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Abstract

Multilocus calculations using all available information on all pedigree
members are important for linkage analysis. Exact calculation methods in
linkage analysis are limited in either the number of loci or the number of
pedigree members they can handle. In this article, we propose a Monte
Carlo method for linkage analysis based on sequential imputation. Unlike
exact methods, sequential imputation can handle both a large number of
loci and a large number of pedigree members. This Monte Carlo method
is an application of importance sampling in which we sequentially impute
ordered genotypes locus by locus and then impute inheritance vectors con-
ditioned on these genotypes. The resulting inheritance vectors together with
the importance sampling weights are used to derive a consistent estima-
tor of any linkage statistic of interest. The linkage statistic can be para-
metric or nonparametric; we focused on nonparametric linkage statistics.
We demonstrated that accurate estimates can be achieved within reasonable
computing time. Then we performed a simulation study to illustrate the
potential gain in power using our method for multilocus linkage analysis
with large pedigrees. We simulated data at six markers under three models.
We analyzed them using bot h sequential imputation and GENEHUNTER.
GENEHUNTER had to drop between 38% to 54% of the pedigree members
whereas our method was able to use all pedigree members. The power gains
of using all of the pedigree members were substantial under two of the three
models. We have implemented sequential imputation for multilocus linkage
analysis in a user-friendly software package called SIMPLE.
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Introduction

Linkage analysis extracts inheritance information from pedigree data to evaluate

the cosegregation of marker and trait alleles. Thus it is important to utilize avail-

able information on multiple markers and all pedigree members. Unfortunately,

algorithms for exact analysis are computationally limited in either the number of

markers or the number of pedigree members they can handle. Peeling and Hid-

den Markov Model (HMM) approaches are two such exact methods that are most

frequently used.

Peeling [Elston and Stewart, 1971; Cannings et al., 1978] is a computational

algorithm that successively aggregates inheritance information from pedigree mem-

bers. The algorithm scales linearly with the number of pedigree members, but

exponentially with the number of loci. Genotype elimination [Lange and Gora-

dia, 1987; O’Connell and Weeks, 1999] and set-recoding [O’Connell and Weeks,

1995] have been proposed to reduce the computational requirements so that data

from more loci can be processed jointly. Despite these improvements, peeling is

still limited in the number of loci that it can handle.

The HMM methods model the underlying inheritance pattern as an inhomo-

geneous Markov chain with each entry of the transition matrix being a function of

the recombination fraction between adjacent loci [Lander and Green, 1987]. The

key to the algorithm is the assumption of no genetic interference. In contrast to

peeling, the HMM method scales linearly with the number of loci, but exponen-

tially with the number of pedigree members. Many improvements have been made

to reduce computational requirements so that more pedigree members can be an-

alyzed. Properties of the transition matrix [Kruglyak et al., 1995] and symmetries

in founder phases [Kruglyak et al., 1996] were exploited to reduce the amount
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of calculations. Fast Fourier transformations [Kruglyak and Lander, 1998] fur-

ther speed up calculations. Using observed genotypes to reduce the inheritance

space [Markianos et al., 2001a] and to form equivalence classes [Markianos et al.,

2001b] allows for potentially more pedigree members. Idury and Elston (1997)

describe a ‘divide and conquer’ algorithm which speeds up some of the calculatio

ns and allows for sex-specific recombination without any computational penalty.

This ‘divide and conquer’ method was incorporated into the software package

Merlin [Abecassis et al., 2002] which also uses an approximation method to ex-

pand the size of the pedigree it can handle in some cases. Other algorithmic

improvements such as efficient tree traversal were made to the HMM algorithm

and incorporated into Allegro [Gudbjartsson et al., 2000]. However, even with

these improvements, the HMM formulation inevitably scales exponentially with

the number of pedigree members.

