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With Common SNPs
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Detecting uncommon causal variants (minor allele frequency [MAF] < 5%) is difficult with commercial single-nucleotide
polymorphism (SNP) arrays that are designed to capture common variants (MAF > 5%). Haplotypes can provide insights
into underlying linkage disequilibrium (LD) structure and can tag uncommon variants that are not well tagged by common
variants. In this work, we propose a wei-SIMc-matching test that inversely weights haplotype similarities with the estimated
standard deviation of haplotype counts to boost the power of similarity-based approaches for detecting uncommon causal
variants. We then compare the power of the wei-SIMc-matching test with that of several popular haplotype-based tests,
including four other similarity-based tests, a global score test for haplotypes (global), a test based on the maximum score
statistic over all haplotypes (max), and two newly proposed haplotype-based tests for rare variant detection. With systematic
simulations under a wide range of LD patterns, the results show that wei-SIMc-matching and global are the two most powerful
tests. Among these two tests, wei-SIMc-matching has reliable asymptotic P-values, whereas global needs permutations to
obtain reliable P-values when the frequencies of some haplotype categories are low or when the trait is skewed. Therefore,
we recommend wei-SIMc-matching for detecting uncommon causal variants with surrounding common SNPs, in light of its
power and computational feasibility. Genet. Epidemiol. 36:572–582, 2012. C© 2012 Wiley Periodicals, Inc.
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INTRODUCTION

In the past few years, genome-wide association studies
(GWAS) have identified hundreds of common genetic vari-
ants (minor allele frequency [MAF] > 5%) for complex hu-
man diseases. However, these common variants can only
explain a small proportion of heritability [Manolio et al.,
2009]. Uncommon variants (MAF < 5%) are likely to play an
important role in the missing heritability that cannot be ex-
plained by common variants. In this work, we call the vari-
ants with MAF < 5% “uncommon variants,” including the
so-called “rare variants” (MAF < 1%) and “low-frequency
variants” (MAF 1–5%) [Zeggini, 2011]. Searching for un-
common variants that are responsible for complex diseases
is now attracting more attention [Zeggini, 2011]. However,
this topic remains challenging. When sequencing data are
available, pooling signals of multiple uncommon variants
and testing the association of this pooled set with the disease
[Han and Pan, 2010; Li and Leal, 2008; Madsen and Brown-
ing, 2009; Morris and Zeggini, 2010; Price et al., 2010] is an
attractive strategy [Lin et al., 2011]. However, due to the
high cost of sequencing [Sboner et al., 2011], GWAS data
are still the most commonly available data in the current
stage [Li et al., 2010; WTCCC, 2007]. For GWAS using com-
mercial single-nucleotide polymorphism (SNP) arrays, the

pooling methods are underpowered in detecting uncom-
mon causal variants as they pool signals of common SNPs
that cannot well represent the information of uncommon
variants (this argument should be apparent and the pooling
methods were mainly proposed for sequencing data with
rare variants, but we still include them into the following
comparisons). Similarly, conventional single-marker analy-
sis is also underpowered because markers in commercial
SNP arrays cannot be good surrogates for causal variants
that are too rare [Gusev et al., 2011].

Haplotypes can provide insights into underlying link-
age disequilibrium (LD) structure and can tag uncommon
causal variants that are not well tagged by common SNPs
[Gusev et al., 2011; Li et al., 2010]. For some complex dis-
eases such as hypertension, rare haplotypes have been
shown to influence the disease susceptibility [Kitsios and
Zintzaras, 2010; Liu et al., 2005; Zhu et al., 2005]. A re-
cent study has shown that identical-by-descent haplotype
mapping is powerful for tagging rare variants [Gusev et
al., 2011]. In addition, similarity-based approach has been
used in uncommon and common variant detection [Tzeng
et al., 2011]. These studies suggest that similarity-based
approaches might be also useful, to some extent, in de-
tecting uncommon causal variants using nearby common
SNPs.
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In this work, we propose a “wei-SIMc-matching” test
to capture the signals of uncommon causal variants us-
ing haplotype information. We inversely weight haplotype
similarities with the estimated standard deviation of hap-
lotype counts to boost the power of similarity-based ap-
proaches for detecting uncommon causal variants. We then
compare the performance of wei-SIMc-matching with that of
several popular haplotype methods. We show that although
commercial SNP arrays are not designed to capture uncom-
mon causal variants, some haplotype methods including
the proposed wei-SIMc-matching test have a better ability to
complement this.

