $\hat{\pi}_1 = \sum_{i=1}^n \hat{\gamma}_i/n$

Iterate the E-step and M-step until convergence

Example Revisited

$$p(x) = 0.9N(-3, 1^2) + 0.1N(0, 0.3^2)$$

Initialization

- EM algorithm is a local optimization method that is guaranteed to converge to a local maximum
- Since the likelihood functions of most mixture models are not a concave function, the local maximum found by the EM algorithm may not be the global maximum
- Actually, the result from the EM algorithm is highly sensitive to the initialization
- How to do a good job in initialization?
 - try multiple random starting location
 - use results from other fast method, e.g. Kmeans

Combinational Algorithms

- Each point x_i is assigned to one of K clusters through a many-to-one mapping k = C(i)
- The quality of the clustering assignment C is measured by a loss function

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=k} d(x_i, x_j)$$

- Direct optimization of W(C) is computationally infeasible even for datasets of ordinary size
- K-means algorithm is one of the most popular iterative descent method try to find the minimum of W(C)

K-means Algorithms

- Given number of clusters K and an initial set of K seed points (serve as the centroid of clusters)
 - Partition the items into K initial clusters by assigning each point to its closest center
 - Recalculate the *mean* for each cluster, use it to replace the centriod that is use to generate the current cluster
 - repeat steps 1 and 2 until convergence
- One may replace the *mean* by *median* in step 2 to get
 K-median algorithm

K-means Algorithms

- Something you should know about K-means:
 - Converges very fast
 - User need to provide the number of groups
 - A local optimization routine, sensitive to initial values
 - Should be started with many different random choices of initial values

EM with Kmeans initialization

- EM is also a local optimization routine, which is sensitive to initialization
- In practice, EM is usually initialized with the results from a K-means algorithm

Napels Crab

• A single Weibull component is also an acceptable fit