Monte Carlo methods have been proposed to overcome these computational

limitations. Two major approaches of Monte Carlo methods to linkage analysis

are Markov chain Monte Carlo (MCMC) and sequential imputation. MCMC al-

gorithms can be designed such that they scale linearly in both the number of loci

and the number of pedigree members [Thompson, 2000]. Thus, MCMC is an ex-

tremely powerful estimation method that can practically deal with any number of

loci and pedigree of arbitrary size and complexity [Luo et al., 2001]. However,

due to strong dependencies among realizations of the Markov chain, convergence

can be slow [Thompson, 2000].

Sequential imputation is another Monte Carlo method that has been success-

fully applied to a variety of areas [Bergman, 2001; Blake et al., 2001]. Irwin et al.

(1994) illustrated how to use sequential imputation in linkage analysis to calculate
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the likelihood (and hence LOD scores), utilizing the peeling algorithm for a single

locus, which results in an algorithm that also scales linearly in both the number of

loci and the number of pedigree members. For pedigrees that are not very complex

(i.e., single-locus peelable), sequential imputation is expected to be more efficient

computationally than MCMC methods in most circumstances. However, it should

be noted that sequential imputation is not meant to be a replacement for MCMC,

as it cannot handle very complex pedigrees, such as the 1544-member Hutterite

pedigree successfuly dealt with using MCMC methods [Luo et al., 2001].

This article extends the method of sequential imputation to nonparametric

linkage analysis. This is an important step forward in making sequential impu-

tation a viable alternative for linkage analysis, as nonparametric linkage analysis

is frequently more suited for analyzing complex traits whose underlying genetic

model is unknown or unclear.

The idea is to simulate inheritance vectors conditioned on phase-known multi-

locus genotypes that were imputed sequentially. Then the inheritance vectors can

be used to estimate any linkage statistic of the form [Whittemore and Halpern,

1994b; Kruglyak et al., 1996]

E
�
S �������	��
� ����������� S �������	��
 P ����� ����
�� (1)

where ��� is the observed marker data, ��� is the observed disease phenotypes and

� is the unobserved inheritance vector. The inheritance vector [Lander and Green,

1987] �������! ��#"$ %�'&'&(&(���*)+�#",)�
 is a binary representation of the inheritance in-

formation at a location in the genome for each of the - nonfounders. The .0/21
nonfounder is assigned 2 bits, �	3 and ",3 , corresponding to the genetic informa-

tion inherited from the father and mother. Each bit is either 1 or 0 depending

Skrivanek et al.



Sequential Imputation and Linkage Analysis 6

on whether it was inherited from the grandmother or grandfather, respectively.

The inheritance distribution, P ���4� �5��
 , is the distribution of the inheritance vec-

tors conditioned on the observed marker data.

The scoring function, S ���6������
 for inheritance vector � and observed disease

phenotypes �7� , measures the amount of IBD sharing. An example of a scoring

function for sib pairs is to assign a score of  8 �  9 or 0 to a sib pair that share 2, 1

or 0 alleles IBD, respectively. Suppose two sibs have the following inheritance

vector: (1,0, 1,0), which implies that they both inherited the grandmaternal allele

from their father and the grandpaternal allele from their mother. Therefore they

share two alleles IBD and would get a score of  8 with this scoring function.

The class of linkage statistics represented in (1) encompasses a wide range of

nonparametric IBD statistics, including S :%;03=<0> and S ;@?A? [Whittemore and Halpern,

1994a], the most popular allele sharing statistics for nonparametric analysis. We

note that, if we add genetic parameters for the disease model to the score function,

the statistic in the form (1) becomes a parametric statistic. In fact, the familiar

LOD score is included in this class [Kruglyak et al., 1996].

The next three sections describe the algorithm and other technical issues. They

are followed by a simulation study to demonstrate the potential gain in power of

using larger pedigrees for multilocus linkage analysis.

