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ABSTRACT
Information diffusion and virus propagation are fundamental pro-
cesses talking place in networks. While it is often possibleto di-
rectly observe when nodes become infected, observing individual
transmissions (i.e., who infects whom or who influences whom)
is typically very difficult. Furthermore, in many applications, the
underlying network over which the diffusions and propagations
spread is actuallyunobserved. We tackle these challenges by devel-
oping a method for tracing paths of diffusion and influence through
networks and inferring the networks over which contagions prop-
agate. Given the times when nodes adopt pieces of information
or become infected, we identify the optimal network that best ex-
plains the observed infection times. Since the optimization problem
is NP-hard to solve exactly, we develop an efficient approximation
algorithm that scales to large datasets and in practice gives provably
near-optimal performance.

We demonstrate the effectiveness of our approach by tracingin-
formation cascades in a set of 170 million blogs and news articles
over a one year period to infer how information flows through the
online media space. We find that the diffusion network of news
tends to have a core-periphery structure with a small set of core
media sites that diffuse information to the rest of the Web. These
sites tend to have stable circles of influence with more general news
media sites acting as connectors between them.

Categories and Subject Descriptors:H.2.8 [Database Manage-
ment]: Database applications—Data mining
General Terms: Algorithms; Experimentation.
Keywords: Networks of diffusion, Information cascades, Blogs,
News media, Meme-tracking, Social networks.

1. INTRODUCTION
Cascading behavior, diffusion and spreading of ideas, innova-

tion, information, influence, viruses and diseases are fundamental
processes taking place in networks [12, 28, 30]. In order to study
network diffusion there are two fundamental challenges onehas to
address. First, to be able to track cascading processes taking place
in a network, one needs to identify the contagion (idea, informa-
tion, virus, disease) that is actually spreading and propagating over
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the edges of the network. Moreover, one has to then identify away
to successfully trace the contagion. For example, when tracing in-
formation diffusion, it is a non-trivial task to automatically and on
a large scale identify the phrases or “memes” that are spreading
through the Web. Second, we usually think of diffusion as a pro-
cess that takes place on anetwork. However, the network over
which propagations take place is usuallyunknownandunobserved.
Commonly, we only observe the times when particular nodes get
“infected” but wedo notobservewho infected them. In case of in-
formation propagation, as bloggers discover new information, they
write about it without explicitly citing the source. Thus, we only
observe the time when a blog gets “infected” but not where it got
infected from. Similarly, in virus propagation, we observepeople
getting sick without usually knowing who infected them. And, in a
viral marketing setting, we observe people purchasing products or
adopting particular behaviors without explicitly knowingwho was
the influencer that caused the adoption or the purchase.

These challenges are especially pronounced in informationdiffu-
sion on the Web, where there have been relatively few large scale
studies of information propagation in large networks [2, 23, 24, 25].
In order to study paths of diffusion over networks, one essentially
requires to have complete information about who influences whom,
as a single missing link in a sequence of propagations can lead to
wrong inferences. Even if one collects near complete large scale
diffusion data, it is a non-trivial task to identify textualfragments
that propagate relatively intact through the Web without human su-
pervision. And even then the question of how information diffuses
through the network still remains. Thus, the questions are,what
is the network over which the information propagates on the Web?
What is the global structure of such a network? How do news me-
dia sites and blogs interact? What roles do different sites play in
the diffusion process and how influential are they?

Our approach to inferring networks of diffusion and influence.
We address the above questions by positing that there is someun-
derlying unknown network over which information, viruses or in-
fluence propagate. For simplicity, we assume that the underlying
network is static and does not change over time. We then observe
the times when nodes get “infected” by a particular contagion (a
particular piece of information, product or virus) but we donot ob-
serve where they got infected from. Thus, for each cascade, we
only observe times when nodes got infected, and we are then inter-
ested in determining the paths the diffusion took through the unob-
served network. Our goal is to reconstruct the network over which
cascades propagate.

Edges in such networks of influence and diffusion have various
interpretations. In virus or disease propagation, edges can be inter-
preted as who-infects-whom. In information propagation, edges are



(a) True diffusion network (b) Inferred network using heuristic (c) Inferred network using NETINF

Figure 1: Diffusion network inference problem. There is an unknown network (a) over which cascades spread. Using a baseline
heuristic (see Section 4) we recover network (b), while our method (c) almost perfectly recovers the network.

who-copies-from-whom or who-listens-to-whom. In a viral mar-
keting setting, edges can be understood as who-influences-whom.

The main premise of our work is that by observing many diffe-
rent cascades spreading among the nodes, we can infer the edges of
the underlying propagation network. If nodev tends to get infected
soon after nodeu for many different cascades, then we can expect
an edge(u, v) to be present in the network. By exploring corre-
lations in node infection times, we aim to recover the unobserved
diffusion network.

Here we develop NETINF, a scalable algorithm for inferring net-
works of diffusion and influence. We first formulate a generative
probabilistic model of how, on a fixed hypothetical network,cas-
cades spread as directed trees through the network. Since weonly
observe times when nodes get infected, there are many possible
propagation trees that explain the same data and we have to con-
sider all of them. Thus, naive computation of the model takes
exponential time since there is a combinatorially large number of
propagation trees. We show that, perhaps surprisingly, computa-
tions over this super-exponential set of trees can be performed in
cubic time. However, under such model, the network inference
problem is still intractable. Thus, we introduce a tractable approxi-
mation, and show that the resulting objective function can be both
efficiently computed and efficiently optimized. By exploiting a di-
minishing returns property of the model, we prove that NETINF

infers near-optimal networks. We also speed-up NETINF algorithm
by exploiting the local structure of the objective functionand by
using lazy evaluations [21].