METHODS

SIMILARITY-BASED TESTS
Statistical model. Let yi be the phenotype of the ith

subject (i = 1, . . . , N), and let Γ (hi ) be a k × 1 vector cod-
ing the frequencies of all “haplotype categories” for the ith
subject, where k is the number of “haplotype categories”
(i.e., unique haplotypes in the sample, two haplotypes are
classified into a same category if all observed alleles on the
two haplotypes are the same). For example, if there are three
categories of haplotypes

{
h1, h2, h3

}
and both of the haplo-

types of the ith subject are h1, then Γ (hi )
T = [

1 0 0
]
, where

Γ (hi )
T is the transpose of Γ (hi ). If one haplotype is h2 and

the other is h3, then Γ (hi )
T = [

0 0.5 0.5
]
. When the hap-

lotype phase is uncertain, statistical methods such as the
expectation-maximization (EM) algorithm [Dempster et al.,
1977] can be used to infer the haplotype frequency vec-
tor, under the assumption of Hardy-Weinberg equilibrium
(HWE) [Excoffier and Slatkin, 1995; Hawley and Kidd, 1995;
Long et al., 1995].

We consider a generalized linear model:

g (E (Y)) = C� + x�, (1)

where g (·) is a link function, Y is an N-length vector of
phenotypes, C is an N × (m + 1) matrix with the ith row
of cT

i = [
1 ci,1 ci,2 · · · ci,m

]
coding 1 (for the intercept term),

and m covariates (e.g., age, gender, ethnicity, etc.) of the ith
subject, � is the (m + 1)-element vector of covariate effects
including the intercept term, x is an N-length vector with
the ith element of xi = �T · S · Γ (hi ) coding the genetic in-
formation (regarding the region under investigation) of the
ith subject, and � is the regression coefficient of the genetic
information coded by x. The scalar xi = �T · S · Γ (hi ) is a
quantity comparing the ith subject’s haplotypes against
haplotypes of all the other subjects, in which Γ (hi ) is the
haplotype frequency vector of the ith subject, � is a spec-
ified vector aggregating the haplotype information of all
the N subjects, and S is a k × k matrix whose (� , �) el-
ement is the similarity between the � th and �th cate-
gories of haplotypes. The canonical link is the logit func-
tion (g (�) = log �

1−�
), the identity function (g (�) = �), and

the log function (g (�) = log �) given binary traits, normally
distributed traits, and traits with Poisson distribution, re-
spectively [Nelder and Wedderburn, 1972].

Test statistics. Based on the model in Equation (1) and
under the assumption of gene-covariate independence, the

score statistic is

U = �T · S ·
N∑

i=1

(yi − �̂i )
a (�)

Γ (hi ), (2)

where �̂i = cT
i

(
CT C

)−1 (
CT Y

)
is the fitted value of the ith

subject according to the covariates; a (�) is the mean square
error if the trait distribution is normal, and is 1 if the trait dis-
tribution is Bernoulli or Poisson [Nelder and Wedderburn,
1972]. With different specification of �, the score statistic can
result in different tests.

When we specify � = 1
N

∑N
i=1 Γ (hi ) ≡ p̂, where p̂ is the

vector of the average haplotype frequencies of all the N sub-
jects, the resulting test is called SIMp with the test statistic

TSI Mp =

[
p̂T

S

N∑
i=1

(yi −�̂i )
a (�) Γ (hi )

]2

p̂TSΩ̂S p̂
, (3)

where Ω̂ is the estimated variance-covariance matrix of∑N
i=1

(yi −�̂i )
a (�) Γ (hi ) [Lin et al., 2012] and

Ω̂ =
N∑

i=1

[
(yi − �̂i )

a (�)
Γ(hi )

] [
(yi − �̂i )

a (�)
Γ(hi )

]T

− 1
N

[
N∑

i=1

(yi − �̂i )
a (�)

Γ(hi )

][
N∑

i=1

(yi − �̂i )
a (�)

Γ (hi )

]T

.

