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1. INTRODUCTION

I commend Johnstone and Lu for publishing this important
article, which has motivated quite a lot of recent work on
sparsity and statistical inference in high-dimensional settings.
In their article, Johnstone and Lu present two main results.
First, in the presence of considerable noise in the x variables,
with a number of samples n not significantly larger than the
number of variables p, the sample eigenvectors computed by
standard principal component analysis (PCA) may be poor
approximations to their population analogs. Second, if the
sample observations are known to be sparse in some a priori
known basis, then it is possible, via a thresholding procedure,
to obtain both improved eigenvector estimates (provably con-
sistent in an appropriate limit) as well as substantial compu-
tational savings.

Because PCA is an unsupervised method, one question that a
reader may ask is whether this curse of dimensionality, leading
to large reconstruction errors in high dimensions, is the result
of the lack of supervision. In other words, should we worry
about similar problems in supervised settings, such as classi-
fication or regression, where for each sample x a response
variable y is also given?

Regretfully, the short answer to this question is yes. This
curse of dimensionality also affects the supervised scenario. A
few years ago, independent of the work of Johnstone and Lu,
Ronald Coifman and myself (Nadler and Coifman 2005) con-
sidered a regression problem in a setting similar to the one
considered in the article by Johnstone and Lu. Because the
errors are in the x variables, this is an error-in-variables
regression problem. Rather than analyzing the joint limit as
both p, n ! ‘, in Nadler and Coifman (2005) we kept the
number of variables p and the number of samples n as fixed, but
viewed the noise strength s as a small parameter, and expanded
the estimated regression vector and resulting mean squared
error as a function of s. We showed that, similar to the findings
of Johnstone and Lu, large prediction errors may occur in high-
dimensional settings. In particular, for various regressionmethods,
suchasclassic least squares andpartial least squares,wederived the
following formula for the mean squared error of prediction:
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where s is the noise level, b is the true regression vector, and
c1, c2 are constants independent of n, p. Hence, in the p � n

setting with substantial noise, the (p/n)2 term inside the

brackets may be larger than unity and may dominate the pre-
diction error. Furthermore, in Nadler and Coifman (2005),
motivated by problems in chemometrics and spectroscopy, in
which the signals are known to be smooth and hence sparse in a
wavelet basis, we suggested thresholding the signals by rep-
resenting them with only a few wavelet coefficients, computed
by a joint best basis approach.

A similar phenomenon, of large errors when p � n was also
shown in a classification setting a decade earlier by Buckheit
and Donoho (1995), who also, not surprisingly, suggested
thresholding of the wavelet coefficients. Neither of these works
presented a consistency proof of the performance of a thresh-
olding procedure, as described by Johnstone and Lu.

2. SOME THEORETICAL CALCULATIONS

There are two main issues raised in the work of Johnstone
and Lu: the first is the accuracy in reconstruction of the under-
lying eigenvectors, and the second is the speed or computational
complexity of a suggested algorithm—both under the assump-
tion that the signals are sparse in an a priori known basis.

Let us first consider the issue of accuracy. In contrast to the
approach taken by Johnstone and Lu of analyzing consistency
in the joint limit p, n ! ‘, I shall keep p, n finite and fixed.
Consider, then, a one-component system, denote by v the (unit
norm) population eigenvector corresponding to the largest
eigenvalue and by v̂ the corresponding eigenvector of sample
PCA. From Nadler (2008, corollary 2), it follows that the error
in eigenvector reconstruction is given by
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where u is the angle between the two vectors v; v̂; and l is the
largest eigenvalue in the absence of noise (in the notation of
Johnstone and Lu, l ¼ ||r||2). Hence,

k v� v̂ k2¼ 2ð1� cos uÞ � s2
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n

and so the accuracy of signal reconstruction is
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Note that the approximate expression in Equation (2) is inde-
pendent of the signal-to-noise ratio. For p ¼ 2,048, n ¼ 1,024,
and s ¼ 1, Equation (2) gives that (pn)–1/2 � 6.9 3 10�4 in
agreement with table 1 in Johnstone and Lu.

