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By means of Parallel Coordinates pla- 
nar "graphs" of multivariate relations 
are obtained. Certain properties of the 
relationship correspond to the geometri- 
cal properties of its graph. On the plane 
a point +----. line duality with several 
interesting properties is induced. A new 
duality between bounded and unbounded 
convex sets and hstars (a generalization 
of hyperbolas) and between Convex 
Unions and Intersections is found. This 
motivates some efficient Convexity al- 
gorithms and other results in Compu- 
tational Geometry. There is also a sup- 
rising "cusp" *-- ~ "inflection point" 
duality. The narrative ends with a pre- 
view of the corresponding results in R N. 
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HE FASCINATION WITH "DIMENSIONALITY" 

surely predates Aristotle and Ptolemy 
who argued that space had only three 
dimensions. 
By the nineteenth century Riemann, Loba- 

chevsky and Gauss unshackled the imagination 
and with their work higher-dimensional 
geometries came into their own. The preceptual 
experience of higher-dimensional spaces is limit- 
ed by our 3-dimensional habitation. Still it has 
been unsatisfying to explore properties of such 
geometries only in the abstract. From a different 
direction there is the motivation to obtain 
geometrical models (i.e. like graphs for the case 
of 2 or 3 variables) of multivariate relationships 
arising in important applications. Consequently, 
various methods for "visualizing" higher-di- 
mensional spaces (I-2, 3, 5, 7]) have come about 
aided especially by recent developments in 
Computer Graphics. 
Here a method is proposed for obtaining 
geometrical models (in fact planar diagrams) of 
relationships in N-variables which: 
1. applies for any positive integer N and can be 
extended to spaces with dimensions N O and N,, 
2. is the same for any N, 
3. has complexity of the representation in- 
creasing linearly with N and, 
4. gives rise to a number of efficient geometri- 
cal algorithms. 
This is accomplished by means of a mapping 
R ~ R  2 obtained via a system of Parallel Coor- 
dinates, for any positive integer N. In this paper 
the fundamentals of the Parallel Coordinates 
for the Euclidean plane, R 2, embedded in the 
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Projective Plane are derived, followed by a pre- 
view of some results for R N. 

The fundamental duality 

Points and lines in the plane 

Definition of parallel coordinates 

For  any positive integer N, a coordinate  system 
for Euclidean N-Dimens iona l  space R N is con- 
structed. On the plane with x y-Cartesian coor- 
dinates, and starting on the y-axis, N copies of 
the real line, labeled x l , x 2 ,  ..., xN, are placed 
equidistant  (one unit  apart) and perpendicular  
to the x-axis. They are the axes of the parallel 
coordinate system and all have the same posi- 
tive or ientat ion as the y-axis (see Fig. 1). A 
point  C with coordinates (cl, c 2 . . . .  ,cu) is re- 
presented by the polygonal  line whose N ver- 
tices are at ( i - l ,  ci) on the xi-axis for 
i=1 ,  . . . ,N.  In effect, a 1-1 correspondence be- 
tween points  in R N and planar  polygonal  lines 
with vertices on x~,x2 ,  . . . , x  N is established. 
Strictly speaking we consider the polygonal  line 
representing a point  as consisting not  only of 
the segments between the two adjacent axes but  
the whole lines containing the segments. The 
need for this will become clear as the narrative 
develops. A convex hypersurface in R N is repre- 
sented in parallel coordinates by the envelope 
of the family of polygonal  lines representing all 
points on the hypersurface (for an old but  
pleasing t rea tment  of the theory of envelopes 
see [19]). Later  we will need to extend the 
definition somewhat .  The  envelope, being a pla- 
nar  curve, is described in terms of the xy- 
coordinate  system. Other than a superficial re- 
semblace to nomography  (see [6]) the me thod  
seems to be new. Some other methods  of multi-  
variate data  representat ion are described in [3]. 
In order to: 
1. Present this material  in installments of 
manageable  size, 
2. Become accus tomed with this representat ion 
in a relatively simple and familiar setting and 
3. Contras t  this coordinate  system with the or- 
thogonal  coordinates,  
we first study the plane (i.e. R 2 embedded  in the 
Projective Plane) with parallel coordinates.  The 
results are surprisingly rich and interesting on 
their own merits. Also they form the basis for 
the study of R N with parallel coordinates which 
will be presented subsequently. 

Points are denoted by capital and lines by low- 
ercase letters respectively. Sets are denoted by 
two or more  caps, while a string of caps and 
lowercase letters denotes a figure (i.e. a col- 
lection of lines and points). In parallel coor- 
dinates, the corresponding symbols  are shown 
wit_h a bar superscript (i.e. I represents the line 
l, P represents the point  P etc.). Points  on the 
plane are represented by segments between the 
x 1 and x2-axis and, in fact, by the line contain- 
ing the segment. Consider  now the XlXz-plane 
with parallel as well as Cartesian coordinates as 
shown in Fig. 2 and the line: 

l: x 2 = m x l  +b, m< oo. (1) 

The points on l as represented in parallel coor- 
dinates form an infinite family of lines. When  m 
+ 1, any two of these lines interest at the point  

[: (1 1 b (2) -m' 12m," 
The distance between the parallel axes is one 
and the coordinates of l-are given with respect 
to the xy-Cartesian coordinates.  It is an easy 
applicat ion of the theory of envelopes to show 
that  1 is the envelope of the lines representing 
the points  on the line I. Remarkab ly  then, the 
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Fig. 2. In the plane parallel coordinates induce duality 
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line 1 is represented by the point [ in parallel 
coordinates.  The correspondence for vertical 
lines is 

l: x l  = c ~  ~ r :  (0, c). 

Correlation 

Lines with m =  1, as (2) suggests, do not  have a 
corresponding point  representat ion in the Eu- 
clidean plane. However,  considering xy  and 
x ix  2 as two copies of the Projective Plane (for 
an elementary development  of Projective Ge- 
ometry  see [8, 10] or I-1]), the line 

l: x 2 = x  1 + b  (3) 

corresponds to the ideal point -[ with tangent  
direction (i.e. slope) y/x=b.  Conversely, in the 
xlx2-project ive plane the ideal point with slope 
m is mapped  into the vertical line at x = ! / ( 1  
- m )  of the xy-project ive plane. Hence, we have 
arrived at a duality between points  and lines (or 
lines containing segments representing points) 
of the Projective Plane. This duali ty can be 
conveniently expressed with homogeneous  coor- 
dinates as a linear non-singular  t ransformat ion 
a - correlation - between the line coordinates 
Ira, - 1, _b] of I and the point  coordinates (1, b, 1 
- m )  of I. Specifically, the correlat ion 

CA: l~--->~ k(l-)= A Ill  

where [l] and if), the line and point  (homo- 
geneous) coordinates respectively, are taken as 
column vectors, k is a propor t ional i ty  constant  
and 

[! 1!1 [1~ A =  0 , A - l =  - 1  0 , 

- 1 0 1 

maps lines of the x txz-p lane  into points of the 
xy-plane. Dually, f rom ( P ) = ( a l ,  a2, 1) and [15] 
= [a 2 - a l ,  - 1, a l l  we obtain the correlat ion 

CB: P ~  ~/5, k[/5]=B-~(P) 

where (P), [/5] are point  and line coordinates 
respectively and 

B-1  ii1!] [i~ = 0 0 - , B =  0 , 

1 0 - 1  

maps points of the x lx2-plane into lines of the 
xy-plane.  Incidentally, inspection of the ma- 

trices shows that  the computa t ion  involved in 
going to and from parallel coordinates is fairly 
minimal.  

