Statistical Guarantees for the EM **Algorithm: From Population to** Sample-Based Analysis

Authors: Balakrishnan, Wainwright, and Yu Chenxi Zhou

> Reading Group in Statistical Learning and Data Mining September 5th, 2017

Outline

- Overview of Expectation-Maximization (EM) Algorithm
- Population Analysis of First-Order EM Algorithm
- Sample Analysis of First-Order EM Algorithm
- Example: Gaussian Mixture Model

Algorithm thm

Overview of Expectation-Maximization Algorithm

Estimation of Linkage in Genetics

- » 197 animals are distributed multinomially into 5 categories
- >> Observed data:

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5) = (x_1, x_2, 18, 20)$$

with $x_1 + x_2 = 125$.

>> Cell probabilities:

$$\mathbf{p} = \left(rac{1}{2}, rac{1}{4}\pi, rac{1}{4}(1-\pi), rac{1}{4}(1-\pi), rac{1}{4}\pi
ight) \qquad \mathrm{f}$$

0, 34)

for $\pi \in [0,1]$.

Example (continued)

» Likelihood function:

$$L(\mathbf{p} \mid \mathbf{x}) = rac{n!}{x_1! x_2! x_3! x_4! x_5!} igg(rac{1}{2}igg)^{x_1} igg(rac{\pi}{4}igg)^{x_2} igg(rac{1-\pi}{4}igg)^x$$

and

$$\hat{\pi}_{\mathsf{MLE}} = rac{x_2 + x_5}{x_2 + x_3 + x_4 + x_5} = rac{x_2 + x_5}{x_2 + 18 + 25}$$

>> How to solve this type of incomplete data problem?

 $\frac{34}{20+34}$

What is the EM Algorithm?

Expectation–Maximization (EM) Algorithm is an *iterative* method that attempts to find the *maximum likelihood estimator* of a parameter θ of a *parametric* probability distribution in *incomplete data* problems.

6

Incompleteness:

- Missing data
- Censored or grouped data
- Latent class and latent data structures

_ • • •

Basic Setup

 \gg Let $(Y, Z) \in \mathcal{Y} \times \mathcal{Z}$ with the joint density function f_{θ^*} , where

 $\gg f_{ heta^*} \in \{f_ heta: heta \in \Omega\}$

 $\gg \Omega$ is non-empty, compact convex set

 \gg Observe *n* i.i.d. copies of *Y*, $\{Y_1, \ldots, Y_n\}$

 $\gg Z_1, \ldots, Z_n$ are missing or latent

>> **Goal:** Estimate θ^* by maximizing log-likelihood:

$$\ell_n(heta) := rac{1}{n} \sum_{i=1}^n \logigg(\int_{\mathcal{Z}} f_ heta(Y_i,z)\,dzigg)$$

EM Idea

Unfortunately, maximizing ℓ_n directly can be **hard**! But often the complete data log-likelihood

$$rac{1}{n}\sum_{i=1}^n \log f_ heta(Y_i,Z_i)$$

is easier to maximize. So we replace the complete data log-likelihood by its conditional expectation:

$$Q_n(heta \mid heta^t) = rac{1}{n} \sum_{i=1}^n \mathsf{E}_{ heta^t} \left\{ \log f_ heta(Y_i, Z_i) \mid Y_i
ight\}$$

where expectation is computed with respect to current iterate θ^t .

EM Algorithm

Starting with initial iterate $\theta^0 \in \Omega$, iterate the following steps for $t = 1, 2, \cdots$.

