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ABSTRACT

Motivation: In order to recapitulate tumor progression pathways using CpG island hy-

permethylation data, a novel clustering algorithm called heritable clustering was developed.

This new approach should be capable of creating a tumor progression model by utilizing data

from tumor tissues diagnosed at different stages. These samples act as surrogates for natural

tumor progression in breast cancer and ideally should allow the algorithm to uncover distinct

epigenotype and phenotype that describe the molecular events underlying this process.

Results: Using this heritable clustering algorithm to analyze CpG island methylation data

obtained from 50 primary breast cancers, we built several tumor progression trees in an

attempt to recapitulate the pathways of breast tumor progression. One of these pathways was

selected for detailed annotation and interpretation. Our results indicate that the proposed

heritable clustering algorithm can provide an effective tool using methylation profiles and

clinical variables to stratify tumor subtypes and stages.

Supplementary Information: The program implementing the method (Matlab codes)

can be accessed at http://www.stat.ohio-state.edu/∼statgen/Pathway.html

Contact: shili@stat.ohio-state.edu.
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1 Introduction

Recapitulating pathways of breast tumor progression by tracing its molecular lesions is nec-

essary for understanding the disease and for the establishment of novel drug targets and

therapies. The implementation of this concept by utilizing DNA methylation profiles are

even more enticing in that DNA methylation is heritable and stable. A methylation enzyme

(DNMT1) present in our cells ensures that any changes in methylation status is maintained

and pass on to the next generation. This implies that methylation events responsible for

silencing critical tumor suppressor genes that leads to tumorigenesis are captured in the

DNA epigenetic code of a tumor. As DNA is more stable than RNA, researchers can retro-

spectively perform methylation analysis on samples collected at earlier times which tend to

have more complete survival and patient clinicopathological information.

DNA methylation occurs at the 5’ carbon of cytosine. It is noted that normally unmethy-

lated CpG island (a stretch of DNA with higher than predicted amount of CG dinucleotides)

located in the promoter region of cancer cells undergoes dense hypermethylation during tu-

mor progression. The number of hypermethylated genes tends to increase with the malignant

potential of the tumor. Methylation associated silencing of tumor suppressor genes can re-

sult in cells with a growth advantage, and clonal expansion of these proliferating cells bear

specific epigenetic signatures reflecting different types or stages of various tumors. With

state-of-the-art microarray technologies, it is now possible to obtain the methylation signa-

ture of multiple genes simultaneously and to classify tumors based on their global patterns of

DNA methylation. This type of research provides an unprecedented opportunity to improve

our understanding of the overall molecular mechanisms leading to the development of cancer

(Alizadeh et al. 2000; Welsh et al. 2001; Yan et al. 2001). The microarray technique used to

generate the data analyzed in this paper was described by Yan et al. (2001) and Chen et al.

(2003). In this study, we set out to test the hypothesis that solid tumor development and

progression are characterized by the progressive accumulation of epigenetic events. We have,

therefore, utilized multiple hypermethylated loci to cluster and reconstruct the epigenetic

history germane to tumorigenesis.
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To recapitulate epigenetic progression using hypermethylation data, several challenging

issues arise. First it is difficult to collect tumor tissues from the same patient at different

stages. Instead, tumor tissues from different patients at different stages of progression with

distinct phenotypes are studied. The second issue is the inapplicability of existing clustering

algorithms to meet the need of our progression model. To deal with these, we develop a

novel method called heritable clustering approach that has the ability to identify clusters

and organize them into a tree to recapitulate tumor progression pathways.

The paper is presented in five sections. In section 2 we describe the concept of tumor

progression pathways and their recapitulation. Some related clustering approaches are also

briefly discussed. Section 3 shows in detail the heritable clustering approach and algorithm,

including the NodeDiscovery and PathwayDiscovery procedures. The application of the al-

gorithm to a breast cancer dataset is shown in section 4 followed by discussion on other

possible applications in section 5.

2 Concepts

2.1 Tumor progression pathways

Tumor progression pathways are constructed based on the following properties:

• Most CpG islands are unmethylated in normal cells.