Because TSI Mp is the square of a standard normal variable, it
has an asymptotic � 2 distribution with one degree of free-
dom.

When we specify � = ∑N
i=1

(yi −�̂i )
a (�) Γ (hi ), the resulting test

is called SIMc with the test statistic

TSI Mc=
[

N∑
i=1

(yi − �̂i )
a (�)

Γ (hi )

]T

S

[
N∑

i=1

(yi − �̂i )
a (�)

Γ (hi )

]
. (4)

By the theory of quadratic forms of normal variables
[Scheffe, 1959], TSI Mc is asymptotically distributed as∑�

i=1 	i �
2
1,i , where � 2

1,i ’s are independent � 2 variables with
one degree of freedom, and 	1 ≥ 	2 ≥ · · · ≥ 	� are the or-
dered eigen values of the matrix Ω̂S (� is the rank of the
matrix Ω̂S). The distribution of TSI Mc can be approximated
by the three-moment approximation method [Allen and Sat-
ten, 2007, 2009; Imhof, 1961; Tzeng et al., 2009]. The P-value
of the observed SIMc test statistic is given by

P

(
� 2

b > (TSI Mc − c1) ×
√

b
c2

+ b

)
,

where c j = ∑�
i=1 	

j
i , b = c3

2
/
c2

3
, and � 2

b is the � 2 distribution
with b degrees of freedom.

The similarity matrix S can be constructed based on met-
rics such as the counting measure or the matching measure
[Tzeng et al., 2003]. The counting measure calculates the per-
centage of alleles in common between any two haplotypes;
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the matching measure treats each haplotype as a distinct
category and is defined as 1 if two haplotypes match and
0 otherwise. Therefore, the similarity matrix S is a matrix
with all diagonal elements of 1 and all off-diagonal elements
of 0, if the matching measure is employed. Both the two
similarity-based tests (SIMp and SIMc) can be respectively
equipped with the counting measure and the matching mea-
sure, resulting in four tests (SIMp-counting, SIMp-matching,
SIMc-counting, and SIMc-matching).

Weighting similarities. Previous studies show that
uncommon causal variants usually have larger effect sizes
compared to common causal variants [Bodmer and Bonilla,
2008]. Moreover, uncommon variants are more likely to be
tagged by uncommon haplotypes than by common hap-
lotypes. Therefore, up-weighting uncommon haplotypes
may facilitate the discoveries of uncommon variants. Li
et al. [2010] defined Sh = [Nct · fct,h · (1 − fct,h)]−1/2 (h =
1, . . . , k, in which k is the number of haplotype cate-
gories), where Nct is the number of controls; fct,h is the
adjusted frequency of haplotype h among controls and is

quantified as fct,h = (Cct,h+1)
(2Nct+2) , in which Cct,h is the num-

ber of haplotype h among controls. We let the k × k sim-
ilarity matrix S be a diagonal matrix with the hth diag-
onal element of Sh = [Nct · fct,h · (1 − fct,h)]−1/2, where h =
1, 2, . . . , k. When continuous traits are analyzed, we let
Sh = [N · fh · (1 − fh)]−1/2, where N is the total number of
subjects and fh = (Ch+1)

(2N+2) , in which Ch is the number of hap-
lotype h among all the N subjects.

We plug this similarity matrix S into Equation (4), and
the resulting test is referred to as the wei-SIMc-matching test.
It is based on the SIMc test with the matching measure in-
versely weighted by the estimated standard deviation of
haplotype counts. The weighting scheme given to haplo-
types is inspired from Madsen and Browning’s weights for
SNPs [Madsen and Browning, 2009]. Using this weight in
S implies that we up-weight the similarities contributed
by uncommon haplotypes but down-weight the similari-
ties contributed by common haplotypes. Presumably, wei-
SIMc-matching can boost the power of similarity-based ap-
proaches for detecting uncommon causal variants. We will
evaluate its performance with simulations.

