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Human geneticists working on systems for which it is possible to make a strong case for a set of candidate genes face the
problem of whether it is necessary to consider the variation in those genes as phased haplotypes, or whether the one-SNP-
at-a-time approach might perform as well. There are three reasons why the phased haplotype route should be an
improvement. First, the protein products of the candidate genes occur in polypeptide chains whose folding and other
properties may depend on particular combinations of amino acids. Second, population genetic principles show us that
variation in populations is inherently structured into haplotypes. Third, the statistical power of association tests with
phased data is likely to be improved because of the reduction in dimension. However, in reality it takes a great deal of extra
work to obtain valid haplotype phase information, and inferred phase information may simply compound the errors. In
addition, if the causal connection between SNPs and a phenotype is truly driven by just a single SNP, then the haplotype-
based approach may perform worse than the one-SNP-at-a-time approach. Here we examine some of the factors that affect
haplotype patterns in genes, how haplotypes may be inferred, and how haplotypes have been useful in the context of
testing association between candidate genes and complex traits. Genet. Epidemiol. & 2004 Wiley-Liss, Inc.
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WHY STUDY HAPLOTYPES?

The primary focus of this review is on the
problem of identifying DNA sequence variation
that is segregating in a population and has a
causal connection to variation in risk of complex
disease. One could perform tests of this associa-
tion without consideration of the fact that the
SNPs are not independent of one another, but the
determination of critical values must be made in
the context of linkage disequilibrium among
SNPs. Fortunately, permutation tests accomplish
this reasonably well [Churchill and Doerge, 1994;
Doerge and Churchill, 1996]. For each SNP, the
distribution of phenotypes would be compared
among the 2 or 3 genotypes observed in the
sample. The statistical inference would need to
take into account the multiplicity of tests being
performed, and the biological interpretation
would need to account for the fact that some
SNPs are in linkage disequilibrium with one
another. But the basic idea of testing association
with individual SNPs is often where the analysis
begins. In reality, the DNA sequence variation that

is found in a population is the result of the past
transmission of that variation through the popula-
tion, and this historical past produces a structure
to the SNP variation that can be of considerable
value in trying to solve the primary goal of
finding variants associated with disease risk. The
three primary reasons for considering the haplo-
type organization of variation discussed here are:
1) that the unit of biological function, the protein-
coding gene, produces proteins whose sequences
correspond to maternal and paternal haplotypes,
2) that variation in a population is in fact
structured into haplotypes that are likely to be
transmitted as a unit, and 3) that regardless of the
population genetic reasons, haplotypes serve to
reduce the dimensionality of the problem of
testing association, and so they may increase the
power of those tests. Let’s look at these three ideas
in more detail.

HAPLOTYPES DEFINE FUNCTIONAL UNITS
OF GENES

For each protein-coding gene, regardless of the
number of heterozygous amino-acid sites an
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individual has, he or she will only produce at
most two polypeptide chains, one corresponding
to the maternal and one to the paternal haplo-
type (ignoring for now the complexities of
alternative splicing, RNA editing, posttransla-
tional modification, etc.). The point is that the
folding kinetics, stability, or any other physical
properties of the protein may depend on inter-
actions between pairs or higher-order combina-
tions of amino-acid sites. If these interactions are
important, then haplotypes are of direct biologi-
cal relevance. Relatively few cases of directly
showing functional interaction exist, but there are
convincing ways to demonstrate such interac-
tions from population-level data. ApoE is one
example of a protein whose function is influ-
enced by a pair of polymorphic amino acids. The
major alleles E2, E3, and E4 differ at two amino-
acid residues, but the fourth haplotype is missing
from the population [Fullerton et al., 2000]. The
two-site haplotypes that do exist have functional
differences that are best described by the E2, E3,
and E4 allelic classes rather than by the indivi-
dual SNPs in the gene. Similarly, many trans-
membrane xenobiotic transporters exhibit
structural interactions between two or more
residues [Leabman et al., 2003].

GENETIC VARIATION IN POPULATIONS IS
INTRINSICALLY ORGANIZED INTO
HAPLOTYPES

Each new mutation arises on a particular
haplotype background. The haplotype bearing
the novel mutation may rise to high frequency
by random genetic drift, and it may subse-
quently be cleaved into segments by recombina-
tion. The combination of mutation, drift,
selection, migration/population mixing, and
recombination results in genetic variation that
has a strong segmentwise haplotype structure to
it. Population geneticists have a good handle on
the determinants of linkage disequilibrium, but
predictions about haplotypes go beyond infer-
ences of pairwise LD. Of course, any factor that
erodes pairwise LD will also break up haplotype
structuring, but the two features are not
inseparable. Strong haplotype structure arises
from multiple sites having shared ancestry, and
this is best imagined by considering the topol-
ogy of the gene genealogy. We will return to
this, but the point here is that haplotypes arise
as an intrinsic attribute of population genetic
variation.