Parallel lines and the ideal line 

In Fig. 3 we see that  r i s  to the right of the x 2- 
parallel axis for 0 < m ( l ) < l ,  on the strip be- 
tween the axis for re( l )<0 and to the left of the 
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Fig. 3. The x-coordinate of fis determined from slope m 
of 1 

xl-axis when m( l )> l .  Horizontal  and vertical 
lines are represented by points  on the x2-axis 
and xl-axis respectively. So another  con- 
sequence of (2)is that  x(li)=x(i2)<=>l 1 is paral- 
lel to 12. This proper ty  enables us to "eyeball"  
points representing parallel lines. Let us denote  
by P~  the ideal point where all lines with slope 
m meet. Then, our  previous remark  is equiva- 
lent to P~  is a vertical line in the x y-plane at x 
= 1 / ( 1 - m )  as shown in Fig. 3. Al together  then, 
our  correlat ion maps the set of all lines with 
slope m onto the vertical line x = 1 / ( l - m )  of the 
xy-plane. Conversely, the set of lines with slope 
b in the xy-plane is mapped  onto  the line (3). 
Sets of or thogonal  lines can also be represented 
in parallel coordinates.  This is more  con- 
veniently done after some basic t ransformations 
are discussed. The collection of all ideal points 
of the XlX2-plane is called the ideal line and is 
denoted  here by loo. F r o m  the li__ne coordinates 
[0, 0, 1] of loo and C A we find (loo)=(0, 1, 0), an 
ideal point of the xy-plane,  while from the point 
coordinates of the ideal point  (P~) are (1, m, 0) 1 

1 Recall that if the homogeneous coordinates of a point P 
are ( P ) = ( a l , a 2 , a 3 )  , P is an ideal point.cs, a3=0.  Then 
a l /a  2 is the slope of the parallel lines sharing (i.e. 
"meeting" at) this ideal point 
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and C B we find [ P ~ ] = [ m - 1 ,  0, 1-1, the line 
coordinates of x = 1 / (1 -  m). Therefore, all verti- 
cal line_~s in the xy-plane "mee t"  at the ideal 
point  l~. Reversing_ the a rgument  we obtain 
that  the ideal line L ~~ of the xy-plane is mapped  
into the ideal point  P~ of the xlx2-plane,  
where all the lines with slope m =  1 "meet" .  

Segments, intersections and figures 

As shown in Fig. 4 for x l ( A ) < x  1 (B) the interval 
[ A , B ] c l  in parallel co_ordinat_es looks like a 
"fan" i.e. the two lines A and B intersecting at 
the point  i. Then,  P e [ A , B ] ~ x ~ ( P ) e I  I 
= E X1 (A), x1 ( B ) ]  and 1 ~ P. As well, the point  P 
= l  I c~l 2 in paral_lel coordinates in represented 
by the segment P, between the parallel axis, on 
the line joining the points  11 and 12. To empha-  
size the aspect of duali ty note that  the sub- 
stitution of the words point+-~line yields the 
correct result. Specifically, to obtain the inter- 
section proper ty  use: 

(Points] ( Line ] 
2 \L ines !  are on 1 \Point!" 

Interior  points  of convex polygons,  and in fact 
more  general sets, can be found in parallel 
coordinates by means of the observat ion shown 
in Fig. 5. Let  the lines li, i =  1, 2, and the verti- 
cal line v :xa=a  be gxven. The  segments /], 
where P~= v n l i ,  are found in the way shown in 
Fig. 4. Consequently,  a point  P between 12 and 

l t, with xl(P)=a,  is represented by the segment 
15 on 7 with x2(P1)<x2(P)<x2(P2). A figure aB 
is mapped  via the correlat ion to the figure aB, 
whose edges represent vertices of aB and con- 
versely. A connected figure is called a chain 2 
(i.e. a connected sequence of edges and vertices). 
The image of a (closed) polygon C P  is denoted 
by CP whose interior for the cases of interest 
will be characterized later. The  po lygons  
boundary  ~(CP) is a chain so its image ~(CP) 
is directly obtained via the correlation. In the 
ensuing, by xi(A), i=1 ,  2, we denote  the ith- 
coordinate  of the point  A, by re(l) the slope of a 
line l, and by A - whenever the distinction is 
not  impor tan t  - either the segment representing 
A or the whole line containing that  segment. 
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p 

Fig. 5. Point between two lines in parallel coordinates 
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(o) (u) 
Fig. 4a and b. Segments (a) and intersecting lines (b) 
in parallel coordinates 
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A model for the projective plane 

Here we describe a model  of the Projective 
Plane to which we will appeal on occasion to 
aid in unders tanding some propert ies of the 
parallel coordinate  rrepresentation.  In Fig. 6 the 
projective plane is mapped  stereographically 
onto a hemisphere and the disk capping it. The 
finite plane (consisting of " regular"  points) is 
mapped  onto  the surface of the hemisphere,  
while each ideal point  is mapped  into a diame- 
ter on the disk. In fact, the coordinate  system is 

2 Unless otherwise specified all chains considered here 
may have ideal points as vertices only if they are end- 
points of the chain 



R emp  ,r 

so set-up so that  the diameter 's  direction is the 
same as that  of the ideal point  it represents. 
The collection of all diameters  on the cap rep- 
resents the ideal line. The reader may  recog- 
nize this model  as a part icular  version of the 
sphere and crosscap classical model  of the pro- 
jective plane (in the spirit of those in [13] 
pp. 313-321). There are some advantages in 
looking at our  correlat ion in terms of two co- 
pies of this model  as shown in Fig. 7. A line in 
the x~x2-plane is mapped  onto  a great semi- 
circle and the diameter corresponding to the 
ideal point  of the line (i.e. the image of a line is 
a closed curve - consistent with our expectat ion 
for lines on the Projective Plane). Therefore, the 
images of all parallel lines "intersect"  in their 

Front View Top View 

C P 

Fig. 6. A Model for the Projective Plane 

X 
To ideal poinf p~o 

2//x 
X2 ---X ~ / ~ /  ~ 1 

Fig. 7. Parallel lines using the Projective Plane Model 
(PPM) 

c o m m o n  diameter  (i.e. their c o m m o n  ideal 
point). In turn, each such line is mapped  into a 
point  of the xy-plane and all those points are 
on a vertical line mapped  onto  a great semi- 
circle and a diameter  parallel to the y-axis. 
F r o m  our previous discussion and in terms of 
this model  loo is mapped  into the diameter  
parallel to the y-axis since this is the ideal point  
c o m m o n  to all P~.  Conversely, L ~176 the ideal 
line of the xy-plane is mapped  into the ideal 
point  P~  which is parallel to the line x 2 = x  ~ in 
the xlx2-plane.  So on the model  the image of 
L ~176 is the diameter  45 ~ (counter-clockwise) from 
the xl-axis. 

i Transformatiols 
Let us rotate cqunterclockwise a line I about  
one of its points  ~1. The corresponding path  of__l 
is along the lin~ containing the segment  A, 
since in any of ils rotated posit ions 1 still con- 
tains the point  4" Due to the counterclockwise 
direction of rotaltion the point  T moves in the 
direction of incireasing x (i.e. to the right). 
In the top part  ' o f  Fig. 8 a horizontal  line l 
is rota ted 180 ~ about  the origin O and the 
corresponding translat ion of the point  O along 
the x-axis is shown. Dually, a translation of a 
point  along a line in the x 1 x2-plane results in a 
rotation of a line a b o u t  a point  in the xy-plane 
as is illustrated in the lower par t  of Fig. 8. 

From 
Ideal 
Point 

X1 

To 
Ideal 
Point 

X2 

1"o 

X2 

t 
X =@5 IA1 A2 X W 

X1 X2 
Fig. 8. Duality: rotations*- --. translations 
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There are two more transformations that we 
would like to look at next s 
1. R~, Reflection about the line x =�89 In the x y- 
plane the reflection of the verUcal hne P,, about  
the line x =�89 is the line 151 as shown in Fig. 9. 

m 

- - 0 ( 3  

I 

I 

a T 
X1 

(3 

X2 

F i g .  9�9 R e f l e c t i o n  a b o u t  x = 1 / 2  

~m ~ Y 

( 3 - -  

~ J 

~o 

X- -  1 _ 

- r ' o  

- - 0 0  - - 0 0  P-m 

X 1 7, 2 

F i g .  10 .  C i r c l e  i n v e r s i o n  

1 X =  1 1 - ~  

~X 

Therefore, such a reflection finds the image of 
the lines with the reciprocal slope - i.e. R_~_(Pm) 

2. C~, Circle Inversion. Consider the tangent 
from-the point [0 =Pro n x-axis to the circle cen- 
tered at O=(1/2 ,0)  at the point l~ - Fig. 10. 
Since x ( [ 0 =  1/(1 +m), C~(/~,)=P ,,. 

