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Abstract

It is now believed that the limiting distribution function of the largest

eigenvalue in the three classic random matrix models GOE, GUE and GSE

describe new universal limit laws for a wide variety of processes arising in

mathematical physics and interacting particle systems. These distribution

functions, expressed in terms of a certain Painlevé II function, are described

and their occurences surveyed.
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1. Random matrix models

A random matrix model is a probability space (Ω,P ,F) where the sample space
Ω is a set of matrices. There are three classic finite N random matrix models (see,
e.g. [31] and for early history [37]):

• Gaussian Orthogonal Ensemble (β = 1)
– Ω = N × N real symmetric matrices
– P = “unique” measure that is invariant under orthogonal transforma-

tions and the matrix elements are i.i.d. random variables. Explicitly, the
density is

cN exp
(

−tr(A2)
)

dA, (1.1)

where cN is a normalization constant and dA =
∏

i dAii

∏

i<j dAij , the
product Lebesgue measure on the independent matrix elements.

• Gaussian Unitary Ensemble (β = 2)
– Ω = N × N hermitian matrices
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– P= “unique” measure that is invariant under unitary transformations
and the (independent) real and imaginary matrix elements are i.i.d. ran-
dom variables.

• Gaussian Symplectic Ensemble (β = 4) (see [31] for a definition)

Generally speaking, the interest lies in the N → ∞ limit of these models. Here
we concentrate on one aspect of this limit. In all three models the eigenvalues,
which are random variables, are real and with probability one they are distinct. If
λmax(A) denotes the largest eigenvalue of the random matrix A, then for each of
the three Gaussian ensembles we introduce the corresponding distribution function

FN,β(t) := Pβ (λmax < t) , β = 1, 2, 4.

The basic limit laws [46, 47, 48] state that1

Fβ(s) := lim
N→∞

FN,β

(

2σ
√

N +
σs

N1/6

)

, β = 1, 2, 4,

exist and are given explicitly by

F2(s) = det
(

I − KAiry

)

= exp

(

−
∫

∞

s

(x − s)q2(x) dx

)

where

KAiry
.
=

Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y

acting on L2(s,∞) (Airy kernel)

and q is the unique solution to the Painlevé II equation

q′′ = sq + 2q3

satisfying the condition
q(s) ∼ Ai(s) as s → ∞.

The orthogonal and symplectic distribution functions are

F1(s) = exp

(

−1

2

∫

∞

s

q(x) dx

)

(F2(s))
1/2

,

F4(s/
√

2) = cosh

(

1

2

∫

∞

s

q(x) dx

)

(F2(s))
1/2

.

Graphs of the densities dFβ/ds are in the adjacent figure and some statistics of Fβ

can be found in the table.
1Here σ is the standard deviation of the Gaussian distribution on the off-diagonal matrix

elements. For the normalization we’ve chosen, σ = 1/
√

2; however, for subsequent comparisons,

the normalization σ =
√

N is perhaps more natural.
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Table 1: The mean (µβ), standard deviation (σβ), skewness (Sβ) and
kurtosis (Kβ) of Fβ .

β µβ σβ Sβ Kβ

1 -1.20653 1.2680 0.293 0.165
2 -1.77109 0.9018 0.224 0.093
4 -2.30688 0.7195 0.166 0.050
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The Airy kernel is an example of an integrable integral operator [19] and a general
theory is developed in [49]. A vertex operator approach to these distributions (and
many other closely related distribution functions in random matrix theory) was
initiated by Adler, Shiota and van Moerbeke [1]. (See the review article [51] for
further developments of this latter approach.)

Historically, the discovery of the connection between Painlevé functions (PIII in
this case) and Toeplitz/Fredholm determinants appears in work of Wu et al. [53]
on the spin-spin correlation functions of the two-dimensional Ising model. Painlevé
functions first appear in random matrix theory in Jimbo et al. [20] where they
prove the Fredholm determinant of the sine kernel is expressible in terms of PV .
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Gaudin [13] (using Mehta’s [30] then newly invented method of orthogonal polyno-
mials) was the first to discover the connection between random matrix theory and
Fredholm determinants.

1.1. Universality theorems

A natural question is to ask whether the above limit laws depend upon the un-
derlying Gaussian assumption on the probability measure. To investigate this for
unitarily invariant measures (β = 2) one replaces in (1.1)

exp
(

−tr(A2)
)

→ exp (−tr(V (A))) .