HAPLOTYPES REDUCE THE DIMENSION OF
ASSOCIATION TESTS, AND MAY GAIN
STATISTICAL POWER

This is easiest to see by example. Suppose a
gene has 8 SNPs, and you want to test for
associations in a way that allows any and all of
these SNPs to interact in their effects on disease
causation. You may start by testing each of the 8
SNPs, asking whether the incidence of cases and
controls (or measures of a physiological risk
factor) differs among the 3 genotypes for each
SNP. You may then test all pairs of SNPs, and for
each pair you construct a 3� 3 table of genotypes
{(AABB, AABb, Aabb), (AaBB, AaBb, Aabb), (aaBB,
aaBb, aabb)}, and within each cell of this table you
assemble the observed phenotypic distribution (or
counts of cases and controls). Any of a number of
standard statistical tests would let you ask
whether the two SNPs impact the phenotype
and whether they do so independent of one
another or in a synergistic manner. Note that the
true genotypic complexity is greater than this,
because the test just described pools the cis- and
trans-phase doubly heterozygous genotypes into
the AaBb class. In other words, it ignores the
linkage phase. One can systematically and ex-
haustively test the null hypothesis of equal
phenotypic means for all partitions of the geno-
type classes, and this approach, known as the
combinatorial partitioning method [Nelson et al.,
2001], has an appeal for its exhaustiveness. This
procedure can be continued: with three SNPs
there are now 27 genotypic classes, and so on. By
the time you consider 8 SNPs, there are 38 possible
genotype classes, and the test has a very large
number of degrees of freedom.

By the time one considers 4 or more SNPs at a
time, most of the genotypic classes will have an
observed count of zero, and so testing the
significance of interactions is difficult. Rather
than thinking of this problem as a contingency
table, it makes more sense to realize that the SNPs
do not arise independently, but rather there is an
intrinsic dependency of SNPs one with another
due to the population history of their entry into
the population. By explicitly considering the
haplotype structure of the SNPs, and how they
arose in the population through a genealogical
process (a gene tree), one no longer needs to
consider this astronomical number of potential
genotypes. In this way, using haplotype informa-
tion may collapse the dimensionality of the
statistical test, and thereby gain statistical power
over tests that do not reduce dimensions first
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[Templeton et al., 1987]. In addition, Morris and
Kaplan [2002] showed that haplotype-based tests
can have greater power than unphased tests of
association in the case when the disease locus has
multiple disease-causing alleles.

WHAT ARE HAPLOTYPE BLOCKS
AND HOW DO THEY ARISE?

Haplotype blocks are not a topic from classical
population genetics theory, although the notion
that only a small subset of all possible arrange-
ments of segregating sites will be seen in a
population sample was thoroughly understood
in both the sampling theory of Ewens [1972] and
in the analysis of the infinite-sites model [Watter-
son, 1975]. What was not clearly established in the
classical theory was the discreteness of the
boundaries of the regions of low haplotype
diversity. Part of the reason that it is difficult to
trace the theoretical predictions about haplotype
blocks is that the idea arose from empirical
observations, and then the term acquired more
than one operational definition based on these
observations.

EMPIRICAL OBSERVATIONS

Population genetics theory is concerned with
the mathematical understanding of variation in a
population, whereas the empiricist starts with
material that may not reflect the mathematics of
perfect ascertainment. In the case of SNPs, the
disconnect comes from the need to consider SNPs
for which there is any hope of testing association,
and the increased uncertainty that rare SNPs are
valid. This made human geneticists want to
consider only SNPs above some frequency thresh-
old. When this was done, several studies in rapid
succession identified a strong pattern of variation
that soon received the name ‘‘haplotype blocks’’
[Daly et al., 2001; Gabriel et al., 2002; Dawson et
al., 2002; Phillips et al., 2003; Schwartz et al., 2003].
Phased genotype data were obtained in several
ways, perhaps most unambiguously by making
human-rodent hybrid cells and collecting hybrid
cells with only one human chromosome 21 [Patil
et al., 2001]. By genotyping in cell lines with only a
single human chromosome, these investigators
were able to determine the linkage phase across
the entirety of chromosome 21. The existence of
the blocky pattern was soon seen to be a boon to
mapping by linkage disequilibrium, because it
meant that common genomic variation was

organized in blocks where information about
any SNP in the block applied, in a statistical
correlation sense, to the whole block. The haplo-
type block idea has also stimulated theoretical
work on the inference of haplotype phase,
identification of haplotype blocks, identifying a
smaller set of tagSNPs to serve as a proxy to the
SNP variation of a whole haplotype block, and
testing association between a phenotype and
haplotypes.