• CpG island hypermethylation is heritable in tumor cells.

• Multiple methylated loci are progressively accumulated during tumorigenesis.

Based on these properties, tumor cells could have unique epigenetic signatures (with conse-

quent unique gene expression signatures) that are associated with specific cancer subtypes

(phenotypic information). To represent possible tumor progression pathways, it is suitable

to use directed acyclic graphs (DAGs) or tree diagrams (Cormen et al. 2001) due to the

hierarchical nature of pathways.
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2.2 Tumor progression recapitulation

The concept of tumor progression recapitulation is similar to a well-known biological evo-

lution methodology–phylogenetics (e.g., see Eldridge and Cracraft (1980) and Brooks and

McLennan (1991) for a phylogenetic process). They all consider the following matters:

• Construct the biological history based on assumptions, hypotheses, and available events.

• Utilize DAGs in the explanation of hypotheses.

• Include the temporal factor in terms of chronological order in the hypotheses.

More specifically, tumor progression recapitulation seeks to construct patterns and rela-

tionships among hypermethylated genes that are progressively accumulated during tumori-

genesis. Similar to phylogenetic approaches, the data collected for the discovery of tumor

progression do not have temporal information from the same individuals. That is we do not

have tissues from the same patients at different stages of tumor progression over time. An ac-

ceptable approach of this type of progression model can be represented by using the available

phenotypes from different tumors at different stages obtained from different patients.

Although the phylogenetic approach can be suitably adapted to tumor progression mod-

els, there are more requirements for tumor progression recapitulation. These include

• the characteristics of each branch of the tree; hence the phenotypes of progeny nodes

are hypothesized to be more aggressive than the parents; and

• that the hypermethylated loci acquired at each node are inherited by the progeny

cell(s) such that the hypermethylated loci progressively accumulated, and the parents’

hypermethylated loci are subsets of their progeny’s.

Therefore there exist two challenges in clustering tumors in the nodes of our tumor

progression trees as follows:

1. Number of clusters is unknown.
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2. Each cluster should make “biological sense”.

These challenges impede us from adopting any published clustering algorithms without

major modifications. A sampling of these algorithms is described in the following.

2.3 Related clustering approaches

Datta and Datta (2003) have compared and validated six statistical clustering algorithms

applied to microarray gene expression data. The techniques they tested include hierarchical

clustering with correlation and with partial least squares, K-Means clustering, divisive clus-

tering (Theodoridis and Koutroumbas, 1998), fuzzy logic based clustering (Klir and Yuan,

1995), and model-based clustering (Yueng et al. 2001). Datta and Datta concluded that

there exist some dependencies between the clustering results and the methods used, i.e., the

clustering results are not concordant among the tested methods. In addition to this discrep-

ancy in outcomes, clustering methods such as hierarchical clustering, K-Means clustering,

and self-organizing maps (Kohonen, 1998) also require the user to predefine the number of

clusters best describing the data set. This requirement also applies to clustering methods

based on cost function optimization where the number of clusters is fixed.

A recent approach called adaptive quality-based clustering (Smet et al. 2001) was pro-

posed to cluster gene expression data without knowing the predefined parameters, such as

the number of clusters and data distribution. Another gene expression clustering approach

called diametrical clustering (Dhillion et al. 2003), which can give “biologically meaningful”

results, presented an interesting aspect of anti-correlated gene clustering. It clusters samples

that share similar functions but are expressed differently.

3 Methods

Our proposed heritable clustering algorithm consists of two procedures: NodeDiscovery and

PathwayDiscovery. NodeDiscovery is used to cluster tumor samples into a set of nodes.

PathwayDiscovery is subsequently used to build a pathway tree from the set of nodes un-
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covered by NodeDiscovery. These two procedures use three criteria: similarity, node centers

and scores, and heritability, which will be described in turn in the following subsection.