3 I a m  i n d e b t e d  t o  M .  M o s t r e l  f o r  t h i s  n i c e  c o n t r i b u t i o n  

Orthogonal lines 

There is an invariance pertaining to orthogonal  
lines. With the composit ion 

R~_ C~ (fim)= C~ R~(P,.)= fi_L, 
m 

the image of the lines perpendicular to the orig- 
inal lines is found. Furth_ermore, the distances, 
a, b, of i s  and P_,, from O are 

1 - m  l + m  
a m _ b = _ . 

2(1 + m ) '  2(1 - m )  

respectively. Therefore, a b = l / 4  is the in- 
variance associated between two sets of mu- 
tually orthogonal lines. 

LP-Curves 

Intuitively speaking, the correlation maps a 
point-curve 7 into a line-curve, formed as the 
envelope of its tangents ~. The tangent at each 
point of ~ is the image - under the correlation - 
of the corresponding point of 7 and conversely. 

Definition�9 A set of points 7 is an LP-curve ~=> 7 
= { ( x l , x 2 ) ] x 2 = f ( x l )  } where x 1 is defined on 
an interval (finite or infinite) of the x~-axis, f is 
a continuous function of xl and for each 
P ~ 7 ~ a unique line I e supporting y at P. 

That  is, 7 is a curve with a unique supporting 
line at each one of its points. Clearly such a 
curve has a well-defined representation in paral- 
lel coordinates in the sense that if 7 is a line 
segment then ff is a point, else ~-is the envelope 
of the lines P where PeT.  So the correlation 
maps the point LP-curve 7 into the line LP- 
curve ~ and conversely. We will consider curves 
which are piecewise (i.e. they can be parti t ioned 
into a connected sequence - a chain - of) LP- 
curves. A point on such a curve where two 
distinct LP-curves are joined is also called 
a vertex of the curve. An LP-chain 
7 = 7t_ U 7z u . . .7 i  u 7i+ 1 ~ . . - ,  with ?i joined to ~i+ 1 
at V~ (i.e. V~=7~n7~+l), is mapped into 
7 = 71 u 7-2 u ~-~ u ~+ ~ u . . .  under  the correlation. 
At the vertex V~ there will be two supporting 
lines one for each of 7~ and yi+~. In short LP- 
chains are the most  general curves that have a 
unique parallel coordinate representation. 
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Let 7: x2=f(xl) be differentiable on an interval 
I of the x 1-axis. The tangent  to y at the point  
x o X o ( 1 , f ( 1 ) )  is the line 

1: x 2= f ' ( x ~  + x ~ o , o - x l f  (Xl). 

Therefore, for x l ~ I  , 9- is given parametrical ly 
(i.e. in terms of xl)  by: 

1 
x 

1 - f ' ( x , )  (4) 
f ( x O - x l f ' ( x O  

Y - 1 - - f ' ( x  1) 

dx 2 
For  a differentiable function f ( x l , x 2 ) = O , -  

dx  1 
=-F,,1/F:, 2. Hence via (4) the image 9- of an 
LP-curve  7, defined by F, is given (in terms of 
x 1 and X2) by: 

OF 

Ox z 
x -  

OF O F \  

(5) 
x I 0F  ? F  

y ~ - -  
/OF O F \  

Next  we show that  this representat ion of curves 
is well defined. 

L e m m a  1. The envelope of  a function x 2 = f  (x1) 
is unique on an interval I of  the x 1-axis where 
the function is differentiable. 

Proof. It two differentiable functions f l , f z  yield 
the same envelope on I then the first part  of (4) 
yields 

f l  (xl) = f :  (xl) + cl (*) 

for some constant  Cl, while the second part  of 
(4) provides the condi t ion 

f ,  - f 2  - x l ( f;  - f 2 )  + f ; f2  - f z f l  = O. 

U p o n  substituting, u = f l - f 2 ,  we obtain:  

. iI )=0, U--XtU'q'-f2~xfXl \f2 

u' f ~ - I  
~ f l  = f 2 (  1 + c O - c 2 x l .  (**) 

u f 2  - -X1 

F r o m  (,) and (** )  we find that  c 1 = c 2 = 0  ~ f l  
= f 2  q.e.d. 

Convexity 
Separation in the xy-plane 

On the Euclidean x lx2-p lane  a point  P:  (pl,p2) 
is on, above or below the line I: X2-----mx1 +b if 
the expression ( p z - p l m )  equals, i s g r e a t e r  or 
less than b. Correspondingly,  since P is the line 
y = ( p 2 - p l ) x + p l  - see (2) - /-is on, above or 
below P<,>(pz-pam) / (1-m)  equals, is less or 
greater than b/(1-m) .  4 

e p~176 / / / I  

Fig. 11. Point on, above or below a line in parallel 
coordinates 

So the compar ison  of (P2-Pl m) with b in par- 
allel coordinates depends on whether  m < l  or 
m >  1 as is clearly shown in Fig. 11. Recall that  
I with m =  1 induces a direction field (i.e. ideal 
point) with slope rfi=b. We adopt  the conven- 
t ion that  P is on, above or below lea. slope(P) 
equals, is greater or less than rfi =b .  We consid- 
er any regular point  P being below Ioo. The 
various cases for l +  loo are summarized in 

L e m m a 2 .  For m < l  (m_>l) 1 is on, below or 
above P ~ I  is on, below (above) or above (be- 
low) P. 

Clearly, the image 9- of an LP-curve 7 depends 
on the slope of the suppor t ing lines of 7. De- 
note  by l~(P) the unique suppor t ing  line to 7 at 

4 In general we consider a point being above (below) a 
segment ~:> it is above (below) the line containing that 
segment 
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m 

the point P, by m~(P) its slope, and on an 
interval I of the x 1-axis and x 1 (P)~ I let 

M~(I) = max {m~(P)[P ~ 7}. 

By considering at each vertex the supporting 
line with maximum slope, the definition of M~ 
can be extended to piecewise LP-curves. In fact, 
from now unless otherwise stated all the curves 
considered will be LP-chains. As a reminder 
chains are allowed to have ideal points but only 
as their endpoints. There follow three direct con- 
sequences of L e m m a 2  applied to LP-chains 
which are stated as lemmas. They will be useful 
in proving the key result of this section. 

Lemma3(a ) .  For M~<I,  7 is below (above) a 
point P ~ ~ is below (above) ft. 

Lemma3(b) .  For M~> I, 7 is below (above) a 
point P ~=~ ~ is above (below) P. 

Proof (a). The chain 7 below P ~ V Q e 7  the 
supporting line 1~ to y at Q is below P. Since 
MT<l  by Lemma 2 l a is below /5. Since ? is 
composed of all points which are images of 
supporting lines of 7, ~ is below P. The argu- 
ment is reversible and the proof of (b) is en- 
tirely similar. 

Lemma 4(a). 7 convex downward (upward) with 
M~ < 1 ~ ~ is convex upward (downward). 

Lemma 4(b). 7 convex downward (upward) with 
M~ > 1 ~ ~ is convex downward (upward). 

Proof (a). Any supporting line l of 7 convex 
downward (upward) is on or below (on or 
above) all points P e 7. Therefore, by Lemma 2 r 
is on or below (on or above) the line P ~  is 
convex upward (downward). The proof of (b) is 
similar. 

LemmaS.  Let 7~,72 be LP-chains and 7 :  
72u71 chain s , then 71 convex upward (down- 
ward) with M 1 < 1 and 72 convex downward (up- 
ward) M z > I  (i.e. 7 convex downward (up- 
ward)) ~ ~ convex upward (downward). 