NEUTRAL COALESCENT AND HAPLOTYPE
BLOCKS

A powerful approach to modeling DNA
sequence variation within a population sample is
the neutral coalescent [Kingman, 1980; Hudson,
1990; Nordborg and Tavaré, 2002]. This theory
considers a collection of n alleles sampled today,
and asks how many ancestral copies there were in
previous generations. As one goes back in time,
there will be n ancestral lineages for a while, but at
some point, one copy of one of those alleles gave
rise to two of the lineages observed today. This
event is called a coalescence, because when
looking backward in time, the n lineages de-
creased to n�1 lineages. The formal theory of the
neutral coalescent derives a simple formula for the
distribution of times back to these coalescence
events (it turns out to be an exponential distribu-
tion). The case of zero recombination produces a
perfectly bifurcating genealogy, and this allows an
elegant mathematical treatment of many attributes
of the relationships among haplotypes and sug-
gests an algorithm for highly efficient haplotype
inference [Bafna et al., 2003a,b]. When the gene
segment being considered has had recombination,
then a convenient way to represent the gene
genealogy is an ancestral recombination graph
(ARG) [Griffiths and Marjoram, 1997]. Thinking
forward in time, a recombination event occurs
when two different alleles undergo an exchange
event resulting in a single allele that has bits from
the two original alleles. Reverse the flow of time
and you have the single current allele splitting
into the two parental alleles. With the nonrecom-
bining neutral coalescent, the tree shows a mono-
tonic decline in the number of lineages. With
recombination, the number of distinct lineages can
increase in the short term as one goes back in time.
But the increase due to recombinations occurs
only as a linear process, and there is a strong
exponential decay in the number of lineages due
to coalescence (drift), and so eventually, even with
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high rates of recombination, there will be a single
ancestral sequence [Wiuf and Hein, 1997]. Several
features of ancestral recombination graphs and
their representation of the neutral coalescent
in the face of recombination are explained in
Figure 1.

HAPLOTYPE STRUCTURE OF CANDIDATE
GENES

Before we consider the theoretical predictions of
the blockiness of the haplotype structure of
human variation, it is useful to first consider the
haplotype patterns of candidate genes. Prior to
considering the haplotype block structure of long
chromosomal segments, several studies had ex-
amined by resequencing the variation within
candidate genes, including the beta globin studies
from John Todd’s laboratory [Harding et al., 1997],
lipoprotein lipase [Clark et al., 1998], ZFX

[Jaruzelska et al., 1999], and apolipoprotein E
[Fullerton et al., 2000]. The usefulness of having
complete resequencing data became very clear to
the whole community, and the National Institutes
of Health supported massive resequencing of
candidate genes [e.g., Crawford et al., 2004],
making the data for dense SNP discovery in these
candidate genes as well as inferred haplotype
phasing widely available.

In the private sector, Genaissance Pharmaceu-
ticals was especially active in this arena, resequen-
cing and cataloging SNPs and haplotype structure
in 3,950 genes [Stephens et al., 2001a; Salisbury et
al., 2003]. These data showed striking variation
among genes in the degree to which haplotypes
could be placed in a gene genealogy. Intragenic
recombination makes this task difficult to im-
possible, depending on the rate of recombination
and whether it is tightly clustered into hotspots.
The beta globin recombination hotspot shuffled
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Fig. 1. Ancestral recombination graph is compact representation of ancestral history of segment of a chromosome. At bottom is present-

day sample of four haplotypes, each having 5 segregating sites. As one traverses upward, time flows backwards. First event is that

second haplotype comes to a node labeled ‘‘r.’’ This is a recombination event between two chromosomes drawn along two branches that

proceed up from this node. Asterisks indicate mutation events, changing an open (ancestral) square to a solid one. The second event is a
joining of two rightmost haplotypes into a single haplotype. This is a coalescence event. There are two additional coalescence events,

labeled ‘‘c.’’ This ancestral recombination graph altogether has one recombination event and three coalescence events, and seven

mutations. Mutations at sites 1 and 3 occur twice on this ARG, in violation of infinite-sites model.
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the variation flanking it, but on one side of this
hotspot, there was reasonably good cladistic
structure, allowing a variety of coalescence-based
estimates to be made on a subset of the data
[Harding et al., 1997]. LPL, on the other hand,
appeared to have a more diffuse recombination
hotspot, making it difficult to construct any sort of
genealogy for the entire gene [Clark et al., 1998],
but again, segments of the gene showed good
cladistic structure [Templeton et al., 2000]. ApoE
seemed to have a more uniformly low level of
intragenic recombination, because the major allelic
classes of E2, E3, and E4 were monophyletic in an
inferred genealogy, and only a few sites seemed to
be responsible for homoplasy due to recurrent
mutation [Fullerton et al., 2000]. These different
genealogical properties make an enormous differ-
ence to the kinds of haplotype-based tests of
association that may be applied.

WHAT ARE THE FACTORS THAT
DETERMINE BLOCKINESS OF

GENETIC VARIATION?