Now consider the effect of variable selection (after trans-
formation to an appropriate basis, in which the signals are
sparse). Let k denote the number of chosen variables, rk the
response vector r restricted to these variables, r?k ¼ r � rk its
orthogonal complement, and r̂k the eigenvector of sample PCA
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computed only on these k chosen variables. Then, following the
same reasoning as noted earlier, we have a reconstruction
error of

ASEk ¼
1

p
k r � r̂k k¼

1

p
k r � rk k2 þ k rk � r̂k k2
� �1=2

¼ 1

p
k r?k k2 þ k � 1

n
s2

� 	1=2

: ð3Þ

This formula provides insight into the best achievable accuracy
for finite p, n. The optimal basis is, of course, one in which the
first basis function is simply the vector r. Then k ¼ 1, r?k ¼ 0,
and ASE1 ¼ 0. Of course, we do not know the vector r, but
rather assume it has a sparse representation in a given basis.
The quality of this basis can be assessed by its minimal ach-
ievable (theoretical) error—for example, the value of k for
which ASEk is minimal. Then, the performance of any algo-
rithm for sparse reconstruction can be checked against this
optimal error. Another interpretation of Equation (3) is to view
variable selection as a simple bias–variance tradeoff. The first
term in (3) is the bias resulting from choosing only k variables,
whereas the second term is the (smaller) variance of recon-
struction in the lower dimensional space.

A second insight from Equation (3) is with respect to the set
of features that yield the minimal error. At the optimal value of
k, we have that ASEkþ1 > ASEk, and ASEk < ASEk�1. These
conditions give

r2ðkÞ >
s2

n
and r2ðkþ1Þ <

s2

n
; ð4Þ

where r(n) are the coefficients of the signal r sorted in
decreasing order of magnitude (in absolute value). In other
words, for optimal reconstruction we need to find all the fea-
tures of the signal with energy larger than s

2/n. The more
observations we have, the more features of the signal we should
choose. Regretfully, however, a simple thresholding of the
empirical variances at a threshold of say s

2(1 þ 1/n), in gen-
eral, will not yield an optimal set of features. The reason is that
noise variables themselves have an empirical variance with
mean s

2, but fluctuation on the order of s2=
ffiffiffi

n
p � s2=n.

Moreover, in high dimensions (p � 1) where, by the sparsity
assumption, most variables are pure noise, even larger signal
variables may be difficult to detect, because some of the noise
variables will have an empirical variance as large as
s2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2logp=n
p

Þ.
Figure 1 presents the theoretical optimal curve for ASEk as a

function of k, assuming an oracle that, for each value of k gives

us the best (large magnitude) k features of the unknown vector
r. For the three-peak function represented in the symmlet

wavelet basis, with n ¼ 1,024 observations, the minimal error
1.1 3 10�4 is obtained with roughly 50 features, whereas for
the step function with the Haar basis, the optimal error is 2.35
3 10�4 with roughly 240 features. Comparison of these
numbers with Table 1 shows that although the thresholding
procedure suggested by Johnstone and Lu leads to considerably
smaller reconstruction errors in comparison with those of PCA
on all variables, there may still be room for improved methods
either for variable selection or for covariance regularization.
Also note from Figure 1 the high sensitivity of reconstruction
errors to mistakes, either by exclusion of important signal
features or by incorrect inclusion of noise variables as signals.

3. SPARSITY AND REGULARIZATION

The theoretical analysis of the previous section showed that
there is some gap between the performance of the sparse PCA
method of Johnstone and Lu and the possibly optimal one. In
Table 1 of this discussion, the mean number of indices chosen
by the initial thresholding step of the sparse PCA algorithm is
shown. We note that, in accordance with the theoretical anal-
ysis of the previous section, the initial thresholding step
chooses many more variables than necessary for both the three-
peak and the step functions. Moreover, in both cases, some of
the optimal 50 or 240 features are not always part of this initial
set. In other words, quite a few noise variables find their way in
and some signal features are regretfully left out. These findings
explain the deterioration in performance of the sparse PCA
algorithm, the relative success of the post-thresholding step,
and suggest that either one of methods (a) or (b) in the article
by Johnstone and Lu for initial variable selection may not work
well, in particular, at low signal-to-noise ratios.

Can one do better by other methods? First, let us consider a
different approach for regularization recently suggested by
Bickel and Levina (2008). Their method assumes that the
covariance matrix is sparse and computes a ‘‘thresholded’’
covariance matrix T[Sn], where only entries larger than some

Table 1. Accuracy and timing comparison of different algorithms

PCA BL
Sparse

þ Threshold CORR

ASE (three-peak) 6.9e�4 1.8e�4 2.2e�4 1.5e�4
No. of features 2,048 NR 495 43
Time (sec) 2.5 3.1 1.7 1.7

ASE (step) 6.9e�4 2.4e�4 2.9e�4 2.5e�4
No. of features 2,048 NR 415 240
Time [sec] 2.5 2.8 1.5 1.6

NOTE: ASE, averaged root squared error; BL, Bickel and Levina (2008); CORR, corre-
lation matrix; NR, not relevant.

