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Network data and community structure

• Network data records interactions (edges) between individuals
(nodes).

• Community: a group of nodes with many links (more weights)
between themselves and fewer links (less weights) to the rest
of the network.



Example: Coauthorships between physicists

[Newman & Girvan ’03] A network of coauthorships between physicists who have
published on topics related to networks



Example: Hyperlinks between pages

[Newman & Girvan ’03] Pages on a website and the hyperlinks between them



The stochastic block model (SBM) [Holland et al. ’83]

B11 = 0.4, B22 = 0.6, B12 = 0.1, equal-sized communities



The stochastic block model (SBM) [Holland et al. ’83]

• Data: adjacency matrix A ∈ {0, 1}n×n, where Aij indicates
the presence/absence of an edge between nodes pair (i, j).

• Aii = 0,∀ i.Aij = Aji,∀ i 6= j.

• Each node i belongs to a community with label
gi ∈ {1, · · · ,K}.

• B ∈ [0, 1]K×K , symmetric, entries are the community-wise
edge probabilities.

• Given g = (g1, · · · , gn), Aij ∼ Bernoulli(Bgigj ),
independently.

• Nodes in the same community have similar connectivity
patterns.



Model selection for SBM: determine the number of
communities, K



Cross-validation (CV) for network data

• Cross-validation splits the data so that the fitted model can
be validated on an independent sample.

• A naive node splitting method:

1. Split the nodes into two subsets.
2. Estimate model parameters using sub-network confined on the

fitting set of nodes.
3. Validate the estimate using the sub-network confined on the

testing subset of nodes.

• Does not use the edges between the training and testing
nodes.



Network cross-validation (NCV)

• For a given realization of an SBM,

1. Useful information for inference is mostly contained in edge
formulation.

2. Given the membership variables, edges are independent.

• The sample splitting should be on the edges, not the nodes.



Step 1: block-wise edge splitting

• Given n1 < n, consider a block-split of A:(
A(11) A(12)

A(21) A(22)

)
,

where A(11) is the adjacency matrix on n1 nodes chosen at
random.

• Training set: A(1) = (A(11), A(12))

• Testing set: A(22)



Step 2: model fitting for a given K

• The rectangular submatrix A(1) carries relationship
information for all the nodes in the network.

• Can estimate membership variables from A(1) using spectral
clustering.

• Given membership variables, B̂ is obtained by taking sample
mean of Bernoulli variables in A(1).



Step 3: validation on the testing sample

The validated predictive loss is

L̂(A,K) =
∑
A(22)

l(Aij , P̂ij) ,

where

• the sum is over all pairs (i, j) in A(22).

• P̂ij = B̂ĝiĝj .

• l(·, ·) is a loss function, e.g., negative log-likelihood:

l(a, p) = −a log p− (1− a) log(1− p) .



V -fold network cross validation

• Randomly split A into V × V equal-sized blocks:

A = (A(rs) : 1 ≤ r, s ≤ V ) .

• For each candidate K, for each 1 ≤ v ≤ V ,
training: A(−v) = (A(rs) : r 6= v, 1 ≤ r, s ≤ V )
testing: A(vv)

parameter estimates: (ĝ(v), B̂(v)) using A(−v)

predictive loss:

L̂(v)(A,K) =
∑

A(vv) l(Aij , P̂
(v)
ij ), P̂

(v)
ij = B̂

(v)

ĝ
(v)
i ĝ

(v)
j

.

• Model selection: K̂ = argminK
∑V

v=1 L̂
(v)(A,K).



Simulation: sparsity and community imbalance

B = rB0, B0(k, k) = 3, B0(k, k
′) = 1(k 6= k′), n = 1000,

community size: n1 for the smallest, (n− n1)/(K − 1) for others.
Plotted are success rates in 50 repetitions using three-fold NCV.



Extension to the degree corrected block model



The degree corrected block model (DCBM)

• Limitation of SBM: node degrees are clustered.

• Extension: degree corrected block model [Karrer & Newman
’11]

Aij ∼ Bernoulli(φiφjBgigj )

φi ∈ (0, 1]: activeness of node i.

• DCBM allows for arbitrary degree distribution.



The degree corrected block model (DCBM)

B11 = B22 = 0.8, B12 = 0.2, φi
iid∼ Unif(0.2, 1).

More variations in the node degrees compared to SBM.



Extension to DCBM

• NCV can be extended to the degree corrected block model.

• Only need to modify the parameter estimation step. Perform
a spherical spectral clustering method for DCBM.

• NCV can simultaneously select between the regular SBM and
the DCBM, and choose K.

• Just compute L̂sbm(A,K) and L̂dcbm(A,K) for all candidate
K, and pick the best model that attains the overall minimum.



Simulation: simultaneously pick model type and K

B(k, k) = 0.25, B(k, k′) = 0.1(k 6= k′), equal-sized communities.
φi ∼ Unif(0.2, 1) for DCBM.
Reporting success rates of three-fold NCV in choosing model type
and K in 50 repetitions.



Discussion

In general, NCV is applicable to network models where

1. edges form independently given an appropriate set of model
parameters; and

2. the model parameters can be estimated accurately using a
subset of rows of the adjacency matrix.



Thank you!