Our results on synthetic datasets show that we can reliably in-
fer the underlying propagation and influence networks, regardless
of the overall network structure. Validation on real and synthetic
datasets shows that NETINF outperforms a baseline heuristic by
an order of magnitude and correctly discovers more than 90% of
the edges. We apply our algorithm to a real Web information pro-
pagation dataset of 170 million blog and news articles over aone
year period. Our results show that online news propagation net-
works tend to have a core-periphery structure with a small set of
core blog and news media websites that diffuse information to the
rest of the Web, news media websites tend to diffuse the news faster
than blogs and blogs keep discussing about news longer time than
media websites.

Inferring how information or viruses propagate over networks
is crucial for a better understanding of diffusion in networks. By
modeling the structure of the propagation network, we can gain
insight into positions and roles various nodes play in the diffusion
process and assess the range of influence of nodes in the network.

2. PROBLEM FORMULATION
We now formally describe the problem where many different

cascades propagate over an unknown static network and for each
of them we observe timeswhennodes got infected but notwho in-

fected them. The goal then is to infer the unknown network over
which cascades originally propagated. In the information diffusion
setting, each cascade corresponds to a different piece of informa-
tion that spreads over the network and all we observe are the times
when particular sites mentioned particular information. The task
then is to infer the network where a directed edge(u, v) means that
a sitev tends to repeat or to mention stories after a siteu.

2.1 Problem statement
Given a hidden directed networkG∗, we observe multiple cas-

cades spreading over it. As the cascadec propagates over the net-
work, it leaves a trace in the form of(ui, ti, φi)c, which means that
cascadec reached nodeui at timeti with a set of features or attri-
butesφi. Note that we only observe the timetu when cascadec
reached nodeu but not how it reached the nodeu. Now, given such
traces of many different cascades, we aim to infer the unobserved
directed networkG∗, i.e., the network over which the cascades
originally propagated. We refer to the estimated version ofthe net-
work asĜ. We use the termhit timetu to refer to the time when a
cascade hits (infects) a particular nodeu. Many cascades will not
hit all the nodes – if a nodeu is not hit by a cascade, thentu =∞.
Thus, a cascade is fully specified by the vectort = [t1, . . . , tn]
of hit times, and the feature vectorΦ = [φ1, . . . , φn] describing
the properties of the contagion and the node (wheren is the num-
ber of nodes inG). Note that the probability of propagation may
be a complicated function of the properties of the nodes (e.g., age,
gender) and the properties of the contagion itself (e.g., product cat-
egory, price). One can use the feature vectorΦ to describe such
properties of individual nodes and contagions.

2.2 Model formulation
Suppose that for a fixed cascadec = (t,Φ), we know which

nodes influenced which other nodes. We assume that every node
v in a cascade is influenced by at most one nodeu. Thus, the in-
fluence structure of a cascadec is given by a directed treeT , which
we assume to be contained in the directed graphG, i.e., the graph
over which the cascade propagated. First, we will specify the cas-
cade transmission modelPc(u, v) that describes how likely is that
nodeu spreads the cascadec to nodev. We will then describe
the probabilityP (c|T ) that the cascadec propagates in a particular
tree patternT , where treeT simply specifies which nodes influence
which other nodes. Last, we will defineP (c|G), which is the prob-
ability that cascadec occurs in a networkG.

Cascade transmission model.We build on the independent cas-
cade model [13] which posits that an infected node infects each of
its neighbors independently with some chosen probability.As in
this model the time is modeled only implicitly through the epochs
of the propagation we fist extend the independent cascade model to
continuous time domain. We account for the fact that information
can spread quickly over some edges while over others it may take
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Figure 2: (a) Diffusion network G. (b) A cascadec on nodesu1, . . . , u5 with infection times tu, and most likely propagation tree
(black edges). As nodeu1 does not have a parent, theε-edge(m,u1) is picked. (c) The maximum directed spanning tree of a graph
is obtained by each node picking an incoming edge of maximum weight.

much longer to propagate. Also note that cascades in such a model
are necessarily trees since if a nodeu gets infected multiple times
knowing the node that infectedu first is sufficient.

First we define the probability of observing a particular cascade
c = (t,Φ) of hit times and features for a fixed propagation tree
T . Consider a single edge(u, v) ∈ T . Given the hit times(u, tu)c
and(v, tv)c (tu < tv) of nodesu andv in cascadec, we aim to
estimate the probabilityPc(u, v) that a nodeu spreads the cascade
to a nodev (i.e. a nodeu influences/infects/transmits to a nodev) in
the treeT . Formally,Pc(u, v) specifies the conditional probability
of observing cascadec spreading from nodeu to nodev.

Influence can only propagate forward in time. Thus, iftu ≥ tv,
we simply setPc(u, v) = 0. Generally the probability of propaga-
tion Pc(u, v) between a pair of nodesu andv is decreasing in the
difference of their infection times, i.e., the farther apart in time the
two nodes get infected the less likely they are to infect one another.
However, note that we can make the cascade transmission model
Pc(u, v) arbitrarily complicated as it can also depend on feature
vectorsφu andφv that describe the properties of the contagion and
the properties of the nodes. For example, in a disease propagation
scenario,φ could include information about the individual’s socio-
economic status, commute patterns, disease history and so on. This
allows for much more realistic cascade transmission modelsas the
probability of infection depends on the parameters of the disease
and properties of the nodes. For simplicity, in the rest of the paper
and in all our experiments, we ignore the features and assumethat
the probability of transmission depends only on the time difference
between the node hit times∆ = tv − tu.

Considering the model in a generative sense, the cascadec reaches
nodeu at timetu, and we now need to generate the timetv when
u spreads the cascade to nodev. As cascades generally do not in-
fect all the nodes of the network, we need to explicitly modelthe
probability that the cascade stops. With probability(1 − β), the
cascade stops, and never reachesv, thustv = ∞. With probabil-
ity β, the cascade continues, and the hit timetv is set totu + ∆,
where∆ is the waiting time that passed between the hit timestu
andtv. We consider two different models for the waiting time∆,
an exponential and a power-law model, each with parameterα:

P (∆) ∝ e−
∆

α andP (∆) ∝
1

∆α
.