Figure 1. The theoretically optimal reconstruction error versus the
number of chosen features, Equation (3).
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constant s are retained. Then the eigenvalues and eigenvectors
of this thresholded matrix are computed. In Bickel and Levina
(2008), a specific cross-validation method was suggested for
computing this threshold. I have implemented their method and
found that for a signal strength of ||r|| ¼ 25, the threshold is
approximately s � 3:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log p=n
p

. To save computational time,
this fixed threshold was used for all subsequent experiments.
Table 1 also shows the reconstruction errors with this regulari-
zation method (denoted BL). As seen from Table 1, this method
performs remarkably well. In comparison with sparse PCA it
gives slightly lower errors in the three-peak case, but sig-
nificantly smaller errors for the step function. Yet, even with this
approach, there is still a gap from the optimal achievable errors.

At this point I would like to emphasize an important dif-
ference between the approaches of Johnstone and Lu and of
Bickel and Levina (2008). Although the sparse PCA approach
of Johnstone and Lu assumes that all the individual signals are
simultaneously sparse, and hence the resulting eigenvector
must be sparse as well, the covariance regularization approach
of Bickel and Levina (2008), only assumes that the covariance
matrix is sparse, but not necessarily its eigenvectors. Simple
examples of the latter are the identity matrix and the covariance
matrix of an autoregressive process of order one.

Our key observation is that the assumption of Johnstone and
Lu—that individual signals are simultaneously sparse in some
unknown basis—implies more than just having relatively few
features with large variance. It also implies that these features
should be highly correlated among themselves. As an example,
Figure 2 presents the empirical correlation matrix of data from
the three-step function (represented in the symmlet wavelet
basis). As clearly seen in Figure 2, not only do signal features
typically have a larger variance, but they are also highly cor-
related among themselves. Similar, although much more
complicated, structures are typically seen in correlation
matrices arising in various applications, including microarray
data and text documents.

Under the assumption of uncorrelated Gaussian noise, this
observation suggests an alternate, more refined approach to

feature selection. Rather than working only with the covariance
matrix, we also analyze the structure of the correlation matrix
and look for highly correlated variables. Our suggested pro-
cedure, denoted CORR, works as follows:

1. Given a data matrix Xn,p, compute the covariance and
correlation matrices Sn, Cn, respectively.

2. Estimate the noise variance as in the sparse PCA algorithm,

ŝ2 ¼ medianðSnði; iÞÞ:

3. Find the sure signal features:

Is ¼ i
Snði; iÞ
ŝ2

> 1þ
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and a is the confidence level chosen by the user.
3. For each i ¼ 1, . . . , p, and i;Is, compute

Ei ¼
1

jIsj
X

j2Is
Cnði; jÞ2:

4. Denote by Ic the set of variables highly correlated to those
in Is:

Ic ¼ j j =2 Is;Ej >
1

n� 1
1þ
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:

4. Compute the leading eigenvectors of the covariance
matrix Sn, restricted to the set I ¼ Is [ Ic.

Let us briefly explain the theoretical motivation for this
algorithm. First, the empirical variance of a noise variable is
distributed as a x2

n=n random variable, which for large n can
be approximated as 1þ

ffiffiffiffiffiffiffiffi

2=n
p

Nð0; 1Þ. Hence, in Step 2 we
choose variables that, with high probability, contain a sig-
nificant signal contribution. In Step 3, for the remaining vari-
ables, we use the well-known fact (see, for example, Anderson
(2003, section 4.2)), that under the null assumption that vari-
ables i and j are independent Gaussian variables, Cn(i, j) has
density

f ðrÞ ¼ Gðn�1
2 Þ

Gðn�2
2 Þ ffiffiffiffi

p
p ð1� r2Þðn�4Þ=2

or, equivalently, Cnði; jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Cnði; jÞ2
q

follows a t-distribution
with n � 2 degrees of freedom. In particular, E[Cn(i, j)] ¼ 1/
(n� 1), and var[Cn(i, j)]� 2/(n� 1)2. Step 3 detects additional
variables that, despite having relatively smaller variance, are
significantly correlated to the signal variables already found,
and hence are also signal variables with high probability.

In Table 1 we present the reconstruction errors and the
number of features chosen by our suggested method with a
confidence level a ¼ 0.02. Our procedure obtained smaller
errors than the sparse PCA method for both signals, although
for the step function, which is not so sparse, the covariance
thresholding method of Bickel and Levina (2008), performed
slightly better. A graphical comparison of the performance of
the different algorithms using boxplots is shown in Figure 3.

Figure 2. First 250 entries of the empirical correlation matrix of
data from the three-peak function in the symmlet wavelet basis.
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The specific model suggested by Johnstone and Lu, of a
factor model with a relatively small number of components
with signals that are all sparse, and our (relatively simple)
attempt to detect groups of correlated variables via the correla-
tion matrix structure raises some interesting theoretical ques-
tions: For example, what are information limits for detection of
sparse structures in a covariance matrix, and what are good
algorithms to achieve them? In the presence of multiple sig-
nals, this problem relates to our ability to cluster the nodes of
an adjacency graph. In this respect, we mention that in both
computer science and in statistical physics, a similar problem
has received a lot of attention—the so-called ‘‘planted partition
problem.’’ Perhaps some connections between these results and
statistical inference and sparsity should be further explored.