Methods

The idea is to estimate the linkage statistic in formula (1) instead of calculating

it exactly. We decompose the information that we have on the " markers into

���B� C�� D�'&'&'&��6�E�GF . We denote the unobserved ordered genotypes at the "
markers, CIH+ %�(&'&'&��#HJ�KF , as L . After obtaining the starting point of the sequential
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imputation (step 1) we sequentially sample the ordered genotypes and calculate

the appropriate importance sampling weight (steps 2 and 3). Then we sample the

inheritance vector � at a particular location given the sampled ordered genotypes

at the " markers (step 4). Finally, we calculate the score using � (step 5).

Step 1. Calculate P �M�5 �
 and sample HN from P �OH+ '� �� �
 .
Step 2. For P��RQ+�'&'&'&��#" we carry out the following steps:

(a) Calculate P �M� / � �� ��#HS %�'&'&'&���� /UT  ��#H /UT  V
 .
(b) Sample H / from P �OH / � �� %�#HS %�'&'&'&���� /UT  ��#H /UT  %��� / 
 .

Step 3. Form WX�MLY
4� P �M�� �
EZ �/\[ 8 P �M� / � �� ��#H+ %�(&'&'&���� /UT  ��#H /UT  @
 .
Step 4. Sample � at a location of interest according toP ����� L]
 , where L are

the ordered genotypes sampled in steps 1-3. Note that P ����� L]
 =P ���4� L^������
 .
Step 5. Calculate the score S ���6���7��
 .

Steps 1 to 5 are carried out N times to form WX�ML4 @
��'&'&(&(�#WX�ML N 
 and S ���5 D���	��
��'&'&(&(�
S ��� N ���	��
 . The probability calculations and the sampling in steps 1 through 3

are done by means of single locus peeling and sampling using reverse peeling

(Ploughman and Boehnke 1989; Ott 1989).

The sampling of the inheritance vector in step 4 involves a series of Bernoulli

trials. Since each of the bits that make up the inheritance vector are conditionally

independent of each other given the in-phase genotypes, L , we can sample these

bits separately.

Irwin et al. (1994) show that the sampling distribution of the ordered geno-

types, P _I�`LG� ����
 , satisfies:
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P _ �MLK� ����
4� P �MLK� �!�a
 P �M����
WX�MLY
 &
From this equality it follows:

E
�Ib c �

S �������	��
0Wd�MLY
� �����
� � � S �������	��
 � c P ����� LY
 P _ �MLK� ���e
0Wd�`L]

� P �M���a
 ��� S �����V�	��
 � c P ����� LY
 P �MLK� ����

� P �M���a
 E � � S �������	��
� ������&

This result and the fact that the average of the weights is an unbiased estimator

of P �M���a
 (Irwin et al. 1994) gives us a consistent estimator for the linkage statistic

in (1):

f
E
�
S �������	��
� ������� N� g [  S ��� g ���	��
 WX�ML g 
WX��hi
 �

where Wd��hi
4�Rj Ng [  Wd�`L g 
 . So the estimate is a weighted average of the scores.

In step 5 to calculate the score, S �������7�(
 , we first assign each of the founders

two unique allele labels. We pass these founder allele labels down the pedigree

using the sampled inheritance vector. We then measure the number of founder

allele labels in common amongst the affecteds via the IBD scoring function.

The null distribution

The IBD statistic measures the amount of IBD sharing. If the amount of sharing

among the affecteds is significantly more than what would be expected under the
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null hypothesis of no linkage then there is evidence of linkage. Therefore it is

necessary to measure the mean and variance of the scores under null hypothesis

of no linkage. To estimate the null mean and variance we simply pass the founder

allele labels through the pedigree with 50% probability of a particular allele label

being passed on to an offspring and calculate the score. We repeat this process

many times to get a sample of the scores from the null distribution. The mean

and variance of this sample give unbiased estimates of the null mean and vari-

ance of the scoring function. Although one could do this exactly [Kruglyak et

al., 1996] we find this to be inefficient for the size of pedigrees we are consid-

ering. Therefore, we have implemented instead the above Monte Carlo version

of the GENEHUNTER procedure [Kruglyak et al., 1996]. We then standardizef
E
�
S �����V�	��
I� �!�k� by the estimated null mean and null standard deviation to form the

standardized statistic. Furthermore, the sampled scores under the null distribution

are used to estimate the exact p-value. We note that this leads to conservative es-

timates of the standardized statistic and p-value as pointed out by Kruglyak et al.