We consider both the power-law and exponential waiting timemod-
els since they have both been argued for in the literature [3,23, 26].
In the end, our algorithm does not depend on the particular choice
of the waiting time distribution and more complicated functions
can easily be chosen [6]. Also, we interpret∞ + ∆ = ∞, i.e., if
tu =∞, thentv =∞ with probability1.

Now that we specified the probabilityPc(u, v) that nodeu in-
fluences nodev, we define the probability of observing cascadec
propagating in a particular tree structureT as

P (c|T ) =
∏

(i,j)∈T

Pc(i, j),

where the product is over the edges of the treeT . Here, the edges
of the treeT simply specify how the cascade spreads, i.e., every
node gets influenced by its parent.

Cascade propagation model.We just defined the probability of a
single cascadec propagating in a particular tree patternT ,P (c|T ).
Now, our aim is to computeP (c|G), the probability that a cascade
c occurs in a graphG. Note that cascade is defined only by the node
infection times and the propagation treeT (who-infected-whom) is
unknown. So, we combine the probabilities of individual propaga-
tion trees into a probability of a cascadec occurring in a network
G. We do this by considering all possible propagation treesT , i.e.,
all possible ways in which cascadec could have spread overG:

P (c|G) =
∑

T∈T (G)

P (c|T )P (T |G) ∝
∑

T∈T (G)

∏

(i,j)∈T

Pc(i, j)

(1)
wherec is a cascade andT (G) is the set of all the directed spa-
nning trees onG. Basically, the graphG defines the skeleton over
which the cascades propagate andT defines a particular possible
propagation. Since we do not know in which particular tree pattern
the cascade really propagated, we consider all possible propagation
treesT in T (G). Thus, the sum overT is a sum over all directed
spanning trees inT (G). We assume that all propagation trees are a
priori equally likely, i.e.,P (T |G) is the uniform distribution over
all directed spanning trees.

We just computed the probability of a single cascadec occurring
in G, and we now define the probability of a set of cascadesC
occurring inG simply as

P (C|G) =
∏

c∈C

P (c|G), (2)

where we assume conditional independence between cascadesgiven
the graphG.

Network inference problem. Next, we define thediffusion net-
work inference problem, where we aim to findĜ that solves the
following optimization problem:

Ĝ = argmax
|G|≤k

P (C|G),

where the maximization is over all graphsG of at mostk edges.
We add the constraint on the number of edges inĜ for two reasons.



First, the optimization problem without the constraint would have
a trivial solution since the fully connected graph maximizes the
above quantity. Second, since real graphs are sparse, we also seek
for a sparse solution. We discuss how to choosek later.

The above optimization problem seems wildly intractable. To
evaluate Eq. (2), we need to compute Eq. (1) for each cascadec,
i.e., the sum over all possible spanning treesT . The number of trees
can be super-exponential in the size ofG but perhaps surprisingly,
this super-exponential sum can be performed in time polynomial
in the numbern of nodes in the graphG, by applying Kirchhoff’s
matrix tree theorem [15]:

THEOREM 1 (TUTTE (1948)). If we construct a matrixA such
thatai,j =

∑
wk,j if i = j andai,j = −wi,j if i 6= j and ifAk,m

is the matrix created by removing any rowk and columnm fromA
such thatk +m is an even number, then

det(Ak,m) =
∑

T∈A

∏

(i,j)∈T

wi,j , (3)

whereT is each directed spanning tree inA.

In our case, we setwi,j to be simplyPc(i, j) and we compute
the product of the determinants of|C| matrices, one for each cas-
cade, which is exactly Equation 1. This means that instead of
using super-exponential time, we are now able to evaluate Eq. 2
in time O(|C| · n3) (the time required to compute|C| determi-
nants). However, this does not completely solve our problemfor
two reasons: First, while cubic time is a drastic improvement over a
super-exponential computation, it is still too expensive for the large
graphs that we want to consider. Second, we can use the above re-
sult only to evaluate the quality ofa particular graphG, while our
goal is to find thebestgraphĜ. To do this, one would need to
search overall graphsG to find the best one. Again, as there is
a super-exponential number of graphs, this is practically impossi-
ble. One could propose some search heuristics, like hill-climbing,
however, due to the combinatorial nature of the likelihood function,
such a procedure would likely be prone to local minima.

3. PROPOSED ALGORITHM
The diffusion network inference problem defined in the previous

section does not allow for an efficient solution. We now propose an
alternative formulation of the problem that is tractable tocompute
and to optimize.

3.1 An alternative formulation
For each cascadec, instead of considering every possible prop-

agation (spanning) treeT , we consider only the most likely propa-
gation treeT :

P (C|G) =
∏

c∈C

max
T∈T (G)

P (c|T ) =
∏

c∈C

max
T∈T (G)

∏

(i,j)∈T

Pc(i, j).

(4)
We then define the improvement of log-likelihood for cascadec
under graphG over an empty graph̄K:

Fc(G) = max
T∈T (G)

logP (c|T )− max
T∈T (K̄)

logP (c|T ). (5)

Note that maximizing Eq. (4) is equivalent to maximizing thefol-
lowing objective function:

FC(G) =
∑

c∈C

Fc(G)

In reality, nodes may get infected for reasons other than thenetwork
influence. For example, in online media, not all the information

propagates via the network, as some is also pushed onto the net-
work by the mass media [12, 30] and thus a disconnected cascade
can be created. Similarly, in viral marketing, a person may pur-
chase a product due to the influence of peers (i.e., network effect)
or for some other reason (e.g., seing a commercial on TV) [17].