Bleher and Its [9] choose

V (A) = gA4 − A2, g > 0,

and subsequently a large class of potentials V was analyzed by Deift et al. [12].
These analyses require proving new Plancherel-Rotach type formulas for nonclassical
orthogonal polynomials. The proofs use Riemann-Hilbert methods. It was shown
that the generic behavior is GUE; and hence, the limit law for the largest eigenvalue
is F2. However, by finely tuning the potential new universality classes will emerge
at the edge of the spectrum. For β = 1, 4 a universality theorem was proved by
Stojanovic [44] for the quartic potential.

In the case of noninvariant measures, Soshnikov [42] proved that for real symmet-
ric Wigner matrices2 (complex hermitian Wigner matrices) the limiting distribution
of the largest eigenvalue is F1 (respectively, F2). The significance of this result is
that nongaussian Wigner measures lie outside the “integrable class” (e.g. there are
no Fredholm determinant representations for the distribution functions) yet the
limit laws are the same as in the integrable cases.

2. Appearance of Fβ in limit theorems

In this section we briefly survey the appearances of the limit laws Fβ in widely
differing areas.

2.1. Combinatorics

A major breakthrough ocurred with the work of Baik, Deift and Johansson [3]
when they proved that the limiting distribution of the length of the longest increas-
ing subsequence in a random permutation is F2. Precisely, if ℓN(σ) is the length of
the longest increasing subsequence in the permutation σ ∈ SN , then

P

(

ℓN − 2
√

N

N1/6
< s

)

→ F2(s)

2A symmetric Wigner matrix is a random matrix whose entries on and above the main diag-

onal are independent and identically distributed random variables with distribution function F .

Soshnikov assumes F is even and all moments are finite.
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as N → ∞. Here the probability measure on the permutation group SN is the
uniform measure. Further discussion of this result can be found in Johansson’s
contribution to these proceedings [26].

Baik and Rains [5, 6] showed by restricting the set of permutations (and these
restrictions have natural symmetry interpretations) F1 and F4 also appear. Even
the distributions F 2

1 and F 2
2 [50] arise. By the Robinson-Schensted-Knuth corre-

spondence, the Baik-Deift-Johansson result is equivalent to the limiting distribution
on the number of boxes in the first row of random standard Young tableaux. (The
measure is the push-forward of the uniform measure on SN .) These same authors
conjectured that the limiting distributions of the number of boxes in the second,
third, etc. rows were the same as the limiting distributions of the next-largest, next-
next-largest, etc. eigenvalues in GUE. Since these eigenvalue distributions were also
found in [47], they were able to compare the then unpublished numerical work of
Odlyzko and Rains [34] with the predicted results of random matrix theory. Sub-
sequently, Baik, Deift and Johansson [4] proved the conjecture for the second row.
The full conjecture was proved by Okounkov [33] using topological methods and
by Johansson [23] and by Borodin, Okounkov and Olshanski [10] using analyti-
cal methods. For an interpretation of the Baik-Deift-Johansson result in terms of
the card game patience sorting, see the very readable review paper by Aldous and
Diaconis [2].

2.2. Growth processes

Growth processes have an extensive history both in the probability literature and
the physics literature (see, e.g. [15, 29, 41] and references therein), but it was only
recently that Johansson [22, 26] proved that the fluctuations about the limiting
shape in a certain growth model (Corner Growth Model) are F2. Johansson fur-
ther pointed out that certain symmetry constraints (inspired from the Baik-Rains
work [5, 6]), lead to F1 fluctuations. This growth model is in Johansson’s con-
tribution to these proceedings [26] where the close analogy to largest eigenvalue
distributions is explained.

Subsequently, Baik and Rains [7] and Gravner, Tracy and Widom [16] have shown
the same distribution functions appearing in closely related lattice growth models.
Prähofer and Spohn [38, 39] reinterpreted the work of [3] in terms of the physicists’
polynuclear growth model (PNG) thereby clarifying the role of the symmetry pa-
rameter β. For example, β = 2 describes growth from a single droplet where as β = 1
describes growth from a flat substrate. They also related the distributions functions
Fβ to fluctuations of the height function in the KPZ equation [28, 29]. (The con-
nection with the KPZ equation is heuristic.) Thus one expects on physical grounds
that the fluctuations of any growth process falling into the 1 + 1 KPZ universality
class will be described by the distribution functions Fβ or one of the generalizations
by Baik and Rains [7]. Such a physical conjecture can be tested experimentally;
and indeed, Timonen and his colleagues [45] have taken up this challenge. Earlier
Timonen et al. [32] established experimentally that a slow, flameless burning pro-
cess in a random medium (paper!) is in the 1 + 1 KPZ universality class. This
sequence of events is a rare instance in which new results in mathematics inspires
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new experiments in physics.
In the context of the PNG model, Prähofer and Spohn have given a process

interpretation, the Airy process, of F2. Further work in this direction can be found
in Johansson [25].