Proof. By L e m m a 4  7-~ is convex downward 
(upward) and 72 is convex downward (upward). 

s That is, if I is a supporting line of 7 then all of 7 is on 
one side (on or above, on or below) of I. Here M~ 
denotes the M of 7~ 

Let V : 7 1 ~ 7 2  and 1 i the supporting line to 7~ at 
V. Then 71 is on or above (on or below) its 
supporting line V at 1 v. The same is true for 72. 
Hence ~ is convex upward (downward). The 
steps in the argument can be reversed in the 
proof of the converse. 

Generalized conics 

Specialized results on convexity have been re- 
ported elsewhere (see [-16]). In order to make 
this narrative reasonably self contained, only 
the theorems on convexity with more general 
interest are included here. The proofs are usual- 
ly different (and hopefully easier) than those 
given earlier. First a definition is given which is 
central to many of the results. It is best under- 
stood by referring to Fig. 12. 

Definition 1. A set HP is hstar~,i ts  boundary 
is a closed piecewise LP-curve ~0(HP)=  
C c a u C c 2 w { l l , 1 2 }  Cc 1, Cc 2 are convex up- 
ward and convex downward piecewise LP- 
curves with left and right endpoints Li, R / re- 
spectively for i=1 ,  2, l j=URk ,  j + k ,  the curves 
have no vertical edges, no vertical lines sepa- 
rates them, 11 c~ 12 = W a regular point called the 
waist, W is below Cc 1 and above Cc 2 respec- 
tively. Finally, it is required that 
{ C c l u C c 2 } c ~ { l l u 1 2 } = { L 1 , L 2 , R l , R 2 } .  Cc~ 
and C c 2 are called the upper and lower chains, 
respectively of the hstar and 11, 12 its asymp- 
totes. Note that W C H P  unless W = C q ,  or 

~ 2  

~1 ~2 4 

Cc2 

(o) 
Fig. 12. Hstar regions 

2 

(b) 
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Fig. 13. Gconics 

C c 2 in which case the hstar is called dstar (see (a) in 
Fig. 12). 
The term hstar is used here be-cause these sets 
are star-regions and they resemble hyperbolas. 
For  hstars ideal endpoints must be the same on 
each asymptote. That  is if L 1 is an ideal point 
so is R 2 and LI = R  2. Or ,  if L 2 is ideal then L 2 
=R1.  In this case there is a range of possible 
lines for the asymptotes. The waist is rendered 
unique by choosing among these the line hav- 
ing the largest possible intercept for the asymp- 
tote with the min imum slope, and the one 
having the smallest possible intercept for the 
asymptote having the maximum slope. With 
that choice W=l~ c~l 2. Note that for dstars a 
chain may consist of a single point distinct 
f r o m  W, 6 

Definition 2. A set H M  is hstar with respect to 
an ideal point having slope m (we will use the con- 
traction hstar wrt to m) ~,  H M  is hstar when 
the plane is rotated counteclockwise about the 
origin so that the lines with slope rn become 
vertical. We refer to the upper and lower chains 
of CP as those which are the upper and lower 
chains of the rotated hstar wr tm=_+oo .  As 

6 The reader interested in a discussion and examples of 
the conventions adopted for the special cases is referred 
to [16] 

well, the left and right endpoints of the chains 
in .the rotated positions are also called the left 
and right endpoints of the respective chains. 

For  an hstar wrt m there are no lines with slope 
m that separate its two chains and its asymp- 
totes l~ are such that m(li)4:m. The term hstar 
by itself refers to an hstar with respect to slope 
• 
Let CP be a closed and bounded convex set. 
With CP as a base let us construct a double 
cone as shown in Fig. 13 (for the purposes of 
this discussion it is immaterial  whether it is a 
right cone or not). A plane intersecting the cone 
in two disjoint parts forms an hstar. Extending,  
the analogy, there are two other kinds of planar 
sections with the cone those forming bounded 
and those resulting in unbounded planar (convex) 
sets. The bounded ones are called estars (the 
"e"  for the analogy to ellipses) while the un- 
bounded ones are called pstars (the "p"  refers to 
their resemblance to parabolas). Estars, pstars 
and hstars are generalizations of the ordinary 
conics and collectively are referred to as gconics 
(see Fig. 13). Below we will see that the set of 
gconics is closed under our correlation. 
Every bounded set whose boundary  is an LP- 
chain has 2 distinct bounding supporting lines 
with slope some given m. In Fig. 14 this is 
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shown for an estar CP. There the bounding 
supporting lines vr, v R with slope m =  + oo are 
incident at the vertices VL and V R where 
x 1 (VL)<Xl(VR) respectively. The upper and low- 
er bounding supporting lines with slope m =  1, 
CP is on or below the "upper"  supporting line 
denoted by 1, and on or above the " lower"  one 
denoted by l~, are incident at the vertices V. and 
V~ respectively. 

Y X2 
..ec P, I ! 

\ 1-7 
L2~Tg -eCP( 

X1 X2 
Fig. 14. Decompos i t i on  of estar  to hs tar  for Proof  of 
par t  1 

Theorem 1. CP is a gconic <:> CP is a gconic. 
In particular, 
1. CP is an estar <:~ CP is an hstar. 
2. CP is a pstar <:> all vertical lines intersect CP 
in only one point. There are two cases: 
a) all lines with m =  1 intersect CP at only one 
point <:> CAP is pstar, or 
b) 3 a line with m = l  intersecting CP in two 
distinct points<::> CP is an hstar having one 
vertical asymptote. 

3. CP is an hstar <:> ~ a vertical line having no 
common points with CP. There are three cases: 
a) CP is an hstar wrt m = 1 <:~ CP is an estar, 
b) CP is an hstar having an asymptote with 
slope m = 1 <:~ CP is a pstar and ~ a vertical line 
intersecting CP at two distingt points, or 
c) CP is an hstar wr tm4:1  7<=> CP is an hstar 
and ~ a vertical line separating its chains. 

Proof  l. If CP is a finite segment with end- 
points A,B of a line 1 the CP consists of the 
two lines F', and ~.  With our convention this is 
true even if m(1)= 1. This is an hstar with waist 
r and asymptotes 19 and ~ and empty upper 
and lower chains. Hence, no lines (including 
verticals) can separate the two chains. Other- 
wise_~_ the four points V,, V~, V R, V L partition 
~(CP) into four chains (see Fig. 14) u C P  i, ICPi i 

7 So ~ a line with m =  1 intersect ing each of CP's  chains 
in two distinct points 

= 1, 2 where i = 1 specifies the sub-chains whose 
LP-arcs have supporting lines with 

- oo < slope < 1 and i = 2 those with 
+ oo > slope > 1. Let 

U c P = u C P l  u l C P  2, 

L c P = I C P  1 U u C P  2. 

By L e m m a 5  the chains U c P  and L c P  are, 
respectively, convex downward and convex up- 
ward. These two chains are joined by ~ and V,, 
intersecting at ~, since ~(CP) is simply connect- 
ed. Note  that u C P  is above and I CP is below 
both ~ and ?u respectively. So V~, V2 are sup- 
porting lines of the chains and incident at their 
endpoints with ~ in between the chains. We see 
that w splits CP into U c P  and LcP.  For 
m ( w ) < l U c P  is above and L c P  is below re- 
spectively of w, and the sides reverse when 
re(w)>1. Of course, when re(w)=1, C P = w .  To 
complete the proof note that by the convexity 
of CP, P is an interior point of CP<:~P is 
below u CP and above l CP~_(y_ja Lemma 2)<=> P 
is below u CP 1, ICP 2 (i.e. UcP)  and P is above 
LcP.  We have proved that  P is an interior 
point of C P ~ , P  separates L c P C  from U c P  
(see Fig. 22). s Clearly n_o vertical line V can 
separate L c P  from U c P  for that would imply 
that the bounded set CP contains an ideal 
point V. Hence CP is an hstar ( w r t m =  +oo). 
To prove sufficiency we reverse the order of the 
decomposit ion shown above. Let UCp,  L C p  
denote the upp_es and lower chains respectively 
of the hstar CP and the subscripts 1,2 de- 
signate the subchains whose tangents have 
slope < or >1 respectively. That  is UCp~, 
LCp~ are the subchains on or to the left of the 
Xa-axis, while those to its right carry the sub- 
script 2. Further,  we denote by U , L  the sup- 
porting lines connecting U C p l  to LCp~ and 
UCp2 to LCp~ respectively with ~ = U L .  De- 
fine 

ucP = U C p j  u L C P 2  u {U}, 

lcP = U Cpz • L C p z  u {L}. 