To conclude this section, we note that there are some pos-
sible advantages to analyzing the correlation matrix structure.
It does not require an estimate of the noise level, and the
procedure is more robust to heteroscedastic noise, which is
uncorrelated but may have a different strength in different
variables. The case of correlated noise requires further research
beyond the scope of this discussion. Finally, we remark that
in a different although related context, we recently used both
the correlation and the covariance matrices to construct a
multiscale representation of given data (see Lee, Nadler, and
Wasserman 2008).

4. COMPUTATIONAL COMPLEXITY AND NUMBER

OF SIGNALS

The second issue raised in the article by Johnstone and Lu is
the computational savings of the thresholding procedure. In
table 1 in Johnstone and Lu, they show that significant compu-
tational savings can be achieved by computing the eigenvalues
and eigenvectors of a smaller covariance matrix. A few words
regarding this issue are needed. According to the Matlab code
supplied by Johnstone and Lu, regardless of the fact that only
one eigenvector is of interest, all eigenvalues and eigenvectors
of the relevant covariance matrix are computed. This step has
computational complexity O(p3), where p is the size of the
relevant covariance matrix. However, under the assumption
that the data have an intrinsic low dimensionality—say, bounded
above by a small number k—then for dimensionality reduction
purposes, only the largest k eigenvalues and eigenvectors of the

covariance matrix need to be computed. Furthermore, when
these eigenvalues are isolated from the rest, these can be com-
puted (iteratively) much faster than O(p3). In Matlab, this can
be achieved via the functioneigs(A,k) instead of the function
eig(A).

Computation of only a few of the eigenvalues and eigen-
vectors raises a different theoretical question: How does one
determine what is the ‘‘dimensionality’’ of the data? That is,
how many of the largest eigenvalues indeed correspond to
signals and not to noise? In a recent article, Kritchman and
Nadler (2008) developed an algorithm to solve this problem (by
the way, using another notable result of Iain Johnstone, re-
garding the convergence of the largest noise eigenvalue to a
Tracy-Widom distribution). A careful inspection of that algo-
rithm shows that if one knows in advance that the dimension-
ality of the data is smaller than k, then only the k largest sample
eigenvalues and the trace of the covariance matrix are required
to estimate the true dimensionality of the data. Finally, the
computational complexity of this algorithm is negligible with
respect to the calculation of the eigenvalues themselves. After
implementing these changes, all the procedures described in
this article have similar running times. In Table 1, I report these
CPU running times averaged over 500 iterations, as used by
Matlab on an Intel Quad Core CPU Q6600 at 2.40 GHz
(without multithreading).

[Received January 2009. Revised January 2009.]
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Discussion

Daniela M. WITTEN, Trevor HASTIE, and Robert TIBSHIRANI

We congratulate the authors on an intriguing and timely
article. There is a great deal of interest in sparsity and its
applications to high-dimensional data analysis. In our com-
ment, we would like to relate this work to research by ourselves
(and others) on sparse principal components via the lasso.

Given an n 3 p data matrix X, with centered columns,
perhaps the most natural way to define a sparce principal
component is

maximizevfv
T
X

T
Xvg subject to jjvjj22 # 1; jjvjj0 # k: ð1Þ

That is, we find the linear combination of variables that has
highest variance, among those with at most k nonzero loadings.
This is a difficult problem to solve computationally, because
the criterion that must be optimized is not convex. There are
two reasons that this is the case:

1. It involves maximizing the objective function v
T
X
T
Xv,

which is convex in v. Convex optimization provides tools
for minimization of convex functions.

2. The L0 bound on v is not convex.

Johnstone and Lu’s sparse principal components method can
be thought of as an approximation to (1). They define a sparse
principal component as

maximizevfv
T
X

T
Xvg subject to jjvjj22 # 1; 1yj 6¼0 ¼ 1ŝj > ŝðp�kÞ

;

ð2Þ

where ŝj is the variance of column j of X. That is, they perform
principal components analysis (PCA) on the k columns of X
with highest variance. Of course, this problem can be solved
easily, as it amounts simply to an eigen decomposition of a k3
k submatrix of XT

X.
An alternative approach to finding sparse principal compo-

nents is proposed in Jolliffe, Trendafilov, and Uddin (2003);
this method also stems from an approximation to the criterion
(1). The SCoTLASS proposal involves replacing the L0 bound in
(1) with an L1 bound on the elements of v, as follows:

maximizevfv
T
X

T
Xvg subject to jjvjj22 # 1; jjvjj1 # k: ð3Þ

Unfortunately, this problem is still not convex (because it
involves maximizing a convex objective function) and com-
putations are difficult.

