QUASI-NEWTON
METHODS

Rank one and rank two updates




D
Newton method

- For unconstraint minimization

- To minimize f(#) which is convex and twice differentiable
- Iterate by 1
9n+1 — 9n — H Vf(g)
- advantages: simple to apply, fast convergence

- disadvantages: local convergence, requires second derivatives,
solution of linear equation



L
Quasi-Newton

- Instead of the true Hessian, an initial matrix H, is chosen
(usually Hy = 1) which is subsequently updated by an update
formula: H. ., =H, + H!

- This updating can also be done with the inverse of the Hessian

H-1as follows: Let B = H-; then the updating formula for the
Inverse is also of the form B, ., =B, + B

- Big question: What is the update matrix?



Secant Condition

- Quasi-Newton updates satisfy

Hp11(0n41—0n) = V f(On11)—V [ (0n)
- Interpretation
- define second-order approximation at 6,,.1

1
fquad(z) - f(9n+1) + df(9n+1)(z - 9n+1) + E (Z - 9n+1)tHn+1(Z - 9n+1)

- secant condition implies that gradient of fqmd agrees
with the gradient of fat 6,
- Let B = H 1 then the secant condition becomes

On1—0n = Bp1(Vf(0,41)—V f(0n))



Rank one and rank two updates

- Let By = By+ Bl gn = V f(0p11) — Vf(0n) and
dp = 0,41 — On, the condition becomes
dp = Bpgn + Bpgn (*)
- A general form of solution is BY = a uu! 4+ b vo!, where aand b
are scalars, and u and v are vectors satisfying (*)

- b = 0: rank one updates
b # 0: rank two updates — BFGS, DFP



L
Rank-One Quasi-Newton Method

+ Secant condition: Vf(0,5:1) —Vf(0,) = Hpy1(0ne1 — Gn)
+ Update to Hy:

Hyy1 = Hy + ﬂﬂunu?t’.',:
where constant ¢, and vector v, are determined by
1

(Hﬂdﬂ o ﬂﬂ}tdﬂ
- When (Hndy, — gn)"dy is too close to 0,

o Either H, is retained for H,, , 4,

p = — :un:Hndn_.ﬂn-

o Or use trust region strategy:
= Minimize quadratic approxiamtion to f(8) subject to spherical constraint
|60 — 6,,||* < r? for afixed radius .

= Has a solution regardless of whether H,, is positive definite.

= Prevent absurdly large stepsin the early stages of minimization.



Backtrack

- Hereditary positive definiteness: positive definiteness is
guaranteed to be transferred from one iteration to the next.

Hpy1 = Hy + ﬂfnunu:rth

* If H, is positive definite and a,, = 0,
then H,, ;4 will be positive definite.
* Ifa, < 0,then it may be necessary to backtrack
o Shrink a,, towards 0 until positive definiteness is achieved.



L
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

- BFGS update

H = H —
i e Qrgdn d%Hndn

- where gn = V f(On 1) = Vf(0n), dn = 041 — On
- Inverse update

_ L dngg Qndg | dndﬁz
Bn+1 o (I ggdn)Bn(I gﬁdn) | ggdn

Qngr,a Hndnd%Hn

- Note that g ‘d_ > O for strictly convex f



Positive Definiteness

- If g 'd > 0, BFGS update preserves positive definiteness of H,

- proof: from inverse update formula
t die  \tzr—1 d%fv (dy)°
' H,, +1$ (r — P gn) Hy, *(x — gn) | 7

o If H — (), both terms are nonnegative for all X

» Second term 1s zero only if dt Z = 0; the first term 1s zero only
ifx=0

- This ensures that A\ = — H;lv f (Qn) 1s a descent direction



Convergence

global result

- if f 1s strongly convex, BFGS with backtracking line search
converges from any g, and Hy > 0
Local convergence

- If fis strongly convex and df* (f) is Lipschitz continuous, local
convergence 1s superlinear: for sufficiently large »,

|0ns1 = 0% (|5 < cn [|0n — 67|, = O
- where ¢,, — 0



L
Quasi-Newton Algorithm

given starting point §, and Hy > 0
Forn=1 2, ... until a stopping criterion is satisfied

1. compute quasi-Newton direction A§ = —H 'V £(6,,)
2. determine step size ¢ (e.g., by backtracking line search)
3. Compute 0,1 =0, + t\@

4. Compute update matrix according to a given formula, and
update H,, or H!



Comments

Initialization
- True Hessian

- al, where @ is in the range of the eigenvalues of the true
Hessian

Pros and Cons

- Avoid calculation of second derivatives

- Simplify computation of search direction

- Global convergence even with inexact line searches
+ Quadratic convergence of Newton’s Method 1s lost
- Can get stuck on a saddle point