3.1 Criteria

3.1.1 Similarity measures for epigenotypes and phenotypes

Data generated by methylation array are binary in nature (henceforth described as epigeno-

type; 1: hypermethylated; 0: unmethylated) and progression patterns among the clusters

are integral to the inheritance property of our model. Under these constraints, we choose to

design our algorithm based on the concept of ε-similarity (Yoon et al. 2001), which defines

distance and similarity measures suitable for our analysis. Specifically, the Hamming dis-

tance (Baeza-Yates and Ribeiro-Neto, 1999) defines the distance between two binary vectors

of equal length as the number of elements that have different bits. This distance measure

is adopted for describing the distance between the epigenotypes of two tumor samples (vec-

tors). Let Xtg be the epigenotype status for tumor t at locus g, t = 1, · · · , T , g = 1, · · · , G.

The epigenotype distance between two tumor samples ti and tj is defined as

dg(i, j) =

G
∑

g=1

(Xtig − Xtjg)
2.

Denote by mindg and maxdg the minimum and maximum of dg(i, j) over all pairs of tumor

samples (ti, tj). A rescaled (to be between 0 and 1) epigenotype distance is

sdg(i, j) =
dg(i, j) − mindg

maxdg − mindg
.

For clinical data, we assume that each tumor phenotype is a discrete ordinal, or can

be ordered sensibly. Let Xtp be the value for tumor t at phenotype p, t = 1, · · · , T and

p = 1, · · · , P . Analogous to the definition of epigenotype distance, the phenotype distance

between two tumors ti and tj is defined as

dp(i, j) =

P
∑

p=1

(Xtip − Xtjp)
2.
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Using mindp and maxdp to denote the minimum and maximum of dp(i, j) over all (ti, tj),

we define the rescaled phenotype distance as

sdp(i, j) =
dp(i, j) − mindp

maxdp − mindp
.

Finally, the similarity measure between two tumors ti and tj is defined as

S(ti, tj) = 1 − (w · sdp(i, j) + (1 − w)sdg(i, j)),

where 0 6 w 6 1 is a weight parameter to balance the contributions from epigenotype

and phenotype similarities. Two vectors, ti and tj, are said to be ε-similar if and only if

S(ti, tj) > ε, where 0 6 ε 6 1 represents the level of similarity. If two vectors are sufficiently

similar, they will be clustered into the same group. The selection of an appropriate ε depends

on the desired degree of similarity within a cluster. The lower the ε value, the less similarity

(i.e. more variation) within each cluster is allowed. To balance the contributions from

epigenotypes and phenotypes, and to guarantee a reasonable level of similarities among

tumor samples within each cluster, we suggest considering the parameters w and ε in the

following ranges: 0.2 6 w 6 0.8 and 0.5 6 ε 6 1.

3.1.2 Epigenotype and phenotype node centers and scores

The PathwayDiscovery procedure steps through a series of processes to grow pathway trees.

It makes use of the concepts of node centers and scores, both epigenotypic and phenotypic,

defined on each cluster. The epigenotype center of a cluster can be calculated by taking the

majority of each marker among tumor vectors. Let Vkg denote the g-th marker vector over

tumors in cluster k, and P (Vkg) be the number of 1’s in Vkg, then

GCkg =







1, if P (Vkg) ≥ card{Vkg}/2;

0, otherwise;

where card{Vkg} is the cardinality, or length, of the vector Vkg. The epigenotype score, or

degree, of the node can then be defined based on the calculated node center as follows:

GSk = number of 1’s in the node center vector {GCkg, g = 1, · · · , G}.
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From the above definition, we can interpret the epigenotype score of a node as measuring

the extend of methylation of the tumors within the cluster.

In building a pathway tree, we also use the concepts of phenotype centers and scores to

capture the clinical progression in tumorigenesis. The center of a phenotype in a cluster

is taken to be the weighted average of the phenotype values of the samples in the cluster

rounded to the nearest integer. Let np be the number of categories for phenotype p and cki

be the count of category si in cluster k, i = 1, · · · , np. Then the center of phenotype p in

cluster k is

PCkp =

⌊∑np

i=1 ckisi
∑np

i=1 cki

+ 0.5

⌋

,

where b c is the floor of the value being bracketed. Its rescaled (0 - 1) value is

SPCkp =
PCkp − mint(Xtp)

maxt(Xtp) − mint(Xtp)
.