In order to account for such phenomena when a cascade “jumps”
across the network, we introduce an additional nodem that repre-
sents an external source that can infectany nodeu. We connect
the external influence sourcem (i.e., the mass media node) to ev-
ery other nodeu with an ε-edge. And then every nodeu can get
infected by the external sourcem with a very small probabilityε.

Putting it all together, we include the additional nodem in every
cascadec and we set the probability of a cascade spreading from
m to any nodej in the cascadec to Pc(m, j) = ε. Given that we
are accounting for reasons other than the network influence for a
node to get infected, we assume that theε-edges betweenm and all
nodes in the cascadec exist also for the empty graph̄K. We now
expand Eq. (5) as

Fc(G) = max
T∈T (G)

∑

(i,j)∈T

wc(i, j),

wherewc(i, j) = logPc(i, j) − log ε is a non-negative weight
which can be interpreted as the improvement in log-likelihood of
edge(i, j) under the most likely spanning treeT in G. This means
that the most likely propagation treeT is simply themaximum
weight directed spanning treein graphG, where each edge(i, j)
has weightwc(i, j), andFc(G) is simply the sum of the weights of
edges inT . Figures 2(a) and 2(b) illustrate the notion of a cascade
on a directed graph, as well as the concept ofε-edges. Note that
since edges(i, j) whereti ≥ tj have weight 0 (i.e., they are not
present) and the nodem has only outgoing edges, for a fixed cas-
cadec, the collection of edges with positive weight forms a directed
acyclicgraph (DAG). Interestingly, for such a DAG, the maximum
weight directed spanning tree can be computed efficiently:

PROPOSITION 1. In a DAG G with vertex setV and nonne-
gative edge weightsw, the maximum weight directed spanning tree
can be found by choosing, for each nodev, an incoming edge(u, v)
with maximum weightw(u, v).

PROOF. The score

S(T ) =
∑

(i,j)∈T

w(i, j) =
∑

i∈V

w(ParT (i), i)

of a treeT is the sum of the incoming edge weightsw(ParT (i), i)
for each nodei, whereParT (i) is the parent of nodei in T (and
the root is handled appropriately). Now,

max
T

S(T ) = max
T

∑

(i,j)∈T

w(i, j) =
∑

i∈V

max
ParT (i)

w(ParT (i), i).

Latter equality follows from the fact that sinceG is a DAG, the
maximization can be done independently for each node without
creating any cycles.

This proposition is a special case of the more general maximum
spanning tree (MST) problem in directed graphs [7]. The impor-
tant fact now is that we can find the best propagation treeT in
timeO(|G|) linear in the number of edges by simply selecting an
incoming edge of highest weight for each node (Figure 2(c)).

3.2 Efficient optimization
By constructionFC(K̄) = 0, i.e., the empty graph has score 0.

Also note thatFC is non-negative and monotonic,



It can be seen that the objective functionFC is monotonic, i.e.,
FC(G) ≤ FC(G

′), wheneverG ⊆ G′. Hence adding more edges
to G does not decrease the solution quality, and thus the complete
graph maximizesFC . However, in practice, we are interested in
inferring sparsegraphs, that only contain a small numberk of rel-
evant edges. Thus we would like to solve

G∗ = argmax
|G|≤k

FC(G). (6)

Naively searching over allk edge graphs would take time expo-
nential ink, which is intractable. Moreover, finding the optimal
solution to Eq. (6) is NP-hard, so we cannot expect to find the opti-
mal solution:

THEOREM 2. The diffusion network inference problem defined
by equation(6) is NP-hard.

PROOF. By reduction from the MAX-k-COVER problem [14].
In MAX- k-COVER, we are given a finite setW , |W | = n and a
collection of subsetsS1, . . . , Sm ⊆W . The function

FMC(A) = | ∪i∈A Si|

counts the number of elements ofW covered by sets indexed by
A. Our goal is to pick a collection ofk subsetsA maximizing
FMC . We will produce a collection ofn cascadesC over a graph
G such thatmax|G|≤k FC(G) = max|A|≤k FMC(A). GraphG
will be defined over the set of verticesV = {1, . . . ,m} ∪ {r},
i.e., there is one vertex for each setSi and one extra vertexr. For
each elements ∈ W we define a cascade which has time stamp0
associated with all nodesi ∈ V such thats ∈ Si, time stamp1 for
noder and∞ for all remaining nodes. Furthermore, we can choose
the transmission model such thatwc(i, r) = 1 whenevers ∈ Si

andwc(i
′, j′) = 0 for all remaining edges(i′, j′), by choosing the

parametersε,α andβ appropriately. Since a directed spanning tree
over a graphG can contain at most one edge incoming to noder,
its weight will be1 if G contains any edge from a nodei to r where
s ∈ Si, and0 and otherwise. Thus, a graphG of at mostk edges
corresponds to a feasible solutionAG to MAX-k-COVER where
we pick setsSi whenever edge(i, r) ∈ G, and each solutionA
to MAX-k-COVER corresponds to a feasible solutionGA of (6).
Furthermore, by construction,FMC(AG) = FC(G). Thus, if we
had an efficient algorithm for deciding whether there existsa graph
G, |G| ≤ k such thatFC(G) > c, we could use the algorithm to
decide whether there exists a solutionA to MAX-k-COVER with
value at leastc.

While finding the optimal solution is hard, we will now show that
FC satisfiessubmodularity, a natural diminishing returns property,
which will allow us to efficiently find aprovably near-optimalso-
lution to this NP-hard problem.

A set functionF : 2W → R mapping subsets of a finite setW
to the real numbers issubmodularif wheneverA ⊆ B ⊆ W and
s ∈ W \B, it holds thatF (A∪{s})−F (A) ≥ F (B∪{s})−F (B),
i.e., addings to the setA increases the score more than addings to
setB. We have the following result:

THEOREM 3. Let V be a set of nodes, andC be a collection
of cascades hitting the nodesV . ThenFC(G) is a submodular
functionFC : 2W → R defined over subsetsW ⊆ V × V of
directed edges.