The primary features of an ancestral recombina-
tion graph that produces runs of segregating sites
with two major haplotypes are long, uninter-
rupted branches that occur early in the genealogy.
By being long, they allow more than one mutation
to occur on the same haplotype background, to
produce multiple differences. Interruptions in
branches may be either coalescence events, mean-
ing that some haplotypes branch off accumulating
fewer differences, or recombination events, which
also clearly can break up sets of associated
differences. So the question of what determines
blockiness of haplotypes can be put in a popula-
tion setting by asking what attributes of a
population might make long, deep, uninterrupted
branches in an ancestral recombination graph.

Clearly the less recombination, the fewer the
interruptions to the ARG because there are fewer
recombination ‘‘bubbles.’’ But the genomes of
organisms clearly do recombine, and classical
methods produce genetic maps that have a
coherent relationship to the physical genome.
But the ARG topology is affected not only by the
total amount of recombination, but also by the
degree of clustering of that recombination. If
recombination were isolated to narrow regions of
very high recombination (hotspots), separated by
regions of lower recombination, this would result
in longer, uninterrupted branches on the ARGs

that cover the inter-hotspot regions. In genomic
regions that span a hotspot, the ARG would be
very complex, with many recombination bubbles.
The end result is an expectation that hotspots
ought to delineate the termini of haplotype blocks.

HOTSPOTS AND BLOCKS

The empirical observation of recombination
hotspots in the human genome began with an
inference based on a sudden drop in linkage
disequilibrium in the beta globin region [Chakra-
varti et al., 1984]. The challenge in inferring
recombination hotspots in humans is that one
needs very large samples to be able to see the rare
events of recombination within small regions.
Polymerase chain reaction allowed amplification
of DNA from single sperm, and so clever
experimental designs that allow inference of rare
recombinants have identified a number of regions
in the human genome, with recombination hot-
spots having up to 1,000 times the recombination
rate of the flanking regions [Huang et al., 1995;
Jeffreys et al., 2000]. Even more striking, the
boundaries of inferred haplotype blocks in the
HLA region correspond beautifully to the loca-
tions of recombination hotspots inferred from
sperm typing [Jeffreys et al., 2001]. These studies,
and the statistical inference that hotspots appear
to be widespread [McVean et al., 2004], strongly
motivate a broader empirical assessment of the
tendency of human recombination to occur in
hotspots. Recent comparisons of human hotspots
with the pattern of LD in chimpanzees showed
that the chimpanzee does not share all human
recombination hotspots [Wall et al., 2003]. The
transient nature of recombination hotspots makes
their underlying mechanism all the more myster-
ious, since human and chimp are identical at
around 99% of nucleotide sites. Acquisition of a
hotspot would result in very rapid erosion of local
linkage disequilibrium, and loss of a hotspot
would result in somewhat slower acquisition of
LD through random drift. Compared to the time
scale of human-chimp divergence, both of these
processes would occur very rapidly, so apart from
influences of natural selection, the pattern of LD
would be expected to match the local recombina-
tion relatively well.

YIN-YANG HAPLOTYPE PAIRS

It is important to note that observation of
haplotype blocks does not imply that the ends of
the blocks must be recombination hotspots. In fact,

Role of Haplotypes in Candidate Gene Studies 325



even the neutral coalescent with perfectly homo-
geneous recombination will generate what ap-
pears to the eye to be a decidedly blocky pattern of
haplotypes [Subrahmanyan et al., 2001]. Another
commonly observed feature of haplotypes is the
high frequency of haplotype pairs that differ in
long runs of SNPs [Labuda et al., 2000]. Such runs
can be as long as 20 SNPs or more, and the pattern
appears to be exceptionally unlikely to be caused
by any neutral process. Because these haplotype
pairs differ at every single SNP in the run, they
were dubbed ‘‘yin-yang’’ haplotypes [Zhang et al.,
2003]. Such haplotypes arise as a consequence of
gene genealogy, either through chance or popula-
tion subdivision, having deep lineages that failed
to recombine. Zietkiewicz et al. [2003] showed a
striking example of ancient haplotype lineages in
dystrophin that appear to predate the expansion
out of Africa. Despite the striking appearance of
the yin-yang haplotype pattern, simulations show
that even a panmictic population may produce
such high complementarity haplotype pairs by a
purely neutral coalescent (Fig. 2).