(1996).

To reweight or not?

In the methods described above, we sampled the inheritance vectors (step 4)

at every location of interest (usually along the entire chromosome in which the

markers reside) and then estimate the statistic using the sampled inheritance vec-

tors. Alternatively, we could sample inheritance vectors at only a few locations

of the chromosome and estimate the linkage statistics at neighboring locations by

reweighting, another importance sampling idea exploited by Irwin et al. (1994).

For instance, suppose that inheritance vectors were sampled at position lnm . We
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can estimate the statistic at a nearby location, say l	 , by:

N� g [  S ��� g ���	��
 P �#o(��� g � L g 

P �0pq��� g � L g 
 Wd�ML

g 
Wd��hi
 & (2)

This reweighted statistic is a consistent estimator of the linkage statistic at l7 .
We have found that reweighting does not perform well in estimating IBD

statistics, however. This is most likely due to the fact that the distribution of

the inheritance vectors under lE is too far away from the distribution under lNm ,
resulting in large variability in (2). The computational savings in doing reweight-

ing instead of sampling at a particular location for estimating the likelihood, as

proposed by Irwin et al. (1994), can be substantial since the alternative would

involve peeling. On the other hand, there was no such clear advantage in using

reweighting in this application of sequential imputation as sampling inheritance

vectors does not pose much computational burden at all. Hence reweighting is not

adopted here.

The software package

We have implemented sequential imputation for linkage analysis in a software

package called SIMPLE (Sequential Imputation for MultiPoint Linkage Estima-

tion). The nonparametric IBD statistics currently available in SIMPLE include

the score functions S ;@?r? and S:%;@3=<s> [Whittemore and Halpern, 1994a; Kruglyak et

al., 1996], plus others as well. Furthermore, SIMPLE can calculate LOD scores.

SIMPLE takes input files with the same format as those used in GENEHUNTER,

enabling the user to easily switch to SIMPLE if the pedigree is too large to be

handled by GENEHUNTER in its entirety. The software is freely available from

our web site.
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Computational Requirements

Producing the weights and ordered genotypes (steps 1-3) takes the majority of

the computing time. To complete a single iteration we need to do a single locus

peel for each marker and then do reverse peeling [Ploughman and Boehnke, 1989;

Ott, 1989] to sample the ordered genotypes. So the complexity and memory re-

quirements are the same as those required to do " single locus peels. The key

difference in computational cost between this algorithm and a standard peeling

algorithm for linkage analysis such as that implemented in LINKAGE [Lathrop

et al., 1984] is that we are only doing a single locus peel at a time so the calcula-

tions are linear in the number of markers. Efficiencies in peeling algorithms can

be applied to the peeling step here to improve the overall efficiency. Currently

some genotype elimination has been implemented in SIMPLE to achieve such

efficiencies. As in peeling, this stage is sensitive to missing data.

In step 4 of the algorithm, we sample the inheritance vector at a location of

interest, conditioned on the sample ordered marker genotypes. For one iteration

this involves simulating the two inheritance bits for each of the nonfounders, re-

sulting in the calculations being linear in the number of pedigree members. The

computational time required for calculating the score (step 5 of the algorithm) de-

pends on its complexity. In particular, the current algorithm for calculating S ;@?r? is

computationally limited in the number of affecteds it can handle; see Markianos

et al. (2001a) for a detailed discussion. Missing data has no effect on either of

these last two steps since they are conditioned on complete ordered genotypes.