Expectation Step: Compute EM surrogate $Q_n : \Omega \times \Omega \to \mathbb{R}$: >>

$$Q_n(heta \mid heta^t) = rac{1}{n} \sum_{i=1}^n \mathsf{E}_{ heta^t} \{ \log f_ heta(Y_i, Z_i) \mid Y_i\}$$

>> **Maximization Step:** Maximize EM surrogate:

$$heta^{t+1} = rgmax_{ heta \in \Omega} Q_n(heta \mid heta^t)$$

 $\{i\}$

Source: people.duke.edu/~ccc14/sta-663/EMAlgorithm.html

Advantages 😃

- >> Easy to implement
- » Requires small storage space
- >> Low cost per iteration
- \gg If $\ell(\theta)$ is bounded, $\ell(\theta^t)$ converges monotonically to $\ell(\tilde{\theta})$, where $\tilde{\theta}$ is a stationary point

>> •••

Drawbacks

>> Finding the *exact* maximizer in the M step can be hard

As for the First Drawback...

 \Rightarrow Generalized EM Algorithm: Just choose $\theta^{t+1} \in \Omega$ so that

$$Q_n\left(heta^{t+1}\mid heta^t
ight)\geq Q_n\left(heta^t\mid heta^t
ight).$$

 \gg First-Order EM Algorithm: Assume $Q_n(\theta \mid \theta^t)$ is differentiable in the first argument at each iteration t. Given a step size $\alpha > 0$, the updates are

$$\left. heta^{t+1} = heta^t + lpha \cdot
abla Q_n \left(heta \mid heta^t
ight)
ight|_{ heta = heta^t} \quad ext{ for } t = 0, 1$$

where the gradient is taken in the first argument of Q_n .

$1, 2, \cdots,$

Drawbacks 😔

- » Finding the *exact* maximizer in the M step can be hard
- >> No guarantees to converge to the global maximum of ℓ_n (depending on the choice of *starting point*)

h be hard imum of ℓ_n

An Example (Murray, 1977; Wu, 1983)

Twelve observations are collected from a bivariate normal distribution with mean 0, correlation coefficient ρ and variances σ_1^2 , σ_2^2

Variable 1	1	1	-1	-1	2	2	-2	-2	*	*	*	*
Variable 2	1	-1	1	-1	*	*	*	*	2	2	-2	-2

The likelihood function has

- two global maxima: $ho=\pmrac{1}{2},\,\sigma_1^2=\sigma_2^2=rac{8}{3};\, ext{and}$
- a saddle point: $ho=0,\,\sigma_1^2=\sigma_2^2=rac{5}{2}.$

The EM algorithm starting at $\rho = 0$ will return the saddle point.

Drawbacks

- >> Finding the *exact* maximizer in the M step can be hard
- » No guarantees to converge to the global maximum of ℓ_n (depending on the choice of starting point)

 $\gg \ell(\theta^t) \rightarrow \ell(\tilde{\theta})$, where $\tilde{\theta}$ is a stationary point, does NOT imply $\theta^t \to \theta^*$ and Wu (1983) only established the conditions of convergence of $\{\theta^t\}_{t=1}^{\infty}$ to a stationary point

Contributions of Balakrishnan et al. (2017)

- » Quantitative characterization of a basin of attraction around θ^*
- \gg Where to choose the initialization to ensure $\theta^t \to \theta^*$
- >> Establishment of the convergence rate and the corresponding conditions
- >> Establishment of connections between population and sample analysis

Population Version of EM Algorithm

E Step: Compute the following population version surrogate function

 $Q\left(heta \mid heta^t
ight) = \mathsf{E}_{ heta^*}\left\{\mathsf{E}_{ heta^t}\left(\log f_ heta(Y,Z) \mid Y
ight)
ight\}$

M Step:

>> Standard EM:

$$heta^{t+1} = rgmax_{ heta \in \Omega} Q\left(heta \mid heta^t
ight)$$

» First-Order EM:

$$egin{aligned} & heta^{t+1} = heta^t + lpha \cdot
abla Q \left(heta \mid heta^t
ight) ig|_{ heta = heta^t} \end{aligned}$$

Oracle Surrogate Function and Iterates

» Oracle Surrogate Function

$$q(heta) := Q(heta \mid heta^*) = \mathsf{E}_{ heta^*} \left\{ \mathsf{E}_{ heta^*} \left(\log f_ heta \left(Y, Z
ight)
ight\}
ight\}$$

>> Oracle Iterates

$${ ilde{ heta}}^{t+1} = { ilde{ heta}}^t + lpha \cdot
abla q\left({ ilde{ heta}}^t
ight)$$

 $Z)\mid Y)\}$

Oracle Surrogate Function and Iterates

Why do we need them?