In our recent work on ‘‘penalized matrix decompositions’’
(Witten, Tibshirani, and Hastie 2009), we presented a general
class of algorithms that yields new procedures for obtaining
sparse matrix decompositions, sparse principal components,
and sparse canonical variates. Our procedure reexpresses (3)
as

maximizeu;vfu
T
Xvg subject to jjvjj1 # k; jjujj22 # 1; jjvjj22 # 1;

ð4Þ

and we show that the solution v̂ is the same for both problems.
We call problem (4) ‘‘SPC,’’ for sparse principal components.
We also show that the sparse principal components criterion
of Zou, Hastie, and Tibshirani (2006) is equivalent to this
criterion, if a natural symmetric constraint is added to their
criterion.

Problem (4) is biconvex, and the following simple alternat-
ing algorithm can be used to solve it.

Algorithm: sparse principal components (SPC):

1. Initialize v to have L2 norm 1.
2. Iterate until convergence:

(a) u) Xv

jjXvjj2
:

(b) v) SðXT
u;DÞ

jjSðXT
u;DÞjj2

; where D ¼ 0 if this results in ||v||1 # k;

otherwise, D is chosen to be a positive constant such that
||v||1¼ k. Here, S is the soft-thresholding operator, defined
as S(a, c) ¼ sgn(a)(|a| – c)þ.

Further components are found by taking residuals and
applying the algorithm again. That is, if the solutions are u1 and
v1, and d1 ¼ u

T
1Xv1; then the residuals are X� u1d1v

T
1 :

In Johnstone and Lu’s procedure, a common set of k features
is used for all components. It would seem that a potential
advantage of the SPC approach is the fact that different features
can be used for different components. We examine this issue in
a small simulation example, in which a matrix X of dimension
100 3 200 is generated as follows:

X ¼ u1v
T
1 þ u2v

T
2 þ Z: ð5Þ

Here, u1 and u2 are vectors of normal random variables inR100.
The v1 and v2 are vectors in R

200, each with 50 nonzero (and
nonoverlapping) coefficients. Z is a matrix of normal random
variables, and v1 and v2 are shown in Figure 1. (Of course, this
model is in clear violation of Johnstone and Lu’s single com-
ponent model.) Johnstone and Lu’s method and our SPC
method both involve tuning parameters that determine the
number of nonzero elements of the sparse principal compo-
nents obtained. We compute the first two sparse principal
components for each method. For a given number of nonzero

� 2009 American Statistical Association
Journal of the American Statistical Association

June 2009, Vol. 104, No. 486
DOI 10.1198/jasa.2009.0143

Daciela M. Witten is Ph.D. student, Department of Statistics, Stanford
University, Stanford, CA 94305. Trevor Hastie is Professor, Department of
Statistics and Department of Health Research and Policy, Stanford University,
Stanford, CA 94305. Robert Tibshirani is Professor, Department of Health
Research and Policy and Department of Statistics, Stanford University, Stan-
ford, CA 94305 (E-mail: tibs@stat.stanford.edu). Daniela M. Witten was
supported by a National Defense Science and Engineering Graduate Fellow-
ship. Trevor Hastie was partially supported by National Science Foundation
Grant DMS-0505676 and National Institutes of Health Grant 2R01 CA
72028-07. Robert Tibshirani was partially supported by National Science
Foundation Grant DMS-9971405 and National Institutes of Health Contract
N01-HV-28183.

698 Journal of the American Statistical Association, June 2009

D
ow

nl
oa

de
d 

by
 [

O
hi

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
4:

58
 2

7 
M

ar
ch

 2
01

3 



elements for each sparse principal component, we also determine
the number of ‘‘false positives’’(i.e., the number of nonzero
elements of v̂i that are zero in vi). The number of nonzero
elements of v̂i is plotted against the number of false positives in
Figure 2 for both methods. Our SPC method results in fewer
false positives for both the first and second components,
because the screening step in Johnstone and Lu’s method
selects variables based on their marginal variances, which in
this case is not necessarily indicative of whether they are
nonzero in vi. The third panel of Figure 1 shows the marginal
variances of the variables.

Figure 3 shows the first and second sparse principal com-
ponents estimated using the SPC proposal and Johnstone and
Lu’s method. (For both methods, tuning parameters were
chosen to yield an average of 50 nonzero elements in each
sparse principal component.) It turns out that in this example,
although Johnstone and Lu’s method results in many false
positives, these nonzero elements of v̂i tend to be extremely
small. In fact, all of these false positives would be ‘‘filtered
out’’ using the thresholding step proposed in the algorithm
in Section 4 of Johnstone and Lu’s article. These small false
positives are perhaps the reason that the extra filtering step is
proposed. We note also that this example was simple enough

that even hard-thresholding of ordinary principal components
works well. It is not difficult to imagine a noisier example in
which this might not be the case.