The phenotype score for cluster k is then calculated as

PSk =
1

P

P
∑

p=1

SPCkp.

This score can be interpreted as measuring the phenotypic (clinical) degree of the tumors in

the cluster, with a larger score being indicative of more advanced tumors.

3.1.3 Heritability

One more concept is needed for building a heritable tree, which is heritability of a child node

Cj from its parent node Ci in terms of the epigenotypic node centers. This is defined in

terms of the epigenotype scores and the number of commonly methylated loci. Specifically,

using com(Ci, Cj) to denote the number of loci with common 1’s in their epigenotypic node

center vectors {GCig, g = 1, · · · , G} and {GCjg, g = 1, · · · , G}. If GSi 6 GSj, we define

heritability of Cj from Ci as:

H(Ci, Cj) =
com(Ci, Cj)

GSi

.
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The value of H(Ci, Cj), which is between 0 and 1, is the degree of heritability. Strict

inheritance is defined when H = 1. Under this condition, all hypermethylated loci in a

parent node is inherited by its progeny nodes.

3.2 Heritable clustering

Our proposed heritable clustering algorithm maintains a level of heritability from parental

clusters to progeny clusters. The process of building the tumor progression pathways is to

group tumor vectors into nodes (clusters) using the NodeDiscovery procedure first. Then the

PathwayDiscovery procedure is employed to build links among these nodes.

3.2.1 NodeDiscovery–clustering samples

The NodeDiscovery procedure for clustering tumor vectors consists of the following steps:

1. Begin with two vectors {ti, tj} that are the least similar. If this similarity is greater

than ε, assign all tumor vectors into one cluster and stop. Otherwise let C1 = {ti} and

C2 = {tj} and go to the next step.

2. Suppose there exist K clusters C1, · · · , CK. Let nk be the number of tumors in Ck

and tki be the i-th tumor vector in Ck, k = 1, · · · , K, i = 1, · · · , nk. Let t be a tumor

sample that has not been assigned to any of the clusters yet. Compute the similarity

score between t and each of the existing cluster: S(t, Ck) =
∑nk

i=1 S(t, tki)/nk. Let k∗ =

arg max{S(t, Ck), k = 1, · · · , K}. If min16i6nk∗
S(t, tk∗i) > ε, then Ck∗ = Ck∗ ∪ {t};

otherwise create a new cluster CK+1 = {t}.

3. Repeat step 2 until all tumor samples are assigned to clusters. Then calculate the node

centers and scores for both epigenotypes and phenotypes in each cluster.

This procedure returns the clusters C1, · · · , CK and their node centers and scores, which will

be used in building the tumor progression pathway in PathwayDiscovery.
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It remains to find the set of appropriate weights, w, and levels of similarity, ε. For each

combination of (w, ε) (e.g., 0.2 ≤ w ≤ 0.8, 0.5 ≤ ε ≤ 1) investigated, define a total similarity

score for the clustering outcome:

TS(w, ε) =

K(w,ε)
∑

k=1

ASk,

where ASk =
∑nk

i=1

∑nk

j=1 S(tki, tkj)/nk
2 is the average similarity in cluster k. Note that

this definition is applicable to clustering outcomes that contain clusters with a single tumor

sample. In general, if the number of clusters K is large, then TS is usually also large,

and consequently −2ln(TS) is small. This observation leads us to the proposal of a model

selection criterion following the formulation of Akaike’s Information Criterion (AIC) (Hastie

et al. 2001). Specifically, we seek (w, ε) that satisfies

(w, ε) = arg min f(w, ε)

= arg min{−2ln(TS) +
2K(w, ε)

P + G
; 0.2 ≤ w ≤ 0.8, 0.5 ≤ ε ≤ 1}

as well as its neighbors with near optimal values. This scheme offers multiple candidate

clustering sets for building progression trees, which increases the chances of finding a bio-

logically plausible tumorigenesis pathway. Note that the second term in the above model

selection formula is used to penalize over estimation of the number of clusters. It is designed

to balance the number of clusters and total similarity, as in AIC.