There is an extension of the growth model in [16] to growth in a random environ-

ment. In [17] the following model of interface growth in two dimensions is considered
by introducing a height function on the sites of a one-dimensional integer lattice
with the following update rule: the height above the site x increases to the height
above x− 1, if the latter height is larger; otherwise the height above x increases by
one with probability px. It is assumed that the px are chosen independently at ran-
dom with a common distribution function F , and that the intitial state is such that
the origin is far above the other sites. In the pure regime Gravner-Tracy-Widom
identify an asymptotic shape and prove that the fluctuations about that shape, nor-
malized by the square root of the time, are asymptotically normal. This constrasts
with the quenched version: conditioned on the environment and normalized by the
cube root of time, the fluctuations almost surely approach the distribution function
F2. We mention that these same authors in [18] find, under some conditions on
F at the right edge, a composite regime where now the interface fluctuations are
governed by the extremal statistics of px in the annealed case while the fluctuations
are asymptotically normal in the quenched case.

2.3. Random tilings

The Aztec diamond of order n is a tiling by dominoes of the lattice squares
[m, m+ 1]× [ℓ, ℓ+1], m, n ∈ Z, that lie inside the region {(x, y) : |x|+ |y| ≤ n+ 1}.
A domino is a closed 1 × 2 or 2 × 1 rectangle in R

2 with corners in Z
2. A typical

tiling is shown in the accompanying figure. One observes that near the center the
tiling appears random, called the temperate zone, whereas near the edges the tiling
is frozen, called the polar zones. It is a result of Jockush, Propp and Shor [21]
(see also [11]) that as n → ∞ the boundary between the temperate zone and the
polar zones (appropriately scaled) converges to a circle (Arctic Circle Theorem).
Johansson [24] proved that the fluctuations about this limiting circle are F2.

2.4. Statistics

Johnstone [27] considers the largest principal component of the covariance matrix
XtX where X is an n × p data matrix all of whose entries are independent stan-
dard Gaussian variables and proves that for appropriate centering and scaling, the
limiting distribution equals F1 in the limit n, p → ∞ with n/p → γ ∈ R

+. Sosh-
nikov [43] has removed the Gaussian assumption but requires that n− p = O(p1/3).
Thus we can anticipate applications of the distributions Fβ (and particularly F1)
to the statistical analysis of large data sets.

2.5. Queuing theory

Glynn and Whitt [14] consider a series of n single-server queues each with unlim-
ited waiting space with a first-in and first-out service. Service times are i.i.d. with
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mean one and variance σ2 with distribution V . The quantity of interest is D(k, n),
the departure time of customer k (the last customer to be served) from the last
queue n. For a fixed number of customers, k, they prove that

D(k, n) − n

σ
√

n

converges in distribution to a certain functional D̂k of k-dimensional Brownian
motion. They show that D̂k is independent of the service time distribution V . It
was shown in [8, 16] that D̂k is equal in distribution to the largest eigenvalue of a
k × k GUE random matrix. This fascinating connection has been greatly clarified
in recent work of O’Connell and Yor [35] (see also [36]).

From Johansson [22] it follows for V Poisson that

P

(

D(⌊xn⌋, n) − c1n

c2 n1/3
< s

)

→ F2(s)

as n → ∞ for some explicitly known constants c1 and c2 (depending upon x).
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2.6. Superconductors

Vavilov et al. [52] have conjectured (based upon certain physical assumptions
supported by numerical work) that the fluctuation of the excitation gap in a metal
grain or quantum dot induced by the proximity to a superconductor is described
by F1 for zero magnetic field and by F2 for nonzero magnetic field. They conclude
their paper with the remark:

The universality of our prediction should offer ample opportunities for
experimental observation.

Acknowledgements: This work was supported by the National Science Foun-
dation through grants DMS-9802122 and DMS-9732687.
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