It is a direct consequence of Lemma  5 that w 
partitions CP into the convex downward and 
convex upward chains ucP  and lcP respectively 
and therefore CP is convex. The boundedness 
of CP follows, as above, from the nonexistence 

8 Due  to its impor tance ,  this result  is also s ta ted separate-  
ly as a Corollary 

78 



Fig. 15 

Fig. 15. Part 1 of Theorem: estar to hstar, dual of 3(a) 
Fig. 16. Part (2a) of Theorem: pstar to pstar, dual of 3(b) 

Fig. 16 

79 



[ ~ompmer 

Fig. 17 

Fig. 18 

Fig. 17. Part 2(b) of Theorem: pstar to hstar, self dual 
Fig. 18. Part 3(a) of Theorem: hstar to estar, dual of l(a) 
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Fig. 19 

Fig. 19. Part 3(b): hstar to pstar, dual of 2(b) 
Fig. 20. Part 3(c): hstar to hstar, self-dual 

Fig. 20 
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of a vertical separatrix for ucP, and lcP (see 
also Fig. 15) q.e.d. 

Proof2(a).  Here 8(CP) is convex downward  
(or convex upward) and is the union  of two LP- 
chains say 71 ~ 72 with M 1 < 1 and M 2 > 1. Directly 
then by L e m m a 5  CP is convex upward  (or 
convex downward)  and unbounded ,  therefore it 
is a pstar. Since L e m m a  5 is valid in both  direc- 
tions the converse__ is also true (see Fig. 16). 
Note  that  CP has no asymptotes  since CP has 
no bound ing  suppor t ing  lines with m = 1. 

Proof2(b).  This is obta ined directly f rom part  
1 by allowing either V, or V z to be an ideal 
point  and therefore l~ is one of the bounding  
suppor t ing lines. In turn ideal points  is mapped  
into the vertical asymptote  of the hstar CP, 
while the regular point  gives the nonvert ical  
asymptote  (see Fig. 17) and conversely. This 
case is self-dual. 

Proof 3 (a). This is simply the dual  of 1 (a) since 
lines with m = l  in the x~x2-plane map  into 
ideal points of the xy-plane and conversely. In 
short  lines between the upper  and lower chains 

X~ X2 
Fig. 21. D, 

X2 

R~ 

Decomposition of hstar to hstar for proof of 3(c) 

of the hstar m a p  into interior points  of the 
estar. 

Vroof3(b).  This is the dual of 2(b) for the 
same reason (see Fig. 19). 

Proof3(c) .  Let CP be such an hstar with 
asymptotes  11, 12 and m(I1)<m(12). Recall that  
the "uppe r "  and " lower"  chains of an hstar CP 
wrtm are those which after ro ta t ion of CP are 
the upper  and lower chains respectively of the 
rota ted hstar wrt m =  __+ ~ .  As shown in Fig. 21, 
for CP the chain appearing on the left (and for 
which the subscript L is used) corresponds to 
the lower and the right chain (with subscript R) 
corresponds to the upper  one. Since S a line m 
= 1  separating the two chains, there exist 
bound ing  lines b L and b R with m = l  of the 
lower chain at the point  B E and the upper  
chain the point  B R respectively. There also 
suppor t ing lines v E, v R with m = + Go of the low- 
er and upper  chains of CP at the points  V L and 
V R respectively. The  points  Bi, Vi, i = L , R ,  di- 
vide each of the respective chains in three parts. 
Specifically, the lower chain is divided in the 
chains c L1, c L 2, c L 3 where the odd subscripts 
1 and 3 denote  chains 7 with M~, < 1, while the 
subscript 2 denotes chains 7 with M r >  1 and 
similarly for the upper  chain. Note  that  
cL z & c L  2 = V E and c L  z ~ c L  3 = B L ,  while 
c R l  n c R a = B  R a n d  c R 2 ~ c R 3 =  V R. 

In the first four columns of the Table 1 above 
the properties of the six subchains are listed. 
Co lumn  six is obta ined via Lernma 4, and col- 
umns  seven and eight are obta ined f rom Lem- 
ma 3 and where propert ies of the corresponding 
images are listed. 
To "piece" the informat ion together  in order  to 
obtain CP we note  that  VR, V Lex2-axis, 

TabLe 1 

Curve, subs 
2 for M > I  
1, 3 for M < I  

C o n v e x  

up (u) or 
down (d) 

Above (a) or 
below (b) points 

BR BL 

Image Convex Above (a) or 
of up (u) or below (b) lines 
Curve  down (d) 

BR BL 

c L  1 

c L  2 

c L  3 

cR~ 

c R  2 

c R  3 

b a 

a b 

a b 

a b 

a b 

b a 

c L  1 u b a 

c L  2 u b a 

c L  3 d a b 

c R  1 u a b 

c R  2 d b a 

c R  3 d b a 
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cR 2 ~ cR 3 ~-VR, __cL 2 c~ cL 1 = vL, cR 3 c~ cL 1 = 11 
and c R l n c L a = l  z. Then below ~ and above 
B L is l c P = c R 2 v o c R 3 w c L  l w c L  2 a connection 
chain. Further_ a , ucP=cL3u___cR ~ is a connected 
chain above B R and below B L. In fact, IcP is the 
lower and ucP the upper chain of the hstar CP 
whose asymptotes are BR, B L. What 's more, the 
respective chains have vertical bounding sup- 
porting lines_at the points ~, i =  1, 2, a support- 
mg line at I i is unique when the asymptote li 
joins (the same) ideal endpoints. Finally, since 
11 +_ 12, 3 a vertical line V with 
x( l l )<x(?)<x(12)  so CP in the claimed hstar. 
All arguments in the proof are valid in the 
opposite direction so the converse is also true. 
As 2(b) this case is also self-dual, q.e.d. 
Estars, pstars and hstars can be considered as 
estars whose boundary  has none, one, or two 
ideal points respectively. 9 This can be seen 
from the first part of each Fig. 15 through 
Fig. 20 by viewing the original gconic on the 
model of the projective plane where estars con- 
tain no diameters of the capping disk, pstars 
have one diameter and hstars two. In the case 
of hstars the diameters on the cap correspond 
to the hstar's asymptotes, while for a pstar the 
single diameter shows the direction where it 
meets loo. In short, gconics are estars either 
away from, or touching or crossing loo. The 
theorems message is that in parallel coordinates 
the image of a gconic is another  gconic whose 
type can be determined by "inspection". 
Specifically, for a given gconic G C find if 3 a 
line with slope m = 1 intersecting only one of  its 
components. If there is no such line__then ~?(GC) 
can not  contain an ideal point => G C is an estar 
(case 3(a)). Otherwise, determine the maximum 
number  of points a(GC) can intersect a line 
with slope m =  1. That  number  is either 1 or 2. 
If it is 1 then G C is a pstar since the boundary  
contains one ideal point (cases2(a) and (3(b)), 
and if 2 then GC is an hstar (cases 1, 2(b) and 
3 (c)). 10 
The analogue of this theorem for conic sections 
was proved by Dimsdale using an algebraic 
argument  1-11]. In our case a direct synthetic 

9 We consider  estars and  pstars  as hav ing  one component 
(i.e. consist ing of one connected  par t  in the Euclidean 
Plane), while hstars  have  two componen t s  

10 To complete  the discussion, an  estar  which is com- 
pletely above  or below its waist (i.e. the waist is on the 
estar 's boundary) ,  is the dual  of a ds tar  

proof  yielded the more  general result. Inciden- 
tally, this Theorem includes the results in 1-16] 
which correspond to Cases 1 and 3(a). Recall 
our definition of gconics in terms of sections of 
a double cone whose base is an estar. 11 In light 
of the theorem it is natural  to ask whether for 
an estar GC the hstar GC is a section of the 
same cone? This turned to be a suprisingly dif- 
ficult problem and Dimsdale obtained an affir- 
mative partial result again for ellipses and hy- 
perbolas [12]. 