3.2.2 PathwayDiscovery–Building progression tree

The PathwayDiscovery procedure for building tumor progression tree consists of the following

steps:

1. Sort nodes first by their phenotypic scores followed by their epigenotypic scores for

ties, both in ascending order. Assume that the ordered nodes are C(1), · · · , C(K), then

set C(1) as the current root node.

2. Suppose C(1), · · · , C(k−1) have been used to build the tree. Consider the next node C(k).

Let Ci denote a current terminal node (a node without any progeny) that satisfies (a)
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H(Ci, C(k)) ≥ h (preset level of heritability, say, h = 1 for strict heritability) and (b)

for each phenotype p, PC(Cip) 6 PC(C(k)p). If such a node can be uniquely identified,

then C(k) is added as its progeny. If there are m (> 1) candidates satisfying both the

conditions (a) and (b), we sort them according to their epigenotype scores such that

GS(Ci1) 6 GS(Ci2) 6 · · · 6 GS(Cim). Then C(k) is added as a progeny of Cim.

3. If no current terminal nodes can be a parent of C(k) as none of them satisfy (a) and (b)

in step 2, then consider the previous generation of nodes successively until a parental

node is found. If a parent has not been identified up to the current root node, then

add C(k) as its sibling node, and create a new (pseudo) root node.

4. Go back to step 2 until all the nodes are connected to the tree.

4 Results

Table 1 and Figure 1 present the clustering results from breast cancer methylation data

using our heritable clustering algorithm. The resulting pathways are represented pictori-

ally by progression trees, which explain accumulation of methylated loci. The phenotypic

characteristics of each node in the pathway are shown in the corresponding plots.

4.1 Data preparation

Methylation analyses were performed on 50 breast carcinomas from unrelated patients. For

each tumor, we studied 10 genes for their methylation status (0, unmethylated; 1, hypemethy-

lated). Since gene BRCA2 is not methylated in any tumors, it is excluded from the final

data analysis and model building. The remaining 9 genes used for pathway recapitulation

are: GPC3, RASSF1A, WT1, uPA, HOXA5, p16, 3OST3B, BRCA1, and DAPK1. There

are also five phenotype measurements for each tumor. They are: age (1, age > 65; 2, age

< 65), ER/PR (1, +/+; 2, +/- or -/+; 3, -/-), histology (1, well-differentiated, WD; 2,

moderately-differentiated, MD; 3, poorly-differentiated, PD), clinical stage (1, 2, 3, or 4),
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and metastasis status (0, M0; 1, M1). The data is organized into a two-dimensional ma-

trix with each row representing one tumor (or patient) and each column representing either

phenotype ordinal values (five columns) or gene methylation status (nine columns).

4.2 Pathway recapitulation

For our dataset, we first used the NodeDiscovery procedure with w = 0.2, 0.3, · · · , 0.8 and

ε = 0.5, 0.6, · · · , 1 to find the appropriate w and ε values. We arranged the resulting values of

the objective function f(w, ε) in ascending order. Table 1 shows the top five w and ε values

of the clustering results from NodeDiscovery and the corresponding numbers of clusters and

the values of the objective function.

In Figure 1, we present the tree built using PathwayDiscovery from the clustering out-

come that optimized the selection criterion (first row of Table 1). The red spots in the figure

correspond to hypermethylated loci. The gene name of each locus is given in the correspond-

ing cell of the 3× 3 matrix arranged in the top-right corner of the figure. The number below

each node plot is the number of tumors in the cluster. The data above each node plot are

the phenotype centers (arranged in the same order as that described in the data preparation

subsection) and score for that node. Finally, the tree built adheres to strict heritability.