- >> If $q(\theta)$ satisfies strong concavity and smoothness, then the gradient ascent updates achieve geometric convergence rate to θ^*
- » The population version first-order EM updates can be viewed as a perturbation of the oracle updates
- » Therefore, in the population level analysis of EM algorithm, we need to control the quantity

$$abla q(heta) -
abla Q(heta \mid heta)$$

Population Analysis of First-Order EM Algorithm

Recall the population first-order updates are

$$egin{aligned} & heta^{t+1} = heta^t + lpha \cdot
abla Q \left(heta \mid heta^t
ight) ig|_{ heta = heta^t}, \end{aligned}$$

and the oracle updates are

$$heta^{t+1} = heta^t + lpha \cdot
abla q\left(heta^t
ight).$$

Condition 1: Gradient Smoothness

For an appropriately *small* parameter $\gamma \ge 0$,

 $\left\|
abla q(heta) -
abla Q\left(heta \mid heta
ight)
ight\|_2 \leq \gamma \left\| heta - heta^*
ight\|_2$

for all $\theta \in \mathbb{B}(r; \theta^*)$.

Condition 2: λ **-Strong Concavity**

There is some $\lambda > 0$ such that

$$\|q(heta_1)-q(heta_2)-\langle
abla q(heta_2), heta_1- heta_2
angle\leq -rac{oldsymbol{\lambda}}{2}\| heta_2\|_{2}$$

or, equivalently,

$$\langle
abla q(heta_1) -
abla q(heta_2), heta_1 - heta_2
angle \leq -\lambda \| heta_1 - eta_2 \|$$

for all pairs $\theta_1, \theta_2 \in \mathbb{B}(r; \theta^*)$.

$rac{\lambda}{2} \| heta_1 - heta_2\|_2^2$

$- heta_2 \|_2^2$

Condition 3: μ **-Smoothness**

There is some $\mu > 0$ such that

$$\|q(heta_1)-q(heta_2)-\langle
abla q(heta_2), heta_1- heta_2
angle\geq -rac{\mu}{2}\| heta_2\|_{2}$$

or, equivalently,

$$\langle
abla q(heta_1) -
abla q(heta_2), heta_1 - heta_2
angle \geq -\mu \| heta_1 - heta_2
angle$$

for all pairs $\theta_1, \theta_2 \in \mathbb{B}(r; \theta^*)$.

$rac{\mu}{2} \| heta_1 - heta_2\|_2^2$

$- heta_2 \|_2^2$

Theorem 1

(General Population-Level Guarantee)

» For some radius r > 0 and a triplet (γ, λ, μ) with $0 \le \gamma < \lambda \le \mu$ such that $\gamma^$ gradient smoothness, λ -strong concavity and μ -smoothness conditions hold;

» Choose the step size
$$lpha=rac{2}{\mu+\lambda}$$
 .

Then, given any $\theta^0 \in \mathbb{B}(r; \theta^*)$, the population first-order EM iterates satisfy the bound

$$ig\| heta^t - heta^* ig\|_2 \leq igg(1 - rac{2\lambda - 2\gamma}{\mu + \lambda} igg)^t ig\| heta^0 - heta^* ig\|_2 \qquad ext{for all } t$$

 $t=1,2,\cdots$.