STANDARD HAPLOTYPE REGRESSION TESTS
A global score test for haplotypes (global) and a test based

on the maximum score statistic over all haplotypes (max)
have been widely used for detecting common variants
[Schaid et al., 2002]. The global test is regarded as a stan-
dard haplotype regression and is usually compared with
similarity-based tests [Lin and Schaid, 2009; Lin et al., 2012;
Tzeng et al., 2009, 2011]. The global and max tests are based
on a generalized linear model:

g (E (Y)) = C� + ��, (5)

where g (·) is a link function, � is an N × k matrix with the
ith row of Γ (hi )

T (the transpose of the haplotype-frequency
vector of the ith subject), � is the (m + 1)-element vector
of covariate effects including the intercept term, and � is
the k-element vector of the regression coefficients for the k
categories of haplotypes in the region. Let U
 be the score
vector of 
 , and V
 be the variance-covariance matrix of

U
 . The global score statistic is Tglobal = UT
� V−1

� U� , which
has an asymptotic � 2 distribution with degrees of freedom
equal to the rank of V
 [Schaid et al., 2002].

The maximum score statistic over all haplotypes is Tmax =
max

k
(U

2

 ,�

/
V
 ,�,�

), where U
 ,� is the kth element of U
 and

V
 ,�,� is the (k, k) element of V
 . There is no analytic form
for the distribution function of the max test statistic, so
permutation P-values are used in practice [Schaid et al.,
2002].

HAPLOTYPE-BASED TESTS TO DETECT RARE
VARIANTS

Recently, two haplotype-based tests were proposed for
rare variant detection. Both the two tests split the data into
a training set and a testing set. Zhu et al.’s haplotype group-
ing test (referred to as “HG”) classifies haplotypes as risk
or nonrisk with the training set (the co-classification stage),
and then tests for associations by performing a Fisher’s ex-
act test with the testing set (the association stage) [Zhu et
al., 2010]. This method has been applied to the Wellcome
Trust Case Control Consortium (WTCCC) data [Feng and
Zhu, 2010]. Li et al.’s weighted haplotype test on genotyped
SNPs (referred to as “WHG”) is based on a similar proce-
dure. The WHG further boosts power to detect rare vari-
ants by weighting haplotypes according to their frequen-
cies [Li et al., 2010]. For both HG and WHG, we followed
Li et al. [2010] to randomly select 30% of the sample as
the training set and let the remaining 70% be the testing
set.

SIMULATION STUDY

Following Li et al.’s simulation [2010], we first gener-
ated 200 data sets each containing 10,000 chromosomes
of 1 Mb regions with the Cosi program [Schaffner et al.,
2005]. The chromosomes were generated in consistency
with the HapMap CEU (CEPH people from Utah, USA,
http://hapmap.ncbi.nlm.nih.gov/) samples. For each data
set, we randomly picked an ∼50 kb region as the causal
region, within the 1 Mb region. Within each causal region,
we randomly selected d variants with population MAF be-
tween 0.1% and 5% (d = 5, 10, 20, 30, or 40), and we treated
these variants as causal variants that might increase or de-
crease the disease risk (or the value of a continuous trait).
Among the d causal variants, we let r% of them increase the
disease risk while the remaining (100 − r )% decrease the
disease risk (or the value of a continuous trait). The value of
r was specified at 5, 20, 50, 80, and 100, respectively. In each
data set, we randomly chose 120 from the 10,000 chromo-
somes to mimic the Phase II HapMap CEU data, and these
120 chromosomes were randomly paired to form 60 sub-
jects. Based on the LD patterns of the 60 subjects, tag SNPs
were selected according to the conventional criterion of r2 =
0.8 and MAF > 5% (many association studies for complex
human diseases tend to use SNPs with MAF > 5% due to
a power consideration [Barrett and Cardon, 2006; Keating
et al., 2008]), with the H-clust method [Rinaldo et al., 2005;
Roeder et al., 2005]. These tag SNPs were served as markers
used in our simulations.
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BINARY TRAITS
When evaluating the type-I error rates, the population at-