The memory is most influenced by the number of loci being analyzed. This

is because we store the joint recombination probabilities across all loci, leading

to the storage being exponential in the number of loci being analyzed. In steps 1
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through 3 we store the recombination probabilities for just the markers. Whereas

in steps 4 and 5 we store the recombination probabilities for the markers plus

a location of interest. These probabilities are stored for all locations where the

statistics are to be estimated. We could calculate these probabilities as needed to

save memory, but this would lead to a large increase in computing time.

We now present a summary of results for time and memory requirements in an-

alyzing a small, medium and large pedigree, respectively. We chose the first three

pedigrees (pedigrees 1, 2 and 3) that were presented in a simulated data set from

Genetics Analysis Workshop 12. The small, medium and large pedigrees have

52, 86 and 100 members, respectively. They have 15, 17 and 34 members with

missing data. Eight markers, with 6-8 alleles each and an average heterozygosity

of .77, were analyzed . We ran SIMPLE for 1,000 iterations and estimated S :%;03=<0> .
GENEHUNTER was not capable of analyzing any of these pedigrees without se-

riously reducing the number of pedigree members. GENEHUNTER would have

had to drop 24 (46%), 50 (58%) and 58 (58%) members in the small, medium and

large pedigrees, respectively, to be able to analyze them. We used version 2.1.3 of

GENEHUNTER here and throughout this paper.

Steps 1-3 Steps 4 & 5
Ped size Time (hr:min) Memory (MB) Time (sec) Memory (MB)
Small 1:37 4.3 .57 .42
Medium 1:41 4.1 1.33 .42
Large 3:47 7.5 1.61 .42

Table 1: Time & memory requirements for 1,000 iterations. NOTE- We report
the time and memory requirements to complete 1,000 iterations of steps 1-3 and 4 & 5 of
the algorithm (including the calculation of the estimate) for eight markers in each of three
pedigrees of sizes small (52 members), medium (86 members) and large (100 members).
Results are reported per disease location for steps 4 & 5. Note that the time units are
different for steps 1-3 and steps 4 & 5.
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We conducted the study on a Sun Blade 100 with an Ultrasparc IIe 500 mHz

processor. This study can be used as a rough guideline to the time and memory

requirements for using SIMPLE. The results are shown in table 1. In this table

we show the time and memory requirements to process all 8 markers for 1,000

iterations in steps 1-3. Since the number of points where linkage statistics are

estimated depends on the user, we report the time and memory requirements per

point in steps 4 and 5. Because the computational time grows linearly with the

number of iterations, an estimate of the time for analyzing these pedigrees with

2,000 iterations would be approximately twice the reported times, for example.

On the other hand, the memory is not affected by the number of iterations. For

steps 4 and 5, the computational time and memory grow linearly with the number

of points to be analyzed. For example, to estimate the time and memory to analyze

these 8 markers with 5 points between each pair of adjacent markers (43 points in

total), multiply the reported time and memory by 43.

The time and memory requirements to produce the weights and ordered geno-

types (steps 1-3) for the small and medium pedigrees were similar. Though the

medium pedigree was substantially larger than the small pedigree, they both had

a comparable amount of missing data. This would explain why they took sim-

ilar amount of time and memory to be analyzed. On the other hand, the large

pedigree had twice as much missing data and therefore took more than twice as

long and almost twice as much memory as the other two pedigrees to be analyzed.

The memory requirements to sample the inheritance vectors (step 4), calculate

the scores (step 5) and form the weighted estimates were the same for all three

pedigrees. This is expected since the number of loci (8 markers and 1 point) be-

ing analyzed was the same for all three pedigrees. On the other hand, the time
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increased as the size of the pedigree increased since the number of inheritance

vectors to be sampled increased accordingly.