Sample Analysis of First-Order EM Algorithm

Recall that the sample first-order EM updates are

$$heta^{t+1} = heta^t + lpha \cdot
abla Q_n \left(heta \mid heta^t
ight) ig|_{ heta = heta^t}.$$

The analysis of the finite sample first-order EM algorithm depends on the empirical process

 $\left\{
abla Q_n \left(heta \mid heta
ight) -
abla Q \left(heta \mid heta
ight), heta \in \mathbb{B} \left(r; heta^*
ight)
ight\}.$

For a given sample size *n* and tolerance parameter $\delta \in (0, 1)$, let $\epsilon_Q^{\text{unif}}(n,\delta)$ be the smallest scalar such that

$$\sup_{ heta \in \mathbb{B}(r; heta^*)} \|
abla Q_n\left(heta \mid heta
ight) -
abla Q\left(heta \mid heta
ight)\|_2 \leq \epsilon_Q^{\mathrm{un}}$$

with probability at least $1 - \delta$.

 $\sum_{n=1}^{n} (n, \delta)$

Theorem 2

(General Sample-Level Guarantee)

- » For some radius r > 0 and a triplet (γ, λ, μ) with $0 \le \gamma < \lambda \le \mu$ such that the γ -gradient smoothness, λ -strong concavity and μ smoothness conditions hold;
- » Choose the step size $\alpha = \frac{2}{\mu + \lambda}$;
- \gg Suppose the sample size *n* is large enough to ensure

$$\epsilon_Q^{ ext{unif}}\left(n,\delta
ight) \leq \left(\lambda-\gamma
ight)\cdot r.$$

Theorem 2

(General Sample-Level Guarantee) (continued)

Then, with probability at least $1 - \delta$, given any initialization $\theta^0 \in \mathbb{B}(r; \theta^*)$, the finite-sample first-order EM iterates $\{\theta^t\}_{t=0}^{\infty}$ satisfy the bound

$$ig\| heta^t - heta^* ig\|_2 \leq igg(1 - rac{2\lambda - 2\gamma}{\mu + \lambda} igg)^t ig\| heta^0 - heta^* ig\|_2 + igg\|_2$$

for all $t = 1, 2, \cdots$.

 $rac{\epsilon_Q^{ ext{unif}}\left(n,\delta
ight)}{\lambda-\gamma}$

Example: Gaussian Mixture Model

Consider the following two-component Gaussian mixture model

$$Y=\psi\cdot heta^*+\epsilon,$$

where

$$\psi = egin{cases} +1, & ext{w.p} \; rac{1}{2} \ -1, & ext{w.p} \; rac{1}{2} \end{cases},$$

$$\epsilon \sim \mathcal{N}_{d} \ ig(0, \sigma$$

and ψ and ϵ are independent.

Key Quantity:

$$\mathsf{SNR} = rac{\| heta^*\|_2}{\sigma}.$$

 $\sigma^2 I ig) \,,$

To analyze the EM algorithm at the *population* level, i.e., apply **Theorem 1**, one needs to establish the gradient smoothness, λ strong concavity and μ -smoothness.

Oracle Function:

$$q(heta) = -rac{1}{2} \cdot \mathsf{E}_{ heta^*} \left\{ \left(1 - w_{ heta^*}(Y)
ight) \cdot \|Y + heta\|_2^2 + w_{ heta^*}(Y)
ight\}$$

where the weighting function $w_{\theta^*}(y)$ is a smooth function.

It is easy to verify that q is strongly-concave and smooth with parameters 1, i.e., $\lambda = \mu = 1$.

$(Y)\cdot \|Y- heta\|_2^2\Big\}\,,$

What about gradient smoothness?