VARIATION IN RECOMBINATION RATE

The inverse relationship between local rates of
recombination and pairwise linkage disequili-
brium has been clear since Ohta and Kimura
[1971] solved the mutation-drift-recombination
balance. They showed that random genetic drift
results in changes in gametic frequencies to inflate
the variance in LD, which is in turn eroded by
recombination. These two forces come to a steady
state, such that E(r2)¼1/(4Nc+1), where r2 here is a
metric for LD, N is the effective population size,
and c is the recombination rate. This expression

suggested that 4Nc was an appropriate measure of
the population recombination rate, since it is what
determines linkage disequilibrium in a finite
population. Hudson [2001] provided a means for
estimation of 4Nc, and after correcting for the
ascertainment bias of the SNP Consortium SNP
genotype data, Clark et al. [2003] showed that
there is enormous variation across the genome in
the estimate of 4Nc. Clark et al. [2003] concluded
that these estimates confound local recombination
rates and local effective population size (which
can vary across the genome due to other factors,
such as natural selection). More recently, estimates
of 4Nc were shown to correlate reasonably well
with the local recombination rate inferred from
pedigree studies [Ptak et al., 2004; McVean et al.,
2004]. This remarkable finding suggests that the
impact of natural selection and other demographic
factors on the effective population size must be
sufficiently localized that one can average across
larger genomic regions and get reasonable esti-
mates of recombination rates (on average) from
patterns of LD among nearby SNPs. For practical
purposes, the wide variation in local rates of
recombination (and linkage disequilibrium) im-
plies that the density of SNPs needed for equal
power in association testing must be quite vari-
able, with closely spaced SNPs in regions of high
recombination and greater spacing in regions of
low recombination.

NATURAL SELECTION, MATING SYSTEM,
AND INBREEDING

Large haplotype blocks imply an ancestral
history with constraints that go beyond simply
low recombination. As mentioned above, large

Fig. 2. Example of exceptionally strong pattern of completely mismatching runs of SNPs recently called ‘‘yin-yang’’ haplotypes [Zhang

et al., 2004]. Despite striking pattern, these runs are often not statistically overrepresented in data. They arise as a result of coalescent

genealogy having such long branches at deepest node (top two branches of Fig. 1). This example is from DCP1 gene, encoding
angiotensin-converting enzyme [Rieder et al., 1999]. Each row represents an individual, and each column is a nonsingleton SNP. The

darkest gray shade (blue) depicts homozygotes for common allele; lightest gray shade (yellow), homozygotes for rare allele; medium

gray shade (red), heterozygotes. [Color figure can be viewed in the journal’s online edition.]
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blocks arise from long, uninterrupted branches on
the ancestral recombination graph, and few things
do this more dramatically than demographic
factors. In particular, if a population was sub-
divided for a very long time with zero migration,
and then migration brought the two subpopula-
tions back together, the lineages within these two
populations could not undergo exchanges for the
duration of the separation, and over time those
long, uninterrupted branches will recede deeper
into the gene genealogy. The role of natural
selection in affecting linkage disequilibrium has
been appreciated for many years [Lewontin, 1964].
Natural selection within a subdivided population
can accelerate the process of differentiating
lineages, and again would increase the chances
for yin-yang patterns.

Any departure from random mating may also
have a dramatic impact on the pattern and extent
of linkage disequilibrium. In plants that mostly
self-pollinate, the genome is mostly homozygous,
and recombination events between identical
(homozygous) stretches of a chromosome do not
shuffle the allelic configurations within haplo-
types. The end result is a very low effective level
of recombination and extensive linkage disequili-
brium [Nordborg et al., 2002]. In a similar fashion,
some human populations engage in as many as
50% first-cousin marriages [Vardi-Saliternik et al.,
2002], and this level of inbreeding is sufficient to
dramatically increase LD and haplotype block
lengths. Other factors, such as gene conversion
and recurrent mutation, also have an impact on
haplotype and LD patterns that we will not delve
into further [Pritchard and Przeworkski, 2001].

INFERENCE OF HAPLOTYPE PHASE:
WHY IS IT RELEVANT?

Most methods for obtaining SNP genotype data
do so by testing each SNP in a way that is
independent of the genotypes at other SNPs. This
means that even for SNPs that are only a short
distance apart in a gene, the primary data will not
indicate how the pair of alleles is associated in a
doubly heterozygous individual. Such data are
often called ‘‘unphased’’ genotypes because we
know the allelic state of each SNP, but we do not
know the haplotype phasing. Unphased data can
be used in testing association, but for all the
reasons given above, it may be possible that the
tests would be improved if the data were instead
phased. To the extent that there is linkage

disequilibrium in the population, one has some
information about phase, and one might be able to
do even better by explicitly tackling the statistical
inference of the haplotype phase. The earliest
statistical inference of the frequency of the four
different haplotypes was done for the case of two
biallelic loci in a single panmictic population [Hill,
1974]. If one assumes that the frequencies of
genotypes made up by these haplotypes are in
Hardy-Weinberg proportions, then the haplotype
frequencies can be estimated from the genotype
counts. For example, the frequency of the AB
haplotype ought to be the square root of the
frequency of the AABB genotype. If the genotype
frequencies of the sample depart from Hardy-
Weinberg, then a composite measure of linkage
disequilibrium provides the least biased estimator
[Weir and Cockerham, 1989; Schaid, 2004].