4.3 Interpretation

The progression tree presented in Figure 1 depicts the optimal outcome from NodeDiscov-

ery using the methylation profiles of 9 promoter CpG islands frequently hypermethylated in

primary breast tumors. In this particular progression tree, the proposed clustering method

selects for node centers which not only preserve strict heritability of promoter methylation

but also uncover pathways with perfect progression in the 5 selected breast tumor pheno-

types. This is an important criterion in that promoter hypermethylation in this set of tumor

associated and/or tumor suppressor genes may lead to tumorigenesis or tumor progression

whereas hypermethylation of bystander CpG islands may have little consequences. As such,

we propose that tumors with more aggressive phenotypes should exhibit higher level of
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methylation in this gene panel than the less aggressive tumors. The first phenotype studied

is the age of diagnosis. It is known that a young age of tumor onset generally correlates with

a more aggressive disease. Often DNA methylation plays less of a role in tumorigenesis in this

subset. As there are 26 patients older than 65 and 24 patients younger than 65, a cutoff of

65 will definitely segregate pre-menopausal patients (thus patients with the more aggressive

cancer) from the post-menopausal patients. Hormone receptor status or ER/PR status is

another phenotype that distinguishes early, less aggressive tumors from late, more aggressive

tumors. Therefore, tumors expressing a measurable level of ER and PR (an assigned value

of 1 or 2) should be clustered to the early nodes of the tree while tumors without ER and

PR expression should appear closer to the terminal nodes. Another tumor phenotype that

should follow stringent progression is tumor metastasis. A tumor that has shed a portion of

its cells to distant sites such as lymph nodes represents a late stage, aggressive tumor. As

such, tumors with a metastasis value of 1 should not appear in a node before tumors with

no metastasis (metastasis value = 0). Tumor phenotypes relating to histology and tumor

staging should progress similarly from a low grade or stage to a high grade or stage in the

progression tree. This particular computation outcome clusters nodal relationships that are

completely in sync with our proposed model of strict heritability and perfect progression.

Our previous analysis on this data set showed that a large number of tumors have con-

current hypermethylation in the promoter of GPC3 and RASSF1A. The progression tree

presented in Figure 1 shows that promoter methylation of these two genes are early event

in tumorigenesis with more tumors showing hypermethylation in RASSF1A than GPC3. In

the later nodes, all of the tumors exhibit hypermethylation in these two gene promoters.

Also, this algorithm singles out a subset of patients with a young age of disease onset and

very aggressive tumors (no hormone receptor expression, high-grade and late stage tumors

with metastatic disease) to a separate branch with no subsequent nodal development. This

cluster (circled) has three methylated loci (an intermediate level of methylation) yet with

advanced disease. The formation of this distinct branch corroborates our earlier discussions

on breast tumors from young patients whereby DNA methylation might play a less important
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role in their disease progression. The preliminary application of this clustering algorithm has

proven to be effective in identifying pathways with unambiguous epigenetic and phenotypic

progression.

5 Discussion

The resulting trees from our tumor progression pathway recapitulation procedure depend on

a number of factors including: 1) distance between tumors (epigenotype and phenotype);

2) balance between epigenotype and phenotype data; 3) similarities within clusters; and 4)

heritability between nodes. The best results are those that reflect the underlying biologi-

cal processes that lead to the formation of the primary tumors. Our heritable clustering

method is designed based on the assumption that epigenetic changes are stably passed from

progenitor to progeny cells (Jones and Baylin, 2002). Depending on what stage each tu-

mor is diagnosed, some might have accumulated more epigenetic alternations than others

as they have progressed more. In this paper, we capitalize on these epigenetic hallmarks to

recapitulate breast tumor progression pathways utilizing CpG island hypermethylation data.

For this purpose, the heritable clustering method has been established as described in

section 3. We have proposed a novel criterion to balance epigenotype and phenotype dis-

tances between tumors by combining the two using a weighting scheme. This combination

is also used to choose appropriate similarities for grouping different tumors into one cluster.