PROOF. Fix a cascadec, graphsG ⊆ G′ and an edgee = (r, s)
not contained inG′. We will show thatFc(G ∪ {e}) − Fc(G) ≥
Fc(G

′ ∪ {e}) − Fc(G
′). Since nonnegative linear combinations

of submodular functions are submodular, the functionFC(G) =

Algorithm 1 The NETINF Algorithm

Require: C, k
G← K̄;
for all c ∈ C do

Tc ← dagtree(c);
while |G| < k do

for all (j, i) ∈ C\G do
δj,i = 0, Mj,i ← ∅;
for all c : (j, i) ∈ c do

letwc(m,n) be the weight of(m,n) in G ∪ {(j, i)};
if wc(j, i) ≥ wc(ParTc

(i), i) then
δj,i = δj,i + wc(j, i) −wc(ParTc

(i), i);
Mj,i ←Mj,i ∪ {c};

(j∗, i∗)← argmax(j,i)∈C\G δj,i;
G← G ∪ {(j∗, i∗)};
for all c ∈Mj∗,i∗ do

ParTc
(i∗)← j∗;

return G;

∑
c∈C

Fc(G) is submodular as well. Letwi,j be the weight of
edge(i, j) in G ∪ {e}, andw′

i,j be the weight inG′ ∪ {e}. As
argued in Section 3.1, the maximum weight directed spanningtree
for DAGs is obtained by assigning to each node the incoming edge
with maximum weight. Let(i, s) be the edge incoming ats of
maximum weight inG, and(i′, s) the maximum weight incoming
edge inG′. SinceG ⊆ G′ it holds thatwi,s ≤ w′

i′,s. Furthermore,
wr,s = w′

r,s. Hence,

Fc(G ∪ {(r, s)})− Fc(G) = max(wi,s, wr,s)− wi,s

≥ max(w′
i′,s, w

′
r,s)− w′

i′,s

= Fc(G
′ ∪ {(r, s)})− Fc(G

′),

proving submodularity ofFc.

Maximizing submodular functions in general is NP-hard [14]. A
commonly used heuristic is thegreedy algorithm, which starts with
an empty graph̄K, and iteratively, in stepi, adds the edgeei which
maximizes the marginal gain:

ei = argmax
e∈G\Gi−1

FC(Gi−1 ∪ {e})− FC(Gi−1). (7)

The algorithm stops once it has selectedk edges, and returns
the solutionĜ = {e1, . . . , ek}. The stopping criteria, i.e., value
of k, can be based on some threshold of the marginal gain, of the
number of estimated edges or another more sophisticated heuris-
tic. Considering the hardness of the problem, we might expect the
greedy algorithm to perform arbitrarily bad. However, we will see
that this is not the case. A fundamental result of Nemhauser et
al. [27] proves that for monotonic submodular functions, the setĜ
returned by the greedy algorithm obtains at least a constantfraction
of (1−1/e) ≈ 63% of the optimal value achievable usingk edges.

Moreover, we can acquire a tightonline bound on the solution
quality:

THEOREM 4 ([21]). For a graphĜ, and each edgee /∈ Ĝ,
let δe = FC(Ĝ ∪ {e}) − FC(Ĝ). Let e1, . . . eB be the sequence
with δe in decreasing order. Then,

max
|G|≤k

Fc(G) ≤ Fc(Ĝ) +
k∑

i=1

δei .

Thm. 4 computes how far a given̂G (obtained byanyalgorithm) is
from the unknown NP-hard to find optimum.
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Figure 3: Number of cascades per edge and cascade sizes for a
Forest Fire network (1, 000 nodes,1, 477 edges) with forward
burning prob. 0.20, backward burning prob. 0.17 and expo-
nential transmission model with parametersα = 1, β = 0.5.

Speeding-up NET I NF. We speed-up the algorithm by orders of
magnitude by considering two improvements:

• Localized update:Consider the edge(j∗, i∗) selected by the
greedy algorithmat iterationn and the treesTc : (j∗, i∗) ∈
Tc. Now, fix an edge(j, i) /∈ G for which we know the
marginal gain,δj,i, at iterationn and we need to estimate it
at iterationn + 1. The value ofδj,i depends of cascadesc
for whichwc(j, i) ≥ wc(ParTc

(i), i). Then, if i 6= i∗, the
value ofδj,i at iterationn is the same as its value at iteration
n + 1, otherwise, ifi = i∗, we only need to updateδj,i
revisiting cascadesc such that(j∗, i∗) ∈ Tc andwc(j, i) ≥
wc(ParTc

(i), i) just before selecting(j∗, i∗).
• Lazy evaluationcan be used to drastically reduce the number

of evaluations of marginal gainsF (G ∪ {e}) − F (G) [21].
This procedure relies on the submodularity ofFC .

As we will show later, these two improvements decrease the run
time by several order of magnitude without any loss in the solution
quality. We call the algorithm that implements the greedy algorithm
with the above speedups the NETINF algorithm (Algorithm 1). Ad-
ditionally, NETINF lends itself to parallelization to tackle even big-
ger networks in shorter amounts of computation time.

4. EXPERIMENTAL EVALUATION
We first analyze the performance of NETINF on synthetic and

real networks. We show that our algorithm outperforms a heuristic
baseline and correctly discovers more than 90% of the edges.

4.1 Experiments on synthetic data
The goal of the experiments on synthetic data is to understand

how the underlying network structure and the propagation model
(exponential vs. power-law) affect the performance of our algo-
rithm. In general, we proceed as follows: we generate a network
G∗, simulate a set of cascades and for each cascade, record the
node hit timestu. Then, given the hit times, we try to recover the
networkG∗.

