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(The k" Order) Trend Filtering
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i Trend Filtering (Kim, 2009):

@ An /[ifiltering or smoothing method for trend estimation in time
series data.

@ Suited to analyze time series with an underlying piecewise linear
trend.

@ A special type of basis pursuit problem.
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Prior Works in Nonparametric Regression:

@ Smoothing Splines: Not locally adaptive.

o Locally Adaptive Regression Spline: Computational Expensive

(O(n*))
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Setup(Tibshirani, 2014)

@ Usual Setup in Nonparametric Regression :
Assume n observations y1,- -y, € R and n input points

X1, X2, + ,Xn € R from the model:

yi:fb(xi)+€i7 i:1727"'7n7 (1)
where fy is the underlying function and €1, - , €, are
independent.

@ Further Setup Here:
Assume the n input points are ordered and evenly spaced over
[0,1], i.e., xi=i/nfori=1,--- n
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A

The k' order trend filtering estimate 3 = (fo(x1), - , fo(xn)) is
defined as the following:

A .1 nk
5 = argmin 51y — I3 + T AIDE V], )
BERN !
where y = (y1,--- ,yn)" and D1 ¢ R(=K)xn s the discrete

difference operator of order k + 1 defined in the next slide.

Notice: Trend filtering estimators are ONLY defined over the discrete
set of inputs.
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The discrete difference operator D(k*1) is defined recursively as:
pk+1) — p) . p(k) ¢ R(n=k)xn (3)

where D) is defined as:

-1 1 0 --- 0 O
D(l) — 0 -1 0 0 c R(n—k—l)x(n—k) (4)
0 0 O -1 1
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More discrete difference operators:

1 2 1 0 0
0 1 -2 1 0
2
DP=1g o 1 -2 0 (5)
13 3 1 0
0 -1 3 -3 0
3) _
DP=19 o _1 3 0 (6)
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Examples

Linear interpolated trend filtering examples for constant, linear and
quadratic orders (k=0,1,2, respectively)
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Inference

The inference in continuous domain for trend filtering lies in its
equivalence at the input points to the lasso problem:

. 1 .
& = argmin _ly = Hal3+ 2 Y oyl (7)
aceRn j=kt2

The solutions satisfy BA = H&, where H € R™" is a basis matrix,
H,'J': hj(Xi),i,j: ]_,--- , n,

k

hit14i(x) = H(X —X1)  Ux =Xt j=1,-,n—k—1
1=1
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@ Recursive Decomposition: For k > 1,
/ 0
HK) — yk=1) |k
0 51,4 )

where L, denotes the (n — k) x (n — k) lower triangular matrix
of 1s.

@ Inverse Basis:
C
-1 _ [ } 10
(HO) ™ =4 pey (10)

It shows that the last n-k-1 rows of (H(K))~1 are given exactly by
D+1) / k1
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e Other Properties:

o Efficient Computation — O(n'"5)
o Locally Adaptive Polynomial Approximation

e Minimax Convergence Rate
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Comparison to smoothing spline
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kth order smoothing spline

The kth (k is an odd number) order smoothing spline estimate is
defined as

1
f = argmin ZH)/, —f(x H2+>\/ (f () (t))%dt, (11)

fFeEWh+1y2 =1

where f(%)(t) is the derivative of f of order (k+1)/2, A\>0is a
tuning parameter, and the domain of minimization here is Sobolev
space Wiiq1y2 =1{f :[0,1] = R:

f is (k+1)/2 times differentiable, and [ (f("2")(t))2dt < oo}
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kth order smoothing spline

It can be shown that the infinite-dimensional problem (11) has a
unique minimizer[see,e.g.\WWahha(1990)] and the minimizer is linear
combination of n basis function. Hence to solve problem (11), we can
solve for coefficients € R” in this basis expansion:

0 = argmin|ly — NO||3 + X\07Q9, (12)
0eR"
If n1,---,nn, denotes a collection of basis functions for the set of kth
degrees natural splines with knots xy, - -- , x,, then

k+1

1
Nij = nj(x;) and Q;; = / nfT)(t)nfT)(t)dt forall i,j  (13)
0
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kth order smoothing spline

The solution to problem (11) at given input points x3, - - , x, and the
solution to problem (12) are connected by

(F(x1), -, F(xn)) = N (14)

More generally,

F(x) = Bimj(x). (15)
j=1
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Generalized ridge representation

To compare smoothing spline with trend filtering, we rewrite the
smoothing spline fitted values as:

NG = N(NT + Q) INTy
=NNT(I+ AN"TQN"HYN)INTy (16)
= (I+XK)ty
where K = N~ TQN~1. Then & = N@ is solution of the minimization
problem
i = argmin ||y — ull5 + Au" Ku
ueR"
. (17)
= argmin ||y — ul|3 + A||K*/?ul3
ueR”
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Empirical comparison

The form of problem (17) is similar to trend filtering and there are two
differences:
o K12y is similar to DXy but strictly different. For example, for
k = 3 and input points x; = |, it can be shown that
KY2y = C=1/2D®@)y where D@ is second order derivative
operator, can C € R™" is a tridiagonal matrix.
@ Smoothing spline utilizes / penalty while trend filtering uses )
penalty. Thus later one shrinks some components of Di to zero,
which therefore exhibits a finer degree of local adaptivity.