Johnstone and Lu present a theoretical framework in which
they prove asymptotic consistency of their sparse principal
component approach. This certainly is a very attractive fea-
ture of their method. We wonder if the authors’ consistency
results could be extended to the solutions from the SPC
method.

[Received January 2009. Revised January 2009.]
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Figure 1. The data were generated using a rank-2 model, plus Gaussian noise. In the model, v1 and v2 each have 50 nonzero elements; these
elements are nonoverlapping. The left and center panels show v1 and v2, and the third shows the observed marginal variances of the p ¼ 200
variables.

Figure 2. The SPC method results in fewer false positives than the
Johnstone and Lu method.

Figure 3. The estimated sparse principal components obtained
using the Johnstone and Lu and SPC methods are shown. The false
positive elements resulting from the Johnstone and Lu method tend to
be quite small in absolute value.
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Comments

James O. RAMSAY

This splendid paper provides an irresistible opportunity to

comment on several issues connected with the analysis of

functional data or the use of functional models. The most

important of these is, of course, to congratulate the authors

warmly on beginning a new chapter on the analysis of data

characterized by sharply localized events separated by long,

smooth gaps. Wavelets are the obvious choice among bases for

this problem, and who is better positioned than they are to put

these fascinating little wigglers to work on this, the principal

components analysis, problem? Getting along without wavelets

is like an orchestra playing music without a percussion section.

In the design stages of our work on functional data (Ramsay

and Silverman 2002, 2005), we reflected on giving wavelets

more than passing mention as basis systems, but they were still

a comparatively exotic topic during the early ’90s and we had

already committed ourselves to optimizing readability and to a

general focus on the estimation of smooth variation. The article

by Johnstone and Lu effectively highlights the contrast

between smooth and local variation in functional data, and it

was gratifying to see that smooth principal components anal-

ysis did such a fine job of showing itself to be the wrong tool.

But are smoothness and sparsity really such different con-

cepts? Functions can be ‘‘small’’ in two quite orthogonal

ways—most obviously in terms of their amplitude variation,

but perhaps less clearly to those less familiar with higher

analysis, in terms of the dimension of a function space required

to represent the signal adequately. The latter concept, function

complexity, is often expressed in terms of the rate of decay of

an infinite series of smooth basis functions, but wavelets put

the matter up front where nobody can miss the point.

The high-dimensional modeling context, referred to often as

p >> n, is receiving a lot of attention these days, but in the end

our strategy does not seem to change much. We seek a model

structure that is usefully identified by the available data. What

has changed is the range of options for model structures, with

the possibility of defining simplicity in new ways, such as the

number and complexity of a set of nonlinear differential

equations with solutions that exhibit catastrophic or chaotic

variation, as deviations from the quantile function for the

uniform distribution, or as the number lines of computer code

required to display data structure. Combining wavelets with

principal components analysis is the ideal strategy for the

exploration of sparse variation, and both concepts are deeply

rooted in the traditions of applied mathematics and statistics.

Where do we go from here? The focus of the article by

Johnstone and Lu is rather exclusively on variation defined by a

single principal component, and maybe this problem has rather

more to do with data smoothing than it has to do with classic

principal components analysis. For example, would it be better

to treat the scores on this single component as multiplicative

random effects, so that their variances have parametric status

rather than being just handy indices for defining hard thresh-

olds?

Substantial contributions from even a few additional prin-

cipal components makes the problem much tougher by de-

emphasizing eigenvectors or eigenfunctions, and calling for

coordinate-free methods for assessing subspace identification.

I hope to see a flurry of new papers extending this work in this

direction, as well as in the direction of functional linear mod-

eling and dynamic systems identification.

The bipolar spikes in the right panels of the displays of ECG

variation are, in my experience, the signature of phase varia-

tion, and seem most likely to be the result of slight misalign-

ments of the R wave, perhaps related to the use of dyadic

sampling point sequences. It seems intuitive that sparse signals

of this nature will routinely show horizontal as well as vertical

displacements, and that registration methodology will wind up

being as important for the analysis of sparsity as it has been for

smoothness.

[Received January 2009. Revised January 2009.]
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Rejoinder

Iain M. JOHNSTONE and Arthur Yu LU

We thank the editors for inviting this discussion and espe-
cially the discussants for their kind remarks and thoughtful
contributions, which in some cases are so thorough as to verge
on articles in their own right!

