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Overview of Expectation-
Maximization Algorithm
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Estimation of Linkage in Genetics

» 197 animals are distributed multinomially into 5 categories

» Observed data:

with .

» Cell probabilities:
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Example (continued)

» Likelihood function:

and

» How to solve this type of incomplete data problem?
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What is the EM Algorithm?

Expectation-Maximization (EM) Algorithm is an iterative 
method that attempts to find the maximum likelihood estimator of 
a parameter  of a parametric probability distribution in incomplete 
data problems.

Incompleteness:
- Missing data
- Censored or grouped data
- Latent class and latent data structures
- 
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Basic Setup

» Let  with the joint density function , where

»

»  is non-empty, compact convex set

» Observe  i.i.d. copies of , 

»  are missing or latent

» Goal: Estimate  by maximizing log-likelihood:
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EM Idea

Unfortunately, maximizing  directly can be hard! But often the complete data log-likelihood

is easier to maximize. So we replace the complete data log-likelihood by its conditional 
expectation:

where expectation is computed with respect to current iterate .
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EM Algorithm

Starting with initial iterate , iterate the following steps for .

» Expectation Step: Compute EM surrogate :

» Maximization Step: Maximize EM surrogate:
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Source: 
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Advantages !
» Easy to implement

» Requires small storage space

» Low cost per iteration

» If  is bounded,  converges monotonically to , 
where  is a stationary point

»
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Drawbacks !
» Finding the exact maximizer in the M step can be hard
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As for the First Drawback...

» Generalized EM Algorithm: Just choose  so that

» First-Order EM Algorithm: Assume  is differentiable in the 
first argument at each iteration . Given a step size , the updates are

where the gradient is taken in the first argument of .
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Drawbacks !
» Finding the exact maximizer in the M step can be hard

» No guarantees to converge to the global maximum of  
(depending on the choice of starting point)
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An Example (Murray, 1977; Wu, 1983)

Twelve observations are collected from a bivariate normal distribution with 
mean , correlation coefficient  and variances , 

The likelihood function has

- two global maxima: , ; and

- a saddle point: , .

The EM algorithm starting at  will return the saddle point.
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Drawbacks !
» Finding the exact maximizer in the M step can be hard

» No guarantees to converge to the global maximum of  
(depending on the choice of starting point)

» , where  is a stationary point, does NOT imply 
 and Wu (1983) only established the conditions of 

convergence of  to a stationary point
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Contributions of Balakrishnan et al. 
(2017)

» Quantitative characterization of a basin of attraction around 

» Where to choose the initialization to ensure 

» Establishment of the convergence rate and the corresponding 
conditions

» Establishment of connections between population and sample 
analysis
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Population Version of EM Algorithm

E Step: Compute the following population version surrogate function

M Step:

» Standard EM:

» First-Order EM:
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Oracle Surrogate Function and Iterates

» Oracle Surrogate Function

» Oracle Iterates
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Oracle Surrogate Function and Iterates

Why do we need them?

» If  satisfies strong concavity and smoothness, then the gradient 
ascent updates achieve geometric convergence rate to 

» The population version first-order EM updates can be viewed as a 
perturbation of the oracle updates

» Therefore, in the population level analysis of EM algorithm, we need 
to control the quantity
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Population Analysis of First-Order 
EM Algorithm
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Recall the population first-order updates are

and the oracle updates are

Condition 1: Gradient Smoothness

For an appropriately small parameter ,

for all .
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Condition 2: -Strong Concavity

There is some  such that

or, equivalently,

for all pairs .
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Condition 3: -Smoothness

There is some  such that

or, equivalently,

for all pairs .
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Theorem 1
(General Population-Level Guarantee)

» For some radius  and a triplet  with  such that -
gradient smoothness, -strong concavity and -smoothness conditions hold;

» Choose the step size .

Then, given any , the population first-order EM iterates satisfy the 
bound
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Sample Analysis of First-Order EM 
Algorithm
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Recall that the sample first-order EM updates are

The analysis of the finite sample first-order EM algorithm 
depends on the empirical process
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For a given sample size  and tolerance parameter , let 
 be the smallest scalar such that

with probability at least .
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Theorem 2
(General Sample-Level Guarantee)

» For some radius  and a triplet  with  
such that the -gradient smoothness, -strong concavity and -
smoothness conditions hold;

» Choose the step size ;

» Suppose the sample size  is large enough to ensure
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Theorem 2
(General Sample-Level Guarantee) (continued)

Then, with probability at least , given any initialization 
, the finite-sample first-order EM iterates  

satisfy the bound

for all 
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Example: Gaussian Mixture Model
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Consider the following two-component Gaussian mixture model

where

and  and  are independent.

Key Quantity:
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To analyze the EM algorithm at the population level, i.e., apply 
Theorem 1, one needs to establish the gradient smoothness, -
strong concavity and -smoothness.

Oracle Function:

where the weighting function  is a smooth function.

It is easy to verify that  is strongly-concave and smooth with 
parameters 1, i.e., .
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What about gradient smoothness?

Lemma 2

» Let  for a sufficiently large ;

» Let the radius be .

Then, there is a constant  with  such that
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Corollary 1
(Population result for the first-order EM algorithm for GMM)

» Let  for a sufficiently large ;

» Let the radius ;

» Choose the step size .
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Corollary 1
(Population result for the first-order EM algorithm for GMM) (continued)

Then, there is a contraction coefficient , where  is 
a universal constant, such that for any initialization 

, the population first-order EM iterates satisfy 

the bound

for all 

37



Now, we go from the population to the sample-based analysis of 
this particular model.

At the sample level, we study the random variable

over the ball .
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Corollary 4
(Sample-based result for first-order EM guarantees for GMM)

» Let  for a sufficiently large ;

» Choose the radius ;

» Choose the step size ;

» Suppose the sample size  is lower bounded by .
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Corollary 4
(Sample-based result for first-order EM guarantees for GMM)(continued)

Then, there is a contraction coefficient , where  is a 

universal constant, such that, for any initialization , 

the first-order EM iterates  satisfy the bound

with probability at least .
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Summary

» This paper advances our theoretical understanding of EM algorithm.

» This paper concentrates on how to obtain a near-optimal estimate of 
 using EM algorithm.

» With the help of optimization theory, this paper establishes the size of 
the region of attraction where the initialization should be chosen and 
the rate of convergence of the EM algorithm.

» This paper also develops techniques to analyze other algorithms for 
solving non-convex problems.

» What's next...
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