Many situations arise in genetics in which not
all aspects of the data are visible to the researcher,
presenting a problem of solving some aspect of
the missing data. Examples include estimation of
linkage disequilibrium from unphased data (since
one does not have the phase of the double
heterozygotes, one cannot simply count the
haploid gametic types). Another example is the
genotype frequencies underlying the ABO blood
groups, since the recessive alleles make the A and
B blood groups ambiguous with respect to
genotype. Problems of these sorts have been
solved with the expectation-maximization (EM)
algorithm, a robust and highly efficient approach.
Excoffier and Slatkin [1995] and Long et al. [1995]
applied the EM algorithm to estimate the fre-
quency of haplotypes in a population when
unphased genotype counts are the input data. A
limitation of this approach is that for association
testing, what one really wants are the haplotype
phases of individuals in the study. A nice solution
to this problem comes from the realization that
one has considerable prior information about
phase from the genotype frequencies, and all one
wants to do is infer one attribute of the data that is
missing. This suggests that Bayesian methods
might be the most powerful, and a couple of
implementations of this approach are now widely
used [Stephens et al., 2001b; Niu et al., 2002;
another method for phase interference includes
Niu, 2004].

The problem of haplotype phase inference is
embedded in the population genetic history of
haplotypes, and Clark [1990] tried to underscore
this aspect by calculating and simulating the
infinite-sites model to assess the efficacy of the
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inference of haplotype phases, using a sort of
parsimony approach. The basic idea was to first
identify homozygotes and single-site heterozy-
gotes, since these provide unambiguous haplo-
types that exist in the population. Then there
follows a chain of ‘‘subtractions,’’ where each
unphased genotype is queried as to whether any
of the phase-known haplotypes could be in the
unphased genotype. Actual applications of this
algorithm retain all such valid ‘‘subtractions’’ and
trace a branching set of admissible solutions. As
simple as this algorithm was, with the right
combination of sample size and relatively high
LD, it can perform surprisingly well. Chung and
Gusfield [2003] extended the approach to prove
formally that unrecombined data, which fall on a
perfectly bifurcating tree, can be readily identi-
fied, and they provided a rigorous algorithm for
exhaustively testing haplotype phases. There
remains considerable interest in improving meth-
ods for haplotype phase inference from unphased
genotype data, particularly in the context of
genome-wide scans where optimal numerical
procedures will be crucial [Eskin et al., 2003;
Greenspan and Geiger, 2003; Kimmel and
Shamier, 2004].

In some circumstances, it is possible to empiri-
cally test the phase of pairs (or more) of SNPs. One
approach is to design two allele-specific primers
for each SNP and to amplify the fragment between
a pair of SNPs with the four possible primer pairs.
This allele-specific PCR is a bit finicky, which is a
problem because failure to amplify could be due
to a simple PCR failure, or it could be because the
DNA strand with that particular pair of nucleo-
tides in adjacent SNPs is not present in the
individual. An effective approach has been to
combine phase inference with allele-specific PCR
[Harding et al., 1997; Clark et al., 1998; Fullerton et
al., 2000]. In some ways, the most appealing
approach to haplotype phasing is to obtain
sequence or SNP information from clones large
enough to directly obtain phasing of multiple
SNPs. This can be done on a whole-chromosome
basis by constructing human-rodent hybrid cell
lines bearing only a single human chromosome.
By performing simple tests (like microsatellites)
on a series of such cell lines, it is possible to
identify cell lines specifically with the maternal
chromosome copy and others with the paternal
chromosome copy. By using the method of
sequencing by hybridization, Patil et al. [2001]
obtained phased SNP information across the
entire human chromosome 21.

ASSOCIATION TESTING: WITH OR WITHOUT
PHASE?

For the same reason that statistical methods
for phasing genotype data work reasonably well,
they may be unnecessary. That is, the unphased
genotype data contain latent information about
the frequencies of phased multilocus genotypes,
so tests of association may not differ in power,
whether or not phase is explicitly estimated.
Simulations by several investigators now support
the idea that explicit phase inference is not a
necessary intermediate step [Kaplan and Morris,
2001; Lu et al., 2003; Morris et al., 2004]. In fact, for
SNPs that depart from Hardy-Weinberg equili-
brium, for whatever reason, the simplest like-
lihood ratio test for association, which assumes
Hardy-Weinberg equilibrium, is badly biased
[Schaid, 2004]. Fortunately, a composite measure
of association (linkage disequilibrium) does not
suffer from this bias, and has been widely
available for estimation of LD in the absence of
phased data [Weir and Cockerham, 1989]. For
further discussion of the role of haplotype phasing
in association testing, see Clayton et al. [2004].

HOWARE HAPLOTYPES BEING
USED FOR FINDING GENES
UNDERLYING COMPLEX

DISEASES?