Before turning to specific comments, we set the stage by
noting that this article is a reflection of the Ph.D. dissertation of
Lu, awarded in 2002. Its chief, original purpose was to provide
the first rigorous proof of the inconsistency phenomenon,
reviewed in section 2 of our article, and to propose a simple
algorithm that demonstrates that exploitation of sparsity allows
one to recover consistency. There have been many subsequent
developments during the years that this article has been in
publication review. In particular, as the various references and
the current discussants show, there are now several algorithms
and theoretical results that may improve in various respects on
the original proposal.

For example, already in his Ph.D. dissertation, Paul (2005)
recognized that selection of variables based on sample var-
iances alone was inefficient and could only detect components
of size (log(n _ p)/n)1/4. He developed a two-stage estimator,
using information about the correlation between the variables
to augment the selected variable set at the second stage, and
showed that this successfully selected components of size
down to O(log(n _ p)/n)1/2. Boaz Nadler’s discussion inde-
pendently makes a somewhat similar remark about exploiting
correlation information, and develops an alternate estimator
with properties that appear attractive and worthy of further
study. In a technical tour de force, Paul (2005) also developed
lower bounds and studied the asymptotic properties of his two-
stage estimator to show that it achieves (within logarithmic
factors) optimal rates of convergence.

Nadler also points to the good performance, on our two
examples, of the covariance matrix thresholding estimator of
Bickel and Levina (2008). Bickel and Levina (2008) were
careful to establish convergence properties of their estimator in
operator norm, which implies convergence of eigenvectors, and
so the attractive performance of the derived eigenvector esti-
mator is, in retrospect (!), not so surprising. One should caution
that further investigation is needed, because our two examples
are admittedly at relatively high signal-to-noise ratios. In a
recent preprint in the related setting of banded covariance
estimation, Cai, Zhang, and Zhou (2008) have shown that
threshold choice based on a function of (log p)/n need not be
optimal, at least over specific function classes.

Nadler provides an interesting analysis of reconstruction
error, using what one might call a ‘‘projection oracle’’—
namely, an estimator that knows the best subset of k variables to

retain. The discussion and his figure 1 suggest that (i) recon-
struction error is highly sensitive to incorrect inclusion of noise
variables and that (ii) there may be considerable room for
reconstruction error improvement. We comment on these in
turn.

Avoidance of the first point was the reason for inclusion of
thresholding as a final stage in our algorithm. No theoretical
analysis of thresholding was included in the article, so we
attempt some heuristics here. To continue with the notation
used by Nadler, suppose that rk is the response vector r

restricted to the optimal k variables and r̂k is the eigenvector of
sample principal component analysis (PCA) computed only on
these k chosen variables. In this relatively high signal-to-noise
setting, we may heuristically imagine r̂k as approximately
derived from a Gaussian signal plus noise model r̂k ¼ rk þ �zk
with zk ; Nk(0, I) and �2 ¼ 1/n (some support for this heuristic
can be found in Paul’s (2005) dissertation).

Consistent with the proposal in section 4.1 of our original
article, let ~rk denote the result of hard thresholding at �lk,
where lk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log k

p
. Bounds for the risk of hard thresholding

E k ~rk � rk k2 # Rð~rk; rkÞ;
may be obtained, for example, from Johnstone (2002, lemma
11.5), and yield

Rð~rk; rkÞ # �2
X

j

�rHðrk;j=�; lkÞ;

where

�rHðm; lÞ ¼ ð6=5Þ½2lfðlÞ þ 2~FðlÞ þ m2� if m # l;
1þ m2 ~Fðm� lÞ if m > l;

�

and F ¼ 1� ~F is the standard Gaussian cumulative dis-
tribution function. Figure 1 shows plots of

gASEk ¼
1

p
k r

?
k k2 þ Rð~rk; rkÞ

� �1=2

for the step and three-peak functions, superimposed on
Nadler’s graphs. From these plots, it is apparent that thresh-
olding essentially removes the high sensitivity of recon-
struction errors to incorrect inclusion of noise variables.

A general remark is that one should be cautious using oracles
as indicators of the amount of improvement that may be pos-
sible. There is a price to be paid for selecting variables based on
data. This is partially visible in the plot of gASEk for the three-
peak function, which has a minimum of 1.3 3 10�4, already
20% larger than for the minimum projection oracle, and this
still assumes the optimal set of k variables is known. It may be
that it is not possible in these two cases to improve much on
CORR (for three-peak) and Bickel and Levina (2008) (for step).