Corollary 1. (Interior points of  estars+-- --+ In- 
terior lines to hstars.) P is an interior point 
of  an estar CP ~ P  separates L c P  and UcP. (see 
Fig. 22). 

Y 
%. i 

~ J  
ir 

X1 X2 

J 
"X 

X 2 

I 
�9 "X 1 

Fig. 22. In ter ior  and  bounda ry  points  of an  estar 
(bounded  convex set) 

Corol lary 2. (Dual of  Corollary 1. Interior lines 
to hs tars~ --+Interior points of  estars.) I f  CP is 
an hstar and CP is___an estar, then l is an interior 
point of  an estar CP <=> 1 separates L c P  and UcP  
(the upper and lower chains of  CP). 

There is a very useful property for the con- 
struction of the Convex-Hull. In parallel coor- 
dinates, the "outermost" portion of the envelope 
(of the family of straight lines representing the 
points of a set) is the convex-hull of  the set. 
This is illustrated in Fig. 23 where the points 
AB, B C, DE, EF  representing the edges AB, 
B C, DE, EF  of the set not  in convex-hull are 
inbetween the envelope - formed by the extreme 
points - representing the convex-hull. It is stat- 
ed below and exploited in [17]. 

11 It is, of course, k n o w n  that  a convex set in R N can be 
considered as a section of a convex cone in R ~v+l (see 
1-223 p. 15) 
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Corollary 3. (Convex-Hull of Bounded Sets.) Let 
BS be a bounded set and CBS its Convex-Hull. 

Then 

1. 7 is an arc of ~?(BS).~f~ CBS or f is below 
u CBS and above 1CBS and, 
2. PeO(_CBS)_~ a segment of the x-axis 
where P s~_[__BS) is above or below all other 
edges of ~(BS). 

Y 

x~ 

X 2 

< 
----"-X D~ "% 

Fig. 23. Convex-Hull construction 

UCP={p lp  on or above UcP, ~ and V,} 

L C P =  {PIP on or below LcP,  V z and V,}. 

The unbounded regions U CP, L CP are called 
the Upj2f_r & Lower Branches respectively of the 
hstar CP. In this section, unless otherwise stat- 
ed, CP is considered as consisting of the two 
asymptotes and the two branches, rather than 
the customary two chains. 
Next we define and study two operations on 
hstars, which yield an hstar. Roughly speaking 
the Outer Intersection of two hstars yields and 
hstar whose chains consist of the outermost por- 
tions of the two hstars. The Inner Union, on the 
other hand, is formed from the innermost chains 
of the two hstars. 
The branches of an hstar are the set-theoretic 
complement  of the region " inbetween" its 
chains and asymptotes, a 2 We are now in a po- 
sition to a "De  Morgan-l ike" duality between 
Intersections of Estars with the Inner Union of 
the corresponding Hstars, and Convex Union of 
Estars with the Outer Intersection of their corre- 
sponding Hstars. Here we consider the branches, 
that is the "complements"  of their correspond- 
ing hstars. 

That  is, ~(CBS) con__sists of the highest and low- 
est portions of ~(BS). There is also an interest- 
ing "De-Morgan- l ike"  duality between the 
operations of Intersections and Convex Unions 
of estars and their corresponding hstars. In the 
last section we provide a preview of this gener- 
alization to convex hypersurfaces in R u. 
The following remark is made in order to ap- 
preciate the results given in the next section. 
For  the matrix A of our correlation A 2 ~ A  and 
therefore, our correlation is not a polarity (for a 
definition see [10] p. 60) and our duality applied 
to convex sets is fundamentally different that the 
standard duality of  Convexity Theory (for a defi- 
nition see [14] p. 46). 

Intersections and convex 
unions are duals 

Outer intersections of hstars 

We construct next the unbounded  extensions of 
the upper, UcP, and lower, LcP chains of an 
hstar CP, namely 

Fig. 24. Outer Intersection HI, of 2 Hstars where 
the chains intersect at 4 points 

Definition (Outer Intersection of Hstars). Let 
H1 and H2 be two hstars, with respect to the 
ideal point having slope -t-o% having asymp- 
totes lai, l~, i =  1, 2 respectively (for convenience 
we assume that m(l{)<m(1�89 j = l , 2  see Fig. 24). 

12 That is the region below the upper and above branches 
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Their Outer  Intersect ion,  H I ,  is the hstar whose 
asymptotes il, i 2 a r e  the asymptotes with the 
minimum and maximum slope of the 2 hstars 
(i.e. Im( i l ) J=max{ lm( l l ) l ,  Im(/2)l} and m(i2) 
= m a x  {m(/~), rn(/~)}), with and upper and lower 
branches defined respectively by 

U H I  = {P ~ H1  ~ H 2  and above both i~, i2} , 

L H I  = {P ~ H I  n H 2  and below both il, i2}. 

By construction U H I ,  L H I  is above, or below 
respectively all four  asymptotes of the hstars. 
The hstar intersection may or may  not be the 
set-theoretic intersection of the hstars. For ex- 
ample in Fig. 24 it is not and that occurs when 
the hstars are the images of disjoint estars (see 
Fig. 26 on p. 85). In either case we denote the 
intersection of the two hstars by H I  = H I  c~H2. 

The intent of Outer Intersect ion,  rather than set- 
intersection, will be explicitly mentioned if it is 
not clear from the context. The definition also 
applies to the intersection of hstars with respect 
to an ideal point having slope m resulting in an 
hstar with respect to the same ideal point. This 
is seen by first rotating the plane so that lines 
with slope m become vertical, intersecting the 
rotated hstars and then reversing the rotation 
back to the original orientation. The situation 
when the outer intersection coincides with the 
set-intersection of the hstars as shown in 
Fig. 25. 

Theorem 2. I f  E1 and E2 are estars then C U  
= C[E1  w E2]  = E1 n E2  = E l .  

I 
L 

Fig. 25. Convex union of estars corresponds to the 
Outer intersection of their hstars 

X2 

XZ X2 

Fig. 26. Convex-Hull  of disjoint estars 

I X 1  

j ~ / /  / . / / ,  

IX1 I}(2 

Fig. 27. The Convex Union  of two Hstars as an Inner 
Union  

Fig. 28. Inner Union  and Intersection are Dual  
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Proof. By definition EI  is the hstar whose 
boundary consists of the highest and lowest por- 
tions of E I u E 2 .  By Corollary2 then 
C [ E 1 u E 2 ] = E I  and the theorem is proved. 

Note again that the notation E1 can be consid- 
ered as the complement of the hstar representing 
El.  Next by an easy induction we have that, 

Theorem 3. (Convex union of a finite collection 
of estars.) I f  ES i i = 1, 2 . . . .  , n are estars then 

C E S  i = E S  i 
k i = l  i = 1  

and the corresponding dual, 

Theorem 4. (Outer intersection of a finite col- 
lection of hstars.) I f  H S  i i= 1, 2 , . . . ,  n are hstars 
with respect to the ideal point having slope 1 
then 

1,0 :] N HSi = C H S  . 
i = 1 k P i  = 1 

Since the union of a countable collection of 
bounded sets may not be bounded, Theorem 3 
is true in general only for finite collections. 
Also a countable collection of hstars may have 
in its intersection a vertical edge or asymptote 
so Theorem 4 is again only true in general for 
the intersection of finite collections of hstars. 

Inner union of hstars 

Definition (Inner union of hstars). Let H1 and 
H2 be two hstars, with respect to the ideal 
point having slope __ o% ul,  u 2 the two support- 
ing lines between U H U ' =  C[UH1 u UH2] and 
L H U ' =  C[LH1 u L H 2 ]  (i.e. the Convex Union 
of the Upper and Lower Branches), at the 
points u i n U H U ' = U  i and u i c ~ L H U ' = L  i for i 
= 1, 2. Let u H U  and l H U  be the finite portions 
of O(UHU') and 8(LHU')  between the points U i 
and L i respectively. The hstar with asymptotes 
u i and uHU,  l H U  as upper and lower chains is 
called the Inner Union of  the Hstars H1 and H2 
(see Fig. 27). 
The definition also applies to the inner union of 
hstars with respect to an ideal point having 
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slope m resulting in an hstar with respect to the 
same ideal point. This is seen by first rotating 
the plane so that lines with slope m become 
vertical, taking the inner union of the rotated 
hstars and then reversing the rotation back to 
the original orientation. 
The significance of the supporting lines to the 
the upper and/or lower chains of H1 and H2, 
added as result of the Convex Union operation 
(see Fig. 27) will be seen after Theorem 5. Note 
also that the asymptotes of the Inner Union are 
in general different than those of either hstar. 