TAG SNPS

One of the primary reasons cited for the
International HapMap project is to gather infor-
mation on the linkage disequilibrium structure of
variation in human populations to be able to select
an optimal (most informative) subset of SNPs for
genotyping in association studies. This subset of
SNPs is generally called ‘‘tag SNPs,’’ and already
a welter of methods for selecting them is available
[Abecasis et al., 2001; Johnson et al., 2001; Zhang
et al., 2002; Bafna et al., 2003a,b; Halldórsson et al.,
2004; Weale et al., 2003; Carlson et al., 2004; see
also Stram, 2004]. In principle, it makes good
sense that the linkage disequilibrium structure
could be used to select tag SNPs optimally, and
generally the methods demonstrate that they do
perform better than a random subset of SNPs.
Many methods make explicit use of haplotype
blocks, but it is clear that one can select tag
SNPs in order to optimize power for association
tests without having to first identify haplotype
blocks [Bafna et al., 2003a,b; Weale et al., 2003;
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Halldórsson et al., 2004]. There is sufficient
linkage disequilibrium in humans that some sort
of tag SNP approach is likely to result in a gain in
efficiency. For candidate gene studies, one might
think that identification of tag SNPs is not
relevant, but in fact investigators working on
candidate genes face the same problem: there
are often too many SNPs to be able to afford
genotyping all of them. Even for candidate genes,
there is a need to select some subset of SNPs
to stay under budget, while extracting the
most information possible about associations
with disease.

However one goes about selecting a subset of all
SNPs for genotyping, there must inevitably be an
erosion in the power of tests of association
compared to having data on all SNPs. The big
question is, how much power is lost? Cardon and
Abecasis [2003] outlined the four parameters that
affect an odds ratio test of association with a
single SNP: 1) the odds ratio of true disease-
causing SNP, 2) linkage disequilibrium between
markers and the causal SNP, 3) the marker allele
frequency, and 4) the disease allele frequency.
Ideally one can select SNPs with high LD with any
other unobserved SNP, and a range of allele
frequencies to match the allele frequency of the
disease alleles. Several investigators have started
to assess the loss in power that occurs when
various tag SNP approaches are followed, and in
general the picture is fairly discouraging [Wall
and Pritchard, 2003; Chapman et al., 2003; Huang
et al., 2003; Fullerton et al., 2004; Zhai et al., 2004].
Zhang et al. [2004] produced the most compelling
argument that selecting a subset of SNPs that
retain haplotype diversity can nevertheless result
in considerable loss in power of association tests,
especially if risk-enhancing SNPs are low in
frequency. The primary reason is that much of
the effort of the HapMap project (and tag SNP
selection criteria) emphasizes the use of common
SNPs, and the statistical association between
common SNPs and rare disease-causing alleles is
weaker than that for SNPs whose frequencies
more closely match the disease allele frequency
[Cardon and Abecasis, 2003].

CLADISTIC OR GENEALOGY-BASED
APPROACHES

Another application of haplotypes of candidate
genes for testing association is to make explicit use
of the gene genealogy to organize the statistical
testing. This method was first articulated using

the example of the alcohol dehydrogenase gene in
Drosophila [Templeton et al., 1987], and it was
extended to human genes with much promise
[Haviland et al., 1995; Templeton et al., 2000;
Seltman et al., 2003]. The basic idea is to construct
a series of hierarchical hypothesis tests, contrast-
ing groups of haplotypes identified by their
position on the gene tree. In principle, one could
cut the tree in a series of locations, and for each
cut, test whether the resulting partitioning of
individuals has statistically different mean phe-
notypes. In fact, rather than partitioning indivi-
duals, these cuts in the gene tree result in
subdivisions of alleles, and individuals have a
pair of alleles. But it should be clear that any
cleaving of the gene tree into two classes results in
two alleles, which may in turn result in three
genotypes. The idea of cladistic analysis works by
systematically cutting the tree in all admissible
branches [Templeton et al., 1987]. As appealing as
these methods are, there remains an issue of how
one obtained the gene tree in the first place.
Typically this is done by inference based on some
model, or it may be done in a model-free way
based on a principle such as parsimony [Bandelt
et al., 1995]. Whatever the means to obtain the
gene tree, there is some uncertainty in the process
(especially when there is intragenic recombina-
tion), and often hundreds of trees would be
virtually equally likely under the data. So a
challenge is to adequately incorporate this tree
uncertainty into the hypothesis test, and to end
up with a test that is as powerful as nontree-
based methods that do not need to worry
about uncertainty in reconstructing a genealogy.
This problem is analogous to incorporating
uncertainty in haplotype phases into tests of
disease association.