For example, Fig. 1(a) shows a graphG∗ of 20 nodes and 23
edges. We generated24 cascades and recoveredG∗. A baseline
method (b) (described below) performed poorly while our method
(c) almost recoveredG∗ perfectly by making only two errors.

Experimental setup. We consider two models of directed real-
world networks, namely, the Forest Fire model [20] and the Kro-
necker Graphs model [19] to generateG∗. For Kronecker graphs,
we consider three sets of parameters that produce networks with a
very different structure: a random graph [8] (Kronecker parameter
matrix [0.5, 0.5; 0.5, 0.5]), a network with hierarchical community
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(b) MemeTracker dataset

Figure 4: Score achieved by NET I NF in comparison with the
online upper bound from Theorem 4. In practice NET I NF finds
networks that are at 97% of NP-hard to compute optimal.

structure [5] ([0.962, 0.107; 0.107, 0.962]) and a core-periphery net-
work [22] ([0.962, 0.535; 0.535, 0.107]). Notice that Forest Fire
generates a scale free network [4].

We then simulate cascades onG∗ using the generative model de-
fined in Section 2.1 that is parameterized byα, which controls how
quickly a cascade spreads, andβ, that controls how far a cascade
spreads. We pick cascade starting nodes uniformly at randomand
generate enough cascades so that 99% of the edges inG∗ partici-
pate in at least one cascade.

For example, for the Forest Fire network on 1,000 nodes and
1,477 edges, we generated 834 cascades. The majority of edges
took part in 4 to 12 cascades and the cascade size distribution fo-
llows a power law (Figure 3(b)). The average and median number
of cascades per edge are 9.1 and 8, respectively (Figure 3(a)).

Baseline method. To infer a diffusion networkĜ, we consider
the following baseline method: For eachpossibleedge(u, v), we
computew(u, v) =

∑
c∈C

Pc(u, v), i.e., overall how likely were
the cascadesc ∈ C to propagate fromu to v. Then we simply
pick thek edges(u, v) with the highest weightw(u, v) to obtain
Ĝ (Fig. 1(b)).

Solution quality. We evaluate the performance of the NETINF al-
gorithm in two different ways. First, we are interested in how suc-
cessful NETINF is at optimizing the objective function that is NP-
hard to optimize exactly. Using the online bound in Theorem 4, we
can assess at most how far from the unknown optimal the NETINF

solution is.
Figure 4(a) plots the value of the objective function as a function

of the number of edges in̂G. In red we plot the value achieved by
NETINF and in green the upper bound using Thm. 4. This tells us
that the value of the unknown optimal solution (that is NP-hard to
compute exactly) is somewhere between the red and green curve.
Notice that the band between optimal and the NETINF is relatively
small. For example, at 2,000 edges inĜ, NETINF finds the solu-
tion that is least 97% of optimal for synthetic data. Moreover, also
notice a strong diminishing return effect, where the value of the
objective function flattens out after about 1,000 edges. This means
that, in practice, very sparse solutions (almost tree-likediffusion
graphs) already achieve very high values of the objective function
close to the optimal.

Accuracy of NET I NF. We also evaluate our approach by studying
how many edges inferred by NETINF are actually present in the true
networkG∗. We measure the precision and recall of our method.
For every value ofk (1 ≤ k ≤ n2) we generateĜk on k edges by
using NETINF or the baseline method. We then compute precision
(what fraction of edges in̂Gk is also presentG∗) and recall (what
fraction of edges ofG∗ appears inĜk). For smallk, we expect low
recall and high precision as we select the few edges that we are the
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(b) Core-Periph. Kronecker (Exp)
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(c) Flat Kronecker (Exp)
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(d) Forest Fire (α = 1.1)
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(e) Hier. Kronecker (PL)
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(f) Core-Periph. Kronecker (PL)
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(g) Flat Kronecker (PL)
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(h) Forest Fire (α = 3)

Figure 5: (a-c, e-g): Precision and recall for three 1024 node Kronecker networks with exponential (Exp) and power law (PL)
transmission model. (d,h): Precision and recall for a 1,000node Forest Fire network with a power law transmission model. NET I NF

achieves break-even points of more than 0.9 regardless of the propagation model and underlying diffusion network structure.

most confident in. Ask increases, precision will generally start to
drop but the recall will monotonically increase.

Figure 5 shows the precision-recall curves of NETINF and the
baseline method on three different Kronecker graphs (random, hi-
erarchical community structure and core-periphery structure) with
1024 nodes and two cascade transmission models. The cascades
were generated with an exponential transmission model withα =
1, a power law transmission model withα = 2 and a value ofβ
low enough to avoid generating too large cascades (i.e.β = 0.5 for
hierarchical,β = 0.4 for random andβ = 0.1 for core-periphery).
We generated between 2,000 and 4,000 cascades so that 99% of
the edges participated in at least one cascade. We chose cascade
starting points uniformly at random.

First, we focus on Figures 5(a), 5(b) and 5(c) where we use the
exponential transmission model. Notice that the baseline method
achieves the break-even point1 in between 0.4 and 0.5 on all three
networks. However, our method performs much better with the
break-even point of 0.99 over all three datasets. This is a remark-
able result as we were especially careful not to generate toomany
cascades since more cascades mean more evidence that makes the
problem easier. Thus, using a very small number of cascades,
where every edge ofG∗ participates in only a few cascades, we
can almost perfectly recover the underlying diffusion network G∗.

Similarly, Figures 5(e), 5(f) and 5(g) show the performanceon
the same three networks but using the power law transmissionmodel.
The performance of the baseline now dramatically drops. This is
due to the fact that the variance of power-law (and heavy tailed dis-
tributions in general) is much larger than the variance of anexpo-
nential distribution. Thus the diffusion network inference problem
is much harder in this case. As the baseline pays high price due to
the increase in variance with the break-even point droppingbelow
0.1 the performance of NETINF remains stable.