Accuracy of estimates

We did a number of validation studies of SIMPLE using GENEHUNTER to ver-

ify that the scores were being estimated accurately within reasonable computing

time. The scores were always quite close to the true scores produced by GENE-

HUNTER. Of course the accuracy is a function of the number of iterations. To

get a rough estimate of the necessary sample size to reach a certain desired accu-

racy, one may run SIMPLE for a small number of iterations (say 100) to estimate

the sampling variability (automatically calculated in SIMPLE), which we note is

unlinkely to be very accurate. From this estimate, one can calculate the necessary

number of iterations. In practice we have found that 5,000 iterations is sufficient

for pedigrees that we have examined.

? ?

Figure 1: Pedigree used in the validation study. The individuals marked with ‘?’ have no
marker data nor information on disease phenotypes.

To illustrate the accuracy of SIMPLE, we analyzed pedigree 76 of the COGA

(Collaborative Studies on the Genetics of Alcoholism) data set from Genetics

Analysis Workshop 11. We removed three members so GENEHUNTER could

analyze it. The pedigree is shown in figure 1. Note that it has a marriage loop.
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There are fourteen members in the (reduced) pedigree with four founders. Eight

markers are used from chromosome one: D1S1613, D1S550, D1S532, D1S1588,

D1S1631, D1S1675, D1S534, D1S1595. They have nine to twelve alleles with an

average heterozygosity of .75. The markers are spaced 11.2, 8.4, 18.1, 12.5, 11.9,

9.0 and 9.8 cM apart. Two founders (14%) are missing all of their marker data. In

addition, seven other members (50%) are missing data on D1S1631, two members

(14%) are missing data on D1S534 and three members (21%) are missing data on

other markers.
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Figure 2: Standardized scores from the validation study. Scores produced by GENE-
HUNTER are given by the line and the scores produced by SIMPLE are plotted with
circles. S:%;03=<0> are plotted in the top frame and S ;@?r? are plotted in the bottom frame. The
markers are indicated by the extended tick marks and the locations in cM are indicated on
the x-axis of the bottom plot.

The linkage statistics S:%;@3=<s> and S ;@?A? were estimated at five locations between

each adjacent pair of markers, using both GENEHUNTER and SIMPLE with

5,000 iterations. As can be seen from the plots in figure 2, the estimated standard-
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ized scores produced by SIMPLE were quite close to the true scores produced by

GENEHUNTER.

Power Study

To illustrate the potential benefit to multipoint linkage analysis by processing all

pedigree members of a large pedigree, we performed a simulation study. We used

the S:%;03=<0> statistic to analyze the full pedigree shown in figure 3 with SIMPLE and

then with GENEHUNTER, which needed to discard some members of the pedi-

gree. The pedigree had 37 members, 11 of whom were founders and 5 members

had missing marker and disease data. The ascertainment criteria was that at least

one sib in each of the seven sibships in the last generation had to be affected.

??

?

??

Figure 3: Pedigree structure for the power study. The individuals marked with ‘?’ have
no marker nor disease data.

We used 6 markers with equally frequent alleles for each marker. The markers

were spaced 15 cM apart. We simulated the marker and disease data under three

disease models. In all three cases, the disease data was simulated at a locus in the

middle of the marker map at 37.5 cM. In model I, the penetrances for genotypes

aa, Aa and AA were 0, .9 and .95 with a disease allele frequency P(A) �utn&\v . In

model II, the penetrances were .05, .4 and .6 with a disease allele frequency .05.

In model III the penetrances were .05, .5 and .7 with a disease allele frequency of

.3.
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Model I Model II Model III
level SIMPLE GH SIMPLE GH SIMPLE GH

.01 44 40 38 26 21 19
.001 26 24 23 12 11 7

.0001 15 10 15 5 5 3
.00001 8 3 10 3 2 1

Table 2: Power Estimates for a Single Pedigree NOTE- Power was defined as the
percentage of pedigrees that exceeded given thresholds. The thresholds used for asymp-
totic significance levels of .01, .001, .0001 and .00001 were 2.33, 3.09, 3.72 and 4.27,
respectively.