Nadler remarks on the use of special-purpose routines, such
as MATLAB’s eigs to compute only the largest eigenvalues
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and eigenvectors of the covariance matrix. The help page (at
www.mathworks.com) for eigs says ‘‘eigs is not a substitute
for [running eig and selecting largest eigenvectors] but is
most appropriate for large sparse matrices,’’ which is not
necessarily the case for a noisy covariance matrix, especially in
the lower signal-to-noise settings. Indeed, the eigs algorithm
is based on a Lanczos method, with a convergence rate that
depends on a function of the ratio of the largest to second
largest eigenvalue (more precisely, it is based on an implicitly
restarted Arnoldi method, (Lehoucq and Sorensen 1996,
Morgan 1996)). In the three-peak and step examples of our
original article, this ratio is deliberately chosen to be large, but
there is no reason for this to be the case in general. We have
included both methods as options in the ASPCALab package,
and users can let their circumstances determine the choice.

Witten, Hastie, and Tibshirani give a simulation example to
show that their attractive penalized matrix decomposition
(PMD) method selects fewer false positives than our approach,
at least prior to thresholding. As they note, the thresholding
step in our method is indeed designed to ‘‘clean up’’ the final
estimate, and their figure 3 suggests that the final results may
not be so different. Indeed, a comparison of reconstruction
errors would be a natural next step.

Witten, Hastie, and Tibshirani also ask if there may be some
theoretical analysis possible for penalized multivariate meth-
ods. We can report on some related work in progress by Ma
(2009). Consider the single component model and let S denote
the sample covariance matrix. As in our original article, we
suppose that the data have been converted to an appropriate
transform domain. Instead of the optimization problem (0.3)
proposed in the discussion by Witten, Hastie, and Tibshirani,
one can consider the Lagrangian form

max
y

y
T
Sy� l k y k1; subject to k y k2 # 1:

This problem may be solved by the following algorithm, which is
apparently simpler than their Sparse Principal Components (SPC).

Algorithm: Iterative Soft-Thresholding PCA (IS-PCA).

1. Initialize y with a unit 2-norm vector y0.
2. Iterate until convergence:

(a) y)hSðSy; l=2Þ:
(b) y)y= k y k 2�

Here, hS (x, c) ¼ sgn(x)(|x| � c)þ is the soft-thresholding
function.

The two tuning parameters in the previous algorithm (also
present in SPC) are the penalty parameter l and the initial
value y0. Both are important to the properties of the final
estimator. We propose initializing y0 with the Johnstone and
Lu estimator, and picking l as O(log(n _ p)/n)1/2. With such
choices, the output of the IS-PCA algorithm can be shown to be
not only consistent, but also rate optimal (within a logarithmic
factor).

Methods for Choice of k. Section 4.2 in our original article
proposed two methods for data-based selection of k using the
sample variances, which one might loosely call the ‘‘alpha’’
and ‘‘percent’’ criteria respectively. They are available as
ASPCAalp.m and ASPCA.m respectively in the MATLAB
package described at the end of section 4.1. The ‘‘percent’’
method was used for the computations and figures, whereas the
‘‘alpha’’ method was used for the proofs.

In response to thoughtful correspondence from Boaz Nadler
and to the remarks of Witten, Hastie, and Tibshirani, we did a
comparison of the two approaches on our test functions. To
save space, we give a summary of the conclusions here. Further
details are available on request.

For both methods, the larger the feature set chosen (larger
percent or smaller alpha), the better the average estimation

702 Journal of the American Statistical Association, June 2009

Figure 1. Reconstruction error based on thresholding bound.
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error. The computation time increases, but not greatly, and
certainly sublinearly in the number of features chosen. The
thresholding step, of course, has a progressively more sig-
nificant effect as the number of features grows.

The percent method is considerably more variable (over
replications) in the number of features selected. Because of
thresholding, this does not have bad consequences for the final
result. However, if this is a concern, then the alpha method is
much more stable, with a coefficient of variation for k that is
generally less than 4% in our examples.

We agree with Ramsay that one should not oppose
smoothness and sparsity, and that it is often more helpful to
regard sparsity as an extension of smoothness (which may be
thought of as sparsity when concentrated at low frequencies).

The exposition of our original article focused on a single
component model largely for simplicity in the proofs and dis-
plays of figures. As noted in sections 2 and 3.2, perhaps with
insufficient emphasis, the method, results, and proofs do extend
to additional principal components, at least with distinct
eigenvalues. We do agree with Ramsay that some additional
issues, presumably not insurmountable, arise when several
eigenvalues coalesce and the issue becomes one of subspace
identification.

In connection with the ECG example, Ramsay raises some
stimulating questions regarding registration. We attempted to
deal with the main additive effect of horizontal displace-

ment by anchoring the maximum of the R wave at the 150th
position in each cycle. Stimulated by Ramsay, one might
then ask whether the faster rise/slower fall nature of the
first mode of variation (especially for sample 1) would be
expressed differently if a curve-specific warping were intro-
duced, along the lines of Chapters 7 in the two Ramsay and
Silverman books. This is indeed an interesting question for
further analysis, along with the evident identifiability issues it
raises.

[Received January 2009. Revised January 2009.]
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