HAPLOTYPES FOR INFERENCE OF
PAST EVOLUTIONARY HISTORY

Every disease-causing mutation arises on a
single chromosome and so starts its existence in
a population in association with SNP alleles on
that particular chromosome. Fisher [1954] was
interested in this problem, and developed a theory
of ‘‘junctions’’ to describe the size of the un-
recombined segment of the chromosome that
flanks such a mutation. The theory was extended
to the case of random mating populations by Stam
[1980] and to small and subdivided populations
by Chapman and Thompson [2003]. The idea that
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genetic material flanking a unique mutation
would remain identical by descent, until recombi-
nation shuffled it, was seized upon by the human
genetics community for finding genes associated
with rare Mendelian disorders, especially in
founder populations. By seeking a unique haplo-
type associated with cases, this approach was
successful in mapping and eventually identifying
genes for myotonic dystrophy [Imbert et al., 1993],
cystic fibrosis [Kerem et al., 1989], and other
diseases.

For monogenic disorders, it is possible to make
further inferences about the past population
dynamics of the allele through the study of
flanking haplotypes. The example of glucose-6-
phosphate dehydrogenase deficiency (G6PD)
illustrates this point well. G6PD takes the sugar
phosphate, G6P, and enters it into the pentose
phosphate shunt in order to produce reducing
potential in the form of NAPDH. Low-activity
G6PD alleles were shown to confer resistance to
malaria, and in fact the global distribution of
low-activity alleles of G6PD coincides with that
of falciparum malaria. Note that these alleles are
often called ‘‘deficiencies,’’ but in fact a G6PD
null is lethal in humans, and the G6PD ‘‘defi-
ciencies’’ have about 8% of normal activity. This
association with malaria suggests that natural
selection could have maintained G6PD deficien-
cies in the population, and that there might have
been a period of rapid spreading of the G6PD
deficiency allele. If selection did drag the G6PD
deficiency alleles in, then one expects there to be
greater gametic disequilibrium among the defi-
ciency than the nondeficiency alleles, and this is
exactly what is seen [Tishkoff et al., 2001;
Saunders et al., 2002; Sabeti et al., 2002; Verelli
et al., 2002]. Moreover, the span of the haplotypes
associated with the deficiency allele is much
greater than that of the nondeficiency allele, an
observation that is also consistent with strong
selection causing a spread in these alleles. A very
similar case is found in Thailand, where the
hemoglobin E variant is expanding in frequency
as a result of its conferral of resistance to
falciparum malaria, resulting in a strong pulse
of linkage disequilibrium and reduced haplotype
complexity around the mutation [Ohashi et al.,
2004].

For polygenic disorders, the utility of inference
of haplotypes and shared identity is less clear.
The biggest challenge to finding genes associated
with complex disorders is rare alleles and genetic
heterogeneity. If the alleles that cause inflated

risk have a frequency below around 1%, then our
ability to map them with relatively common
SNPs (whose frequency is 10% or greater) will be
quite poor. Some investigators argued that it is
likely that a large number of risk-elevating alleles
will in fact be rare as a consequence of natural
selection and recent rapid population growth
[Pritchard, 2001]. Others argued that human
population expansion and the fact that we have
already identified a few relatively high-frequency
risk-elevating alleles suggests that this success
may not be so uncommon [Reich et al., 2002]. In
any event, it is clear that the past evolutionary
history of the polymorphism has direct bearing
on the ease with which an association will be
detected.

Because indirect tests of association rely on
linkage disequilibrium, the same forces that
impact linkage disequilibrium will influence the
power of association tests. Past patterns of human
migration established remarkable clines in linkage
disequilibrium in the major histocompatibility
complex and elsewhere in our genome [Cavalli-
Sforza et al., 1994]. The bottleneck that seems to
have occurred as ancient humans emerged from
Africa to populate the rest of the planet resulted in
a remarkable inflation of linkage disequilibrium
out of Africa compared to within Africa [Reich et
al., 2001, 2002], and we are only beginning to
understand the magnitude of among-population
variability in LD [e.g., Chattopadhyay et al., 2003;
review in Weiss and Clark, 2002]. Population
subdivision and local inbreeding can also result in
dramatic increases in the size of regions that are
identical by descent, otherwise known as haplo-
type blocks [Chapman and Thompson, 2003].
There is a general tendency for the patterns of
LD among the most common SNPs to be shared
more strongly among populations than are the LD
patterns for more rare SNPs. This variability is a
mixed blessing, because it means that the in-
formation gathered from the HapMap project will
not be entirely universal, but on the other hand,
the variation in LD can help in assessing the
generality of associations and can improve map-
ping resolution. In the end, it is clear that nature
could be perverse and present us with patterns of
genetic variation for complex chronic diseases that
will completely evade the approaches that we are
bringing to bear on the problem. On the other
hand, it is highly unlikely that all undiscovered
contributions to complex disorders are so recalci-
trant, and we can find solace in the early successes
in finding the easier, ApoE-like genes first.
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