Five hundred pedigrees were simulated under all three models. GENEHUNTER

had to drop between 14 (38 %) to 20 (54%) members in order to process the pedi-

grees. To estimate power, we calculated the proportion of pedigrees that had max-

imum scores exceeding given thresholds. Four thresholds levels were entertained:

2.33; 3.09; 3.72 and 4.27, as suggested by Kruglyak et al. (1996). These thresh-

olds correspond to asymptotic significance levels .01, .001, .0001 and .00001,

respectively. The results are summarized in table 2.

From the initially simulated pedigrees, we re-sampled, with replacement, 500

data sets of size w , with w ranging from 2 to 50 pedigrees for each of the three

models. We estimated powers by the proportion of data sets with standardized

scores that exceeded the threshold values. The results for the three models using

threshold 3.09 are shown in figure 4. We plotted the proportions for both SIM-

PLE and GENEHUNTER as points and included a curve that was calculated by a

spline smoother [Hastie and Tibshirani, 1990]. We see that under all three models,

SIMPLE yields higher powers than GENEHUNTER.

For models I and II, we calculated the minimal sample sizes needed, based on

the spline smooth curve (only one of the curves is shown in figure 4; the remaining
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Figure 4: Power curves for SIMPLE (solid line and ‘ x ’) and GENEHUNTER (dashed
line and ‘+’) based on a threshold of 3.09 for all three genetic models.

Model I Model II
power level SIMPLE GH SIMPLE GH
50% .01 2 2 2 5
50% .001 4 5 5 11
50% .0001 6 7 8 17
50% .00001 8 10 11 24
65% .01 3 4 4 8
65% .001 6 6 7 15
65% .0001 8 10 11 23
65% .00001 11 13 13 29
80% .01 5 6 6 12
80% .001 7 10 11 21
80% .0001 11 14 14 29
80% .00001 14 17 18 37

Table 3: Sample Size Estimates for Models I & II NOTE- For nominal significance
levels of .01, .001, .0001 and .00001, we report the minimal sample size necessary (based
on a spline fit) to achieve 50%, 65% and 80% power. The corresponding thresholds are
2.33, 3.09, 3.72 and 4.27, respectively.

Skrivanek et al.



Sequential Imputation and Linkage Analysis 19

plots are available from our web site), to reach 50%, 65% and 80% power for each

of the threshold levels: 2.33; 3.09; 3.72 and 4.27. The results are summarized in

table 3. Since the power was much weaker for model III we reported the results for

powers 40%, 50% and 65% at thresholds 2.33 and 3.09 for this model. The results

are summarized in table 4. For model I, SIMPLE performed slightly better than

GENEHUNTER. However, for model II, SIMPLE only requires approximately

half as many pedigrees as GENEHUNTER for the powers considered. In model

III, GENEHUNTER needs approximately 50% more pedigrees than SIMPLE to

achieve the same power. In all three models, the reduction in the number of pedi-

grees necessary to achieve the given powers using SIMPLE grows as the desired

power increases and as the threshold becomes more stringent.

power level SIMPLE GH
40% .01 11 18
40% .001 28 42
50% .01 17 26
50% .001 36 *
65% .01 26 36
65% .001 48 *

Table 4: Sample Size Estimates for Model III NOTE- For nominal significance
levels of .01 and .001, we report the minimal sample size necessary (based on a spline fit)
to achieve 40%, 50% and 65% power. The corresponding thresholds are 2.33 and 3.09,
respectively. The cases marked by ‘*’ indicate that the required sample size is greater than
50.