Theorem5. I f  E1 and E2 are estars then 
E l s E 2 =  C[E1 u E 2 ] .  

Proof. Is dire_ct from Corollary 1. That is, 
P ~ E1 n E2 ~ P s__eparates_the up_per and lower 
chains of both E1 and E2. So P is in-between 
UBE1 w UE2 and L E 1 u L E 2  (here the set-theo- 
retic union is meant). The intersection of the 
estars is an estar. Therefore, by part 2 of Corol- 
lary3 the collection of all P such that 
P e 0 (El n E2) forms the boundary of 
C[E1 u E 2 ]  q.e.d. (see Fig. 28). 

The supporting lines added to the hstars by the 
Inner Union Operation correspond to the 
points of intersection between the boundaries of 
the corresponding estars. For consistency with 
the Outer Intersection operation we can consid- 
er points of tangency as double points. Induc- 
tively we can obtain the result for countably 
infinite families of estars. 

Theorem 6. I f  ES i, i= 1, 2 . . . .  are estars then 

n E S i =  C E S  i , 
i = 1  I _ i = 1  

whose dual is 

Theorem 7. I f  HS~, i= 1, 2 . . . .  are hstars with 
respect to the ideal line having slope 1 then 

C ]W-- 
H S  i = H S  i .  

L i = l  i = 1  

By contrast to the previous section, here the 
theorems are true for countably infinite families 
of estars since the intersection of any family of 
estars is an estar. Theorems 3, 4, 6 and 7 are, of 
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course reminiscent of the similar relationship 
between convex sets and their polar sets (see 
[22] p. 150). 

Special points 
Some "special points"  attract our attention 
when we look at a curve. What  are the proper- 
ties of such points in parallel coordinates? For  
an LP-curve~a y let 11 and 12 denote its pro- 
jections (intervals) on the x 1 and x 2 axes re- 
spectively. On 11 let P,,, P~t denote the points 
where 7 attains its absolute minimum and ab- 
solute maximum respectively. In parallel coor- 
dinates P,,, PM are the supporting lines to 
through the points (1, c~m) and (1, aM) on the x 2 
parallel axis, where a m = min {c~ e I2} a n d ~ M  
=max{c~eI2}.  A point  P0 is a zero of y<=~Po is 
a supporting line to ~ through the point (1, 0) on 
the x 2 parallel axis. Below as usual we denote 
the chain of the two convex LP-curves r~, r 2 
joined at the point  N by r~Nr 2, and the slope 
of a line n by re(n). 
Let r~, r 2 be two convex LP-curves joined at the 
point N, having a common tangent n there such 
that locally a~ VP1Er~, P2~r 2 the slopes m(ll) 
+m(12) where I i is the supporting line to r i at Pi. 
The point N is called a cusp of the chain r 1 N r  z 
- see the right hand port ion of Fig. 29. Further, 

Y 

N 

• 
Fig. 29. Cusps map into inflection points 

J 

let q ,  r z be convex upward and convex down- 
ward LP-curves respectively joined at the point 
N and with a common supporting line n there 
and such that locally if P I ~ q  and 11 is the 

13 Here, to avoid verbiage we use the terms funct ion and 
the curve or graph of the function interchangeably 

14 By this we mean that there 3 a neighborhood of the 
point N where the stated property is true 

supporting line to r 1 at P1, 3P2~r2 with 12 the 
supporting line to r2 at P2 and m(ll)=m(12). The 
point N is called an inflection point of the chain 
r~ N r  2 - see the right hand port ion of Fig. 30. 
The tangent n to an LP-chain at either a cusp 
or inflection point  crosses the chain at that 
point  in the sense that part of the chain is 
above and part  below the line n. Hence, the 
chain is not convex. There is a striking and 
potentially very useful duality between these 
two kinds of "nonconvex"  points. 

Y 

\ 

/ 

(2 

X • 
Fig. 30. Inflection points map into cusps 

Theorem 8. For m(n)+ l ,  r l N r  z has a cusp with 
tangent n at N ~ r ~  N r  2 has an inflection point 
with tangent N at ft. 

Proof. Let q ,  r 2 be two convex LP-curves joi- 
ned in a cusp at the point N with a common 
tangent n there having slope m(n) as shown in 
Fig. 29. Assume further that re(n)< 1. Then, lo- 
cally r 1 is above n with l>Ml>>_m(n) 15, and r 2 
is below n with M 2 <re(n). Since n is a support-  
ing line to both r~ and r 2 at N then r 1 must be 
convex upward and r z convex downward.  
Hence, by Lemma 4a r 1 is convex downward  
and ~ is convex upward, and Lemma 3 a ~ they 
lie on opposite sides of their common tangent N 
at ft. This means that r l N r  z has either a cusp 
or an inflection point at g. If it has a c u s p t h e n  
3 a point  l lEr  I and another point  1 2 ~  z 
with x (U0=x(Uz)~  11 is a support ing line of r 1 
and l 2 is a supporting line of r 2 and by (2)16 

is Again, M i denotes the maximum slope of the support- 
ing lines to r~ on the interval of x 1 in question 

16 See also Figs, 3 and 7 
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they must have the same slope. This is im- 
possible since M 1 >re(n)> M 2. Hence, r 1 N r 2 has 
an inflection point at n. 
For  re(n)> 1, r 1 convex downward and r 2 con- 
vex upward, Lemma 4b ~ rl.. .  is convex upward 
and r 2 is convex downward. The proof is then 
the same as above with the roles of rl and r 2 
interchanged. 
Finally when m ( n ) = l ,  locally M I > I  and 
M2__<l. L e m m a 4  ~ that both r~ and r 2 are 
convex downward when r I is convex downward,  
or both convex upward when r 1 is convex up- 
ward. In either case, L emma 3 ~ both r 1, r 2 are 
on the same side of  N joined at the ideal point 
ft. 
To prove the converse, let r l , r  2 be convex 
downward and convex upward LP-curves re- 
spectively joined at the inflection point fi, with 
r-~ below and F 2 above their common supporting 
line N there. Therefore, r~- is above and F 2 below 
the point g. Assume at first that 
x(f i )>O=~m(n)<l.  So locally M i < l  for i 
= 1, 2 ~ r~, r 2 are convex upward and convex 
downward respectively. Since r~Nr 2 has an in- 
flection point a t  fi, loc__allythe slope of the sup- 
porting lines P1 at l i e r  i increases monotoni- 
cally to m(N)._Similarly, the slope of the sup- 
porting lines, Pa of F 2 decreases monotonically to 
m(b~). This means _that in_a neighborhood of 
f iVPI~P2 with m(P1)=m(P2) ~ in a neigh- 
borhood of NVP1 ~ rl 3 P 2 E r  2 such that xl(P1) 
=xl(P2) 17. We have proved that r~Nr 2 has a 
cusp at N with common tangent n. 
When x(fi)GO then re(n)> 1 and the proof is the 
same with the roles of r i and r~ being reversed. 
The case re(n)= 1 is easily recognized_since then 
both rl, r 2 are on the same side of N, joined at 
the ideal point fi, and both are either convex 
upward or convex downward,  q.e.d. 

Theorem 9. For m(n)~e 1, r 1 Nr 2 has an inflection 
point with tangent n at N<=>rlNr 2 has a cusp 
with tangent N at ft. 

Proof. The proof is obtained by interchanging 
the roles of r i with fi for i = 1 , 2  in the proof of 
the previous theorem - see also Fig. 30. 