We also examine the results on the Forest Fire network (Figures 5(d)
and 5(h)). Again, the performance of the baseline is very lowwhile
NETINF achieves the break-even point at around 0.90.

1The point at which recall is equal to precision.

Generally, the performance on the Forest Fire network is a bit
lower than on the Kronecker graphs. However, it is importantto
note that while these networks have very different global network
structure (from hierarchical, random, scale free to core periphery)
the performance of NETINF is remarkably stable and does not seem
to depend on the structure of the network we are trying to infer or
the particular type of cascade transmission model.

Performance vs. cascade coverage.Intuitively, the larger the num-
ber of cascades that spread over a particular edge the easierit is
to identify it. In our experiments so far, we carefully generated a
relatively small number of cascades. Next, we examine how the
performance of NETINF depends on the amount of available cas-
cade data. Fig. 7(b) plots the performance of NETINF (break-even
point) as a function of the available cascade data measured in the
number of transmissions over all cascades, i.e.,x = 1 means that
the total number of transmission events (sum of cascade sizes) used
for the experiment was equal to the number of edges inG∗. Small
values ofβ produce larger cascades, increasing the difficulty of our
problem. Note that NETINF requires a total number of transmis-
sion events between2 and5 times the number of edges inG∗ to
successfully recover most of the edges ofG∗.

Stopping criterion. In practice one does not know how long to run
the algorithm and how many edges to insert into the networkĜ.
Given the results from Figure 4, we found the following heuristic
to give good results. We run the NETINF algorithm for k steps
wherek is chosen such that the objective function is “close” to the
upper bound, i.e.,FC(Ĝ) > x ·OPT, where OPT is obtained using
the online bound. In practice we use values ofx in range 0.8–0.9.

Scalability. Figure 7(a) shows the average computation time per
edge added of our algorithm implemented with lazy evaluation and
localized update. We use a hierarchical Kronecker network and
an exponential transmission model withα = 1 and β = 0.5.
Localized update speeds up the algorithm for an order of magni-
tude (45×) and lazy evaluation further gives a factor of 6 improve-
ment. Thus, overall, we achieve two orders of magnitude speed up
(280×), withoutany loss in solution quality.
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Figure 6: (a) A small part of the larger diffusion network. (b ) Number and strength of edges between different media types. Edges
of news media influencing blogs are the strongest. (c) Mediantime lag on edges of different type.

4.2 Experiments on real data

Dataset description. We use more than172 million news arti-
cles and blog posts from1 million online sources over a period of
one year from September 1 2008 till August 31 20092. Based on
this raw data, we use two different methodologies to trace infor-
mation on the Web. First, we use hyperlinks between blog posts
to trace the flow of information [23]. As the use of hyperlinksto
refer to the source of information is relatively rare (especially in
mainstream media), we also use the MemeTracker [18] methodo-
logy to extract more than 343 million short textual phrases (like,
“Joe, the plumber” or “lipstick on a pig”). Out of these, 8 million
distinct phrases appeared more than 10 times, with the cumulative
number of mentions of over 150 million. We cluster the phrases
to aggregate different textual variants of the same phrase [18]. We
then consider each phrase cluster as a separate cascadec. Since all
documents are time stamped, a cascadec is simply a set of time-
stamps when websites first mentioned a phrase in the phrase cluster
c. So, we observe the times when sites mention a particular phrase
but not where they copied that phrase from. For the experiments
here we use the top 1,000 media sites and blogs with the largest
number of documents. We then consider the largest 5,000 cascades
(phrase clusters) and for each website we record the time when
they first mention a phrase in the particular phrase cluster.Note
that cascades in general do not spread over all the sites, which our
methodology can successfully handle.

Visualization of diffusion networks. First we examine the struc-
ture of the inferred network. Figure 6(a) shows the largest con-
nected component of the diffusion network after 100 edges have
been chosen. The size of the nodes is proportional to the number
of articles on the site and the width of the edge is proportional to
the probability of influence, i.e., stronger edges have higher width.
Here we used the hyperlinks to trace the spread of information.

2Data available athttp://memetracker.org andhttp://
snap.stanford.edu/netinf

Since news media articles rarely use hyperlinks to refer to one an-
other, the network is somewhat biased towards web blogs (blue
nodes). There are several interesting patterns. First, notice how
three main clusters emerge: on the left side of the network wecan
see blogs and news media sites related to politics, at the right top,
we have blogs devoted to gossip, celebrity news or entertainment
and on the right bottom, we can distinguish blogs and news media
sites that deal with technological news. As Huffington Post and
Political Carnival play the central role on the political side of the
network, mainstream media sites like Washington Post, Guardian
and professional blog Salon.com play the role of connectorsbe-
tween the different parts of the network. The celebrity gossip part
of the network is dominated by the blog Gawker and technology
news gather around blogs Gizmodo and Engadget, with CNet and
TechChuck establishing the connection to the rest of the network.
For reasons of space, we refer the reader to the supporting web-
site [1] for additional graphs.

Insights into the diffusion on the web.The inferred diffusion net-
works also allow for analysis of the global structure of information
propagation on the Web. For this analysis, we use the MemeTracker
phrase clusters as cascades and analyze the structure of theinferred
information diffusion network.

Figure 6(b) investigates the number of links in the inferrednet-
work that point between different types of sites. Here we split the
sites into mainstream media and blogs. Notice that most of the
links point from news media to blogs, which says that most of the
time information propagates from the mainstream media to blogs.
Then notice how at first many media-to-media links are chosenbut
in later iterations the increase of these links starts to slow down.
This means that media-to-media links tend to be the strongest and
NETINF picks them early. The opposite seems to occur in case of
blog-to-blog links where relatively few are chosen first butlater the
algorithm picks more of them. Lastly, links capturing the influence
of blogs on mainstream media are the rarest and weakest. This
suggests that most information travels from mass media to blogs.