Type I error

We studied the type I error rates for a data set of 15 pedigrees, which was cho-

sen to reflect a realistic situation. To estimate type I error, we simulated marker

genotypes for 10,000 pedigrees using the same pedigree structure and missing
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Nominal Empirical
level SIMPLE GH
.01 .008 .005
.001 .0005 .003
.0001 0 .002
.00001 0 0

Table 5: Type I Error Rates. NOTE- For nominal levels of .01, .001, .0001 and .00001,
we report the estimated type I error rates for a sample of 15 pedigrees. The corresponding
thresholds are 2.33, 3.09, 3.72 and 4.27, respectively.

data pattern used in the power study (figure 4), fixing the last generation as all

affected. From these 10,000 simulated pedigrees we re-sampled 2,000 data sets

of size 15 pedigrees with replacement. We then calculated the proportion of data

sets with standardized scores exceeding each of four thresholds to estimate the

type I error rates. The results for both SIMPLE and GENEHUNTER are shown

in table 5. GENEHUNTER dropped 17 (46%) members in each of the pedigrees

simulated. The estimated type I error rates were close to the nominal significance

levels.

Discussion

Linkage analysis is an important tool in localizing disease loci. When analyzing

complex traits in humans, it is desirable to process many loci and use all informa-

tive members in a given pedigree. We present a Monte Carlo method to do non-

parametric multipoint linkage analysis for large pedigrees: sequential imputation.

This method can handle either more loci or larger pedigrees than the conventional

exact calculation methods: peeling and HMM. We note that while sequential im-

putation and peeling can both handle large pedigrees, sequential imputation can

handle more loci.
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One advantage of this method over the HMM is that it can process larger pedi-

grees which can lead to an increase in power. We demonstrated the potential gain

in power in our simulation study using S:%;@3=<s> and three genetic models, although

the magnitude of power gains varied from model to model. Substantial power

gains are observed under models II and III, while the gains under model I are

minimal. The different levels of power gains in the three models are due to the

differences in the amount of IBD information carried by the affected individuals

dropped. We note that using MCMC methods would yield comparable results as

these methods can process the same data as sequential imputation. However, we

would expect sequential imputation to be more efficient than MCMC for pedigrees

that are not too complex, such as the pedigrees studied.

We would expect the gains in power to be even greater with S ;V?A? due to the na-

ture of the statistic. Unlike S:%;@3y<0> , S ;@?r? gives increasing scores to the larger number

of affected pedigree members sharing an allele IBD. Since GENEHUNTER often

discards affected members, we would expect this to adversely affect the power

to a greater degree with S ;@?r? than with S:%;@3y<0> . One drawback of using S ;V?A? , how-

ever, is the computational intensity of its current implementation. Markianos et

al. (2001b) have addressed this issue and proposed a method to reduce the com-

putational burden.

Another advantage of sequential imputation over the HMM method is that it

can incorporate genetic interference in its calculations. Currently, in addition to

Haldane’s no interference model, SIMPLE can calculate linkage statistics using

the chi-square model [Foss et al., 1993; Zhao et al., 1995], a recombination model

that is suitable for modeling crossover interference in humans [Lin and Speed,

1996].
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In the algorithm described in this paper, we decomposed the data into the infor-

mation that we have at the " loci and sequentially imputed the ordered-genotypes

locus by locus. We note that other decompositions are possible. For instance, one

could decompose the data into sets of loci. This would involve a multilocus peel

per iteration, which obviously increases the computational cost. The advantage is

that it should decrease the Monte Carlo variability and hence require less iterations

to reach the same accuracy. Furthermore, the order of the sequential imputation

does not have to be the physical order of the loci. In fact, the simulation vari-

ability should decrease by processing the more informative loci first. SIMPLE,

by default, uses the number of alleles as a measure of informativeness and sorts

the loci accordingly. The user may override this default and provide his/her own

process order.

Electronic-Database Information

The URL for the software and the supplementary materials:

http://www.stat.ohio-state.edu/ z statgen/SOFTWARE/SIMPLE
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