17 This is a consequence of the correlat ion C B : P ~  ~ f i  
(see p. 3) corresponding to th_e property of parallel  lines 
in the correlat ion C A: l ~ -~ l 

Some applications 

In [17], some algorithms based on these results 
are described. They include an algorithm for 
convex-hull construction which is optimal in 
the sense of [4]. It is O(nlogn) for worst-case 
and O(logn) for real-time construction, as well 
as O(n) expected time (for certain distributions 
of the data). Also included are algorithms for 
the intersection of families of half-planes and 
collections of convex sets. Other early appli- 
cations include Modility Analysis in Robotics 
[9] and Dynamical  Systems [21]. Potentially, 
we believe, that some of the included results 
will find significant applications in VLS! design 
(e.g. intersection of large collections of convex 
sets, finding interior points to hypersurfaces - 
see next section), Computer  Graphics and CAD 
(e.g. fast rotations - see next section, Solid 
Body Modeling), Pat tern Recognition (e.g. 
using the c u s p ~  ~inf lec t ion  point and the 
point+-- ---,line dualities) and others. 
In the remainder  we provide a synopsis of some 
corresponding results in R u. This is done both 
as a "preview" and in order to provide credi- 
bility to the claim that parallel coordinates are 
suitable for Muhi-Dimensional Graphics. 

Results for R N 

Lines in R N 

Our objective is to represent multivariate re- 
lations geometrically. A line 1 in N-space is the 
collection of points (cl, c2, .--, % ..-, cN) satisfy- 
ing the linear relations: 

112" x 2 = m 2 X l  + b 2 . . .  

lii: x , = m i x l  +bi. . .  (6) 

fiN: x N = m u x l  +bN. 

for i = 2  . . . . .  N. In the X lXi-plane the relation 
labeled l i i is a line. By (2), in parallel coor- 
dinates lli is a point. There are N - 1  such 
independent  relations in (6). Therefore, t_he line l 
is represented by the N - 1  points 11~ for i 
---2, 3 . . . .  , N. One variable, xl ,  was chosen in 
(6) as the parameter. It is sometimes convenient 
to describe a line I in R u by linear equations 
relating consecutive variables. Specifically: 

li, i+ 1 " X i + t = m i x i - ~ b i .  (7) 
for i = 2  . . . . .  N. 
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In Fig. 31 we see points on a line in R is de- 
scribed by a set of 14 equations of type (7). 
These polygonal lines show us particular set of 
linearly dependent vectors. For N > 2  intersec- 
tion of lines is very rare but it may happen. 
Such intersections can be "seen" in parallel 
coordinates and they resemble "particle col- 
lisions" (see [15] p. 37). 

i 
/ 

/ 

/ 

/ 

/ / 

_ _  _ . •  

Xl X2 X3 X4 X5 X6 X7 X8 X9 XlOX11X12X13X14X15 

Fig. 31. Line in R j5 

Hyperplanes 

Consider a plane /7 in R 3 as shown in Fig. 32 
and the two lines Y~=/7axlx2-p lane ,  y2 
=/Tc~x2x3-plane. We can construct a coor- 
dinate system on /7 with axis Yi i =  1, 2 and A 
= y l  c~ yZ as origin. Therefore, every point o f / 7  
can be specified as the intersection of two 

y~ 

Xl YI X2 Y2 ~ Hi 
Fig. 32. Hyperplanes are represented by N - 1  parallel 
lines and a point'on the plane 

unique lines, parallel to y1 and to y2 respec- 
tively. Or, equivalently, from the collection of 
all lines parallel to y1 and y2 we can specify 
all points in the plane. 
The purpose of this discussion is to show that a 
plane / /  can be equivalently specified in terms 
of two families of parallel lines. So in parallel 
coordinates a plane is represented by two verti- 
cal lines, say I11 and I72 corresponding to the 
lines parallel to Ya and y2 respectively. But we 
are not  quite finished. All planes parallel to /7 
can be specified by a coordinate system parallel 
to the Y~ and y2 axis. To identify a specific 
such plane we need in addition a point on the 
plane. We pick A the origin of the coordinate 
system. 
Just as for lines this reasoning generalizes to N- 
space. There a N - 1  parallel lines and a poly- 
gonal line (representing a point) represent a hy- 
perplane. Specifically, for a hyperplane & con- 
struct hyperplane is represented the N - 1  lines 
Y i = / 7 ~ x i X i .  a-plane for i=1  . . . .  , N - 1 .  Pro- 
ceeding, we have N - 1  collections of parallel 
lines to the Y~ and which are manifested as N 
- 1  vertical lines in parallel coordinates. Choos- 
ing in addition a specific point on /7 completes 
the representation. In parallel coordinates hy- 
perplanes can be intersect with lines or with 
other hyperplanes. The later construction en- 
ables us graphically to solve systems of N linear 
equations in N variables, and also to study error 
propagation graphically. ! 
Perhaps the most striking geometrical aspect of 
the hyperplanes representation is, as in 2-D, 
that in 3-D the rotation of a plane about a line is 
converted into a translation of a point a line. The 
reader interested in a in-depth treatment of 
lines and hyperplanes using parallel coordinates 
is referred to [15]. 

Convexity in R N 

The easiest hypersurfaces to show are those 
with a high degree of symmetry. In Fig. 33(a) 
we see a square with unit side in orthogonal  
and parallel coordinates; note that the coor- 
dinates of the vertices are ordered couples of 0's 
and l's. In Fig. 33(b) we see that the "uni t"  
cube in R 3, i.e. whose vertices have ordered 
triples of 0's and l 's as coordinates, is repre- 
sented in parallel coordinates by two copies of 
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the unit square. The edges and faces of the cube 
can also be found from its representat ion in 
parallel coordinates.  In R N, N - 1  copies of the 
square represent the "un i t "  hypercube. The 
comparable  hypercube in R 5 is shown in 
Fig. 33 (c). 

origin and with radius r. Between the parallel 
axis we see the same hyperbola  which, in turn, 
represents a circle with radius r. So a hyper- 
sphere in R u centered at the origin is repre- 
sented by N - 1  copies of a circle - having the 
same radius as the sphere - and also centered 

ii• inC:(1,1)  ~C (a) 

" > "  T a: o,o" x, 
Y s ,0,0 X2 

' indicated b y .  - - 

/ -  

X 1 

Fig. 33. Hypercube representation in Parallel Coor- 
dinates 

^ ^ ^ ^ A ~ ,  

u, 

X1 • 

Fig. 34. A sphere in R 5 

' x t : x x x x  

x x ~ x x ~  
~ x a a x y ,  

N 

X3 X4 
I 

X5 

This " symmet ry  principle" is completely gener- 
al. For  example, in Fig. 34 is the representat ion 
of a sphere in R s. Recall (see also Fig. 15) that  
an ellipse is represented by a hyperbola  (i.e. 
estar~- ~hs tar ) .  This is a sphere centered at the 

/ 

-< 
0 

i 

-5 - 

X: X .8 XJ 9 X', 

Fig. 35. Finding a point interior to a hypersurface in R 2~ 

at the origin. For  more  general convex hyper- 
surfaces, we can obtain their parallel coordinate 
representat ion by comput ing  the envelope of the 
collection of polygonal  lines representing its 
points - i.e. by going to the the basic and 
general definition given at the beginning. In 
Fig. 35 we show the representat ion of a convex 
hypersurface in R2~ This "p ic ture"  reveals a 
lot of informat ion about  the hypersurface. In 
particular, there is an a lgor i thm which enables 
us to find whether  a given point is inside, out- 
side, or on the surface. A polygonal  line which 
was found to represent an interior point  of the 
hypersurface is shown in the figure. This algo- 
r i thm has exciting implications. A process (like 
in a industrial  plant, or a function of biological 
organism, the mot ion  of a robot) is a relation 
among  many  variables. Such a relation corre- 
sponds to a particular hypersurface which we 
may able to represent in parallel coordinates. 
Controlling the process corresponds to staying in 
the I N T E R I O R  of the hypersurface. Intelligent 
Process Control and Intelligent CAI based on 
this a lgor i thm are presently being explored. 
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