In Figure 6(c), we investigate the median time difference be-
tween mentions of different types of sites. For every edge ofthe
inferred diffusion network, we compute the median time needed for
the information to spread from the source to the destinationnode.
Again, we distinguish the mainstream media sites and blogs.No-
tice that media sites are quick to infect one another or even to get
infected from blogs. However, blogs tend to be much slower in
propagating information. It takes a relatively long time for them to
get “infected” with information regardless whether the information
comes from the mainstream media or the blogosphere.

Solution quality. Similarly as with synthetic data, in Figure 4(b)
we also investigate the value of the objective function and compare
it to the online bound. Notice that the bound is almost as tight
as in the case of synthetic networks, finding the solution that is
least 84% of optimal and both curves are similar in shape to the
synthetic case value. Again, as in the synthetic case, the value of the
objective function quickly flattens out which means that oneneeds
a relatively few number of edges to capture most of the information
flow on the Web.

Accuracy on real data.As there is not objective ground truth net-
work on real data, we perform the following experiment. We create
a network where there is an edge(u, v) if a webpage on a siteu
linked to a page on a sitev. we take the top 500 media sites and
blogs in terms of number of hyperlinks and the top 4,000 hyperlink
in terms of number of posts links. First, we consider this as the
ground truth networkG∗. We use the hyperlink cascades to infer
the networkĜ and evaluate how many edges NETINF got right.
Figure 8(a) shows the performance of NETINF and the baseline.
Notice that the baseline method achieves the break-even point of
0.34, while our method performs better with a break-even point of
0.44. Second, we try a considerably harder problem, we use the
cascades based on the MemeTracker phrase clusters to inferG∗.
Figure 8(b) shows the performance of NETINF and the baseline.
The baseline method has a break-even point of 0.17 and NETINF

achieves a break-even point of 0.28. To have a fair comparison
with the synthetic cases, notice that the exponential transmission
model is a simplistic assumption for our real dataset, and NETINF

can get additional mileage with respect to the baseline choosing a
more complex transmission model.

5. RELATED WORK
There are several lines of work we build upon. Although the

information diffusion in on-line settings has received considerable
attention [2, 11, 16, 17, 23, 24, 25], only a few studies were able
to study the actual shapes of cascades [23, 25]. The problem of in-
ferring links of diffusion was first studied by Adar and Adamic [2],
who formulated it as a supervised classification problem andused
Support Vector Machines combined with rich textual features to
predict the occurrence of individual links. Although rich textual
features are used, links are predicted independently and thus their
approach is similar to our baseline method in the sense that it picks
a threshold (i.e., hyperplane in case of SVMs) and predicts indivi-
dually the most probable links.

Network structure learning has been considered for estimating
the dependency structure of probabilistic graphical models [9, 10]
and for estimating epidemiological networks [29]. In both cases,
the problem is formulated in a probabilistic framework. However,
since the problem is intractable, heuristic greedy hill-climbing or
stochastic search that offer no performance guarantee wereusually
used in practice. In contrast, our work provides a novel formulation
and atractablesolution together with an approximation guarantee.

Last, althoughsubmodularmaximization has been previously
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Figure 7: (a): Average time per edge added by our algorithm
implemented with lazy evaluation (LE) and localized update
(LU). (b): Performance of NET I NF as a function of the amount
of cascade data. On average NET I NF requires about two prop-
agation events per edge of the original network in order to reli-
ably recover the true network structure.

considered for sensor placement [21] and finding influencersin vi-
ral marketing [13], to the best of our knowledge, the presentwork
is the first that considers submodular function maximization in the
context of network structure learning.

6. CONCLUSIONS
We have investigated the problem of tracing paths of diffusion

and influence. We formalized the problem and developed a scala-
ble algorithm, NETINF, to infer networks of influence and diffu-
sion. First, we defined a generative model of cascades and showed
that choosing the best set ofk edges maximizing the likelihood of
the data is NP-hard. By exploiting the submodularity of our ob-
jective function, we developed NETINF, an efficient algorithm for
inferring a near-optimal set ofk directed edges. By exploiting lo-
calized updates and lazy evaluation, our algorithm is able to scale
to very large real data sets.

We evaluated our algorithm on synthetic cascades sampled from
our generative model, and showed that NETINF is able to accurately
recover the underlying network from a relatively small number of
samples. In our experiments, NETINF drastically outperformed a
naive maximum weight baseline heuristic.

Most importantly, our algorithm allows us to study properties of
real networks. We evaluated NETINF on a large real data set of
memes propagating across news websites and blogs. We found that
the inferred network exhibits a core-periphery structure with mass
media influencing most of the blogosphere. Clusters of sitesrelated
to similar topics emerge (politics, gossip, technology, etc.), and a
few sites with social capital interconnect these clusters allowing a
potential diffusion of information among sites in different clusters.

There are several interesting directions for future work. Here we
only used time difference to infer edges and thus it would be in-
teresting to utilize more informative features (e.g., textual content
of postings etc.) to more accurately estimate the influence probabi-
lities. Moreover, our work considers static propagation networks,
however real influence networks are dynamic and thus it wouldbe
interesting to relax this assumption. Last, there are many other
domains where our methodology could be useful: inferring inter-
action networks in systems biology (protein-protein and gene in-
teraction networks), neuroscience (inferring physical connections
between neurons) and epidemiology.

We believe that our results provide a promising step towardsun-
derstanding complex processes on networks based on partialobser-
vations.
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Figure 8: Precision and recall for a 500 node hyperlink network
using (a) hyperlinks cascades and (b) MemeTracker cascades.
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