Liubo Li, ShanShan Tu (OSU) Trend Filtering October 1, 2015 19 / 38



Empirical comparison

True function Trend filtering, df=19
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Empirical comparison

True function Trend filtering, df=50
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Empirical comparison
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Computation comparison

@ By choosing B-spline basis functions, the matrix N7 N + A\Q is
banded, and so the smoothing spline fitted values can be
computed in O(n) operations.

@ Primal-dual interior point method is one option to solve trend
filtering problem with fixed value of A. This algorithm solves a
sequence of banded linear system and the worst number of
iterations scales as O(n!/?). Hence interior point method is in
O(n®?) worst-case complexity.

@ The dual path algorithm of Tibshirani & Taylor (2011) constructs
solution path as A varies from oo to 0. The computation requires
O(n) operations.
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Comparison to locally adaptive regression spline
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Locally adaptive regression spline

Given arbitrary integer k, we first define the knot superset

T — {Xk/2—|—27"' ’Xn_k/Q} Ifk ?S even, (18)
{IX(kt1) /241> > Xn—(k+1)/2)  if k is odd.
which excludes the points near boundaries of inputs {x1, -+ ,x,}. We

then define the kth order locally adaptive regression spline estimate as

— argmin = ley,— (x)13 + ATV(F) (19)
S i=1

where £(K) is now the kth weak derivative of f, TV/(-) denotes the
total variation operator.
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Locally adaptive regression spline

Gy is the set

Gk ={f :[0,1] — R : f is kth degree spline with knots contained in T}
(20)
Total variation of a function f : [0,1] — R is defines as:

1%
TV(f) = sup{>_|f(zi41)—f(z))| : 21 < -+ < 2, s partition of [0, 1]},
i=1

(21)
and this reduces to TV(f) = f01|f’(t)|dt if fis (strongly) differentiable.

Liubo Li, ShanShan Tu (OSU) Trend Filtering October 1, 2015 26 / 38



Generalized lasso representation

G is spanned by n basis function {g1,--- ,g,}. Each gj is kth degree
spline with knots in T, we know that its kth weak derivative is
piecewise constant and right-continuous, with jump point contained in

T; therefore, writing to =0 and T = {t1, -+ ,t,_k_1}, we have
n—k—1
k k
TV(g) = Y lg(t) - g (ti0)l. (22)
i=1
Similarly, any linear combination of gy, - , g, has total variation:

n—k—1|n—k—1

VO g) = Y. | Y (g7 - w0)] 0 (23)
j=1

i=1 i=1
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Generalized lasso representation

Hence problem (19) can be expressed in terms of § € R",

A 1
0 = argmin 5|y — G5+ A||COll,, (24)
9ern 2
where
Gj = g(ti) forij=1,n (25)
Gj = (k)( tj) — g.(k)(t,-,l) fori=1,---,n—k—-1,j=1,---,n
(26)
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Generalized lasso representation

Given 0, the estimates of the locally adaptive spline over the input
points are given by:

(F(x1),-- , F(xn)) = GO (27)

or, at an arbitrary point x € [0, 1] by
Fx) = 0gi(x). (28)
j=1

By taking g1, -+ , g, to be truncated power basis, we can turn (a
block of) C into identity, and problem (24) into a lasso problem.
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Empirical comparison

@ When introducing trend filtering, we showed that trend filtering
problem can be written as a lasso problem with design matrix H.
H=G for k < 2.

@ Although G # H for k > 2, the estimates of two methods are
practically similar and difficult to distinguish by eyes.

7| — Trend filtering
- - Locally adaptive splines
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Empirical comparison

The difference of the basis functions:
The kth order truncated power basis is given by:

gl(X) = ]-a g2(X)7 T 7gk+1(X) = ka

k . (29)
Gkt14j = (x—t) - 1{x>¢t},j=1,- ,n—k—1.
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Empirical comparison
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Computation comparison

@ There is no specialized method for the locally adaptive regression
spline.
@ Choosing either B-spline or truncated power basis, we are more or

less stuck with solving a generalized lasso problem with dense
design matrix.
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Rate of Convergence
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Rate of Convergence

@ It has been shown that Locally adaptive regression splines
converges at the minimax rate (Mammen & van de Geer 1997).

@ As n — oo, trend filtering estimates lies close enough to locally
adaptive regression spline estimates, thus sharing their favorable
asymptotic properties.
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Extensions
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Extensions

@ Unevenly spaced inputs

k k k

9 ) b
Xk4+1 — X1 Xk42 — X2 Xn — Xn—k

DKL) . diag( ) - DGR

D&k+1) can still be thought of as a difference operator of order
k 4+ 1, but adjusted to account for the unevenly spaced inputs
X1, 5 Xn-

@ Sparse trend filtering

A o1

B = minimize 5y = B3 + MlIDY Bl + AallBlly
@ Mixed trend filtering

3 1
B = minimize 5ly = Bz + MalIDU DB, + A2 | DY 6,
e n
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