In building the tumor progression pathway, the assumption is based on the heritable na-

ture of CpG island hypermethylation passing from the parent node to its progeny nodes as

tumor progresses. Therefore, the progeny nodes of tumor cells accumulate more hyperme-

thylated gene promoters as they are further along in the progression pathway. The progeny

tumor cells are likely to be more aggressive and have more proliferative advantages than the

parental cells. We hence built a tree model by linking the nodes or clusters based on strict

heritability and their phenotype scores.

In practice, it is unlikely to recreate a linear temporal clinicopathological history of a
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cancer developing over time in a single patient as it is unethical to remove part of the tumor

and allows a portion to grow for research purposes. To overcome this challenge common to all

human genetic and epigenetic studies, we propose to view CpG island hypermethylation as

”molecular relics” whereby one can trace how much each tumor has progressed by examining

the overall methylation profile as such information is stably transmitted from parent cells to

their progeny. The heritable clustering method developed in this paper is designed to uncover

the different paths breast tumors can progress. From the results presented in section 4, this

approach will select meaningful progression models and will assist in the interpretation of

pathways having biological and clinical significance. To our knowledge, this method utilizes

a novel and distinctive idea in clustering that is not found in the current literature.

This method can be extended to analyze other data types whereby the numerical value

of the data can be continuous rather than discrete (i.e., 0 and 1). For instance, the method

is well suited for modeling methylation data expressed as intensity ratios from two-color

microarray experiment or transcript factor binding enrichment on gene promoters from

ChIP-on-chip experiment. We do not anticipate the need to change the distance formula

in NodeDiscovery procedure when applying to microarray data that are continuous in na-

ture. However, user needs to determine the representative node centers used to cluster their

data set in the process of generating the pathway trees. The extension of this method to

cluster and to recapitulate progression pathway of other biological events is currently under

investigation in our group.
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Table 1: The top five clustering outcomes (ranked by the values of the objective function f)

and the corresponding w and ε values from the NodeDiscovery procedure.

Rank w ε #Cluster(K) Total Similarity (TS) f(w, ε)

1 0.8 0.9 14 13.53 -3.21

2 0.5 0.8 14 13.32 -3.18

3 0.4 0.8 14 13.28 -3.17

4 0.3 0.8 14 13.08 -3.14

5 0.2 0.7 13 12.06 -3.12
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Pseudo root

[2]

2 3 2 4 1 (.75)

[5]

1 1 1 2 0 (.07)

[1]

1 1 1 1 0 (0)

[15]

1 1 2 1 0 (.10)

[1]

2 1 1 2 0 (.27)

[1]

1 2 2 2 0 (.27)

[3]

1 2 2 2 0 (.27)

[5]

2 1 2 2 0 (.37)

[5]

2 1  2 1 0 (.30)

[2]

1 1 2 3 0 (.23)

[6]

2 2 2 2 0 (.47)

[1]

2 3 2 2 1 (.62)

[2]

2 3 3 3 0 (.63)

[1]

GPC3   RASSF1A  WT1

µ PA    HOXA5      p16

3OST3B  BRCA1     DAPK1

2 3 3 4 1 (.85)
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FIGURE LEGENDS

Figure 1: Progression pathway with w = 0.8 and ε = 0.9. The methylation data analyzed

here are from 50 primary breast cancers. A set of 9 gene promoter CpG islands is investigated.

The gene list is shown in the upper-right corner in a 3 × 3 format corresponding to the

3 × 3 blocks in each node of the progression tree. Red boxes indicate methylation in that

specific gene promoter whereas green boxes indicate no detectable methylation. There are

five phenotype measurements for each tumor. They are: age (1, age > 65; 2, age < 65),

ER/PR (1, +/+; 2, +/- or -/+; 3, -/-), histology (1, well-differentiated, WD; 2, moderately-

differentiated, MD; 3, poorly-differentiated, PD), clinical stage (1, 2, 3, or 4), and metastasis

status (0, M0; 1, M1). The phenotype center for each tumor phenotype is listed above each

node in the order described above. The phenotype score of each node is presented within

the bracket. The number below each node is the number of tumors within the cluster. The

tree presented here conforms to strict heritability and ideal tumor phenotype progression.
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