Lemma 2

>> Let SNR = $\frac{\|\theta^*\|_2}{\pi} \ge \eta$ for a sufficiently large $\eta > 0$; >> Let the radius be $r = \frac{\|\theta^*\|_2}{4}$. Then, there is a constant $\gamma \in (0,1)$ with $\gamma \leq \exp(-c_2\eta^2)$ such that

 $\|\mathsf{E}\{2 \cdot (w_{\theta}(Y) - w_{\theta^{*}}(Y)) \cdot Y\}\|_{2} \leq \gamma \cdot \|\theta - \theta^{*}\|_{2}.$

Corollary 1

(Population result for the first-order EM algorithm for GMM)

>> Let $SNR = \frac{\|\theta^*\|_2}{\sigma} \ge \eta$ for a sufficiently large $\eta > 0$;

» Let the radius
$$r = \frac{\|\theta^*\|_2}{4}$$
;

 \gg Choose the step size $\alpha = 1$.

Corollary 1

(Population result for the first-order EM algorithm for GMM) (continued)

Then, there is a contraction coefficient $\kappa(\eta) \leq \exp(-c\eta^2)$, where c is a universal constant, such that for any initialization $\theta^0 \in \mathbb{B}\left(\frac{\|\theta^*\|_2}{4}; \theta^*\right)$, the population first-order EM iterates satisfy the bound

$$\left\| \theta^t - \theta^* \right\|_2 \le \kappa^t \left\| \theta^0 - \theta^* \right\|_2$$

for all $t = 1, 2, \cdots$.

Now, we go from the population to the sample-based analysis of this particular model.

At the *sample* level, we study the random variable

$$egin{aligned} &\|lpha \cdot
abla Q_n \left(heta \mid heta
ight) - lpha \cdot
abla Q \left(heta \mid heta
ight) \|_2 \ &= & \left\|rac{1}{n} \sum_{i=1}^n \left(2 w_ heta \left(Y_i
ight) - 1
ight) Y_i - \mathsf{E} \left(2 \cdot w_ heta \left(Y
ight) Y_i
ight) \|_2 \end{aligned}$$

over the ball
$$\mathbb{B}\left(\frac{\|\theta^*\|_2}{4};\theta^*\right)$$
.

Y-Y

Corollary 4

(Sample-based result for first-order EM guarantees for GMM)

» Let
$$\mathsf{SNR} = rac{\| heta^* \|_2}{\sigma} \geq \eta$$
 for a sufficiently large η

- » Choose the radius $r = \frac{\|\theta^*\|_2}{\Lambda}$;
- >> Choose the step size $\alpha = 1$;
- » Suppose the sample size n is lower bounded by $n \ge c_1 d \log(1/\delta)$.

> 0;

Corollary 4

(Sample-based result for first-order EM guarantees for GMM)(continued)

Then, there is a contraction coefficient $\kappa(\eta) \leq \exp($ universal constant, such that, for any initialization *e* the first-order EM iterates $\{\theta_t\}_{t=0}^{\infty}$ satisfy the bound $ig\Vert heta^t - heta^* ig\Vert_2 \leq \kappa^t ig\Vert heta^0 - heta^* ig\Vert_2 + rac{c_2}{1-\kappa} ig\Vert heta^* ig\Vert_2 \left(1 + rac{ ig\Vert heta^* ig\Vert_2^2}{\sigma^2}
ight)$

with probability at least $1 - \delta$.

$$egin{aligned} &c\eta^2 ig), ext{ where } c ext{ is a} \ & heta^0 \in \mathbb{B}\left(rac{\| heta^*\|_2}{4}; heta^*
ight), \end{aligned}$$

$$\left(\frac{d}{n}\log\left(rac{1}{\delta}
ight),
ight)$$

40

Summary

- » This paper advances our *theoretical* understanding of EM algorithm.
- >> This paper concentrates on how to obtain a *near-optimal* estimate of θ^* using EM algorithm.
- >> With the help of *optimization theory*, this paper establishes the *size* of the region of attraction where the initialization should be chosen and the rate of convergence of the EM algorithm.
- >> This paper also develops techniques to analyze other algorithms for solving non-convex problems.
- >> What's next...