tributable risk (PAR) was set at 0%. When evaluating the
power, the PAR of each causal variant was set at 0.2%,
0.4%, 0.6%, 0.8%, and 1.0%, respectively. We follow previous
studies [Li et al., 2010; Madsen and Browning, 2009] to as-
sign larger genetic effects to rarer variants, because rare vari-
ants with a chance to be detected usually have larger effect
sizes compared to common variants [Bodmer and Bonilla,
2008]. The genotype relative risk (GRR) of a causal variant j
with PAR of P ARj and MAF of MAF j is

G RRj =
(

P ARj(
1 − P ARj

) · MAF j
+ 1

)(−1)
I(� j =1)

, (6)

where I
(
� j = 1

)
is the indicator function with a value of 1

or 0 according to whether the causal variant j decreases the
disease risk or not. Given a value of PAR, the relationship
between MAF and GRR depicted by Equation (6) is shown
in supporting information (Supplementary Figures S1 and
S2). In addition, we also show the distributions of MAFs
and GRRs of the causal variants in our 200 simulated data
sets in Supplementary Figures S3 and S4, respectively.

To generate chromosomes of one individual, we ran-
domly selected two chromosomes from the remaining 9,880
(= 10,000−120) chromosomes. The disease status of an in-
dividual possessing two chromosomes {H1, H2} was deter-
mined by

P (affected| {H1, H2}) = f0 ×
2∏

k=1

d∏
j=1

G RR
I(Hk, j =a j )
j , (7)

in which f0 is the baseline penetrance, and a j is the rare allele
of the causal variant j. Following Li et al. [2010], we fixed
f0 at 10%. In each replication, we continued the sampling
procedure until 1,000 cases and 1,000 controls were reached.
After generating the disease status based on Equation (7),
the genotypes of all the causal variants were removed from
our data sets. For each data set, we selected an analysis
region with 20 tag SNPs to encompass the d causal variants.

To account for the haplotype ambiguity, we first inferred
haplotype phases from unphased multimarker genotypes
with the EM algorithm by using the “haplo.em” function
in the “haplo.stats” package [Schaid et al., 2002]. Note that
all phasing algorithms assume HWE [Excoffier and Slatkin,
1995; Hawley and Kidd, 1995; Long et al., 1995], including
the “haplo.em” function. Following Schaid et al. [2002], we
assumed HWE in the pooled sample of cases and controls,
and then phased cases and controls together (phasing cases
and controls together provides a better control of type-I er-
ror rates than phasing cases and controls separately [Lin and
Huang, 2007]). All possible haplotype pairs were considered
with their posterior probabilities by treating the posterior
probabilities as weights.

In addition to the nine haplotype-based tests, we
also used the variable-threshold (VT) test program
(http://genetics.bwh.harvard.edu/rare variants/) to per-
form four pooling tests, including the fixed-threshold test
with two thresholds of 1% and 5% [Morris and Zeggini,
2010], the weighted-sum test [Madsen and Browning, 2009]
and the VT test [Price et al., 2010]. With a preliminary sim-
ulation, we found that the VT test was generally the most

powerful test among the four pooling tests. Therefore, in the
following comparisons, we only present the result of the VT
test [Price et al., 2010] as a representative of the four pooling
tests.

CONTINUOUS TRAITS
We further generated a continuous trait (Y) by

Y = 10C1 + 10C2 + �1g1 + �2g2 + · · · + �d gd + e, (8)

where C1 is a continuous covariate generated from a stan-
dard normal distribution, C2 is a dichotomous covariate
taking a value of 0 or 1 each with a probability of 0.5, g j is
the number of causal allele on the jth causal variant (g j = 0,
1, or 2), � j is the effect size of the jth causal variant, and e is
the random error. The random error, e, is assumed to have
a normal distribution with a mean of zero and a variance of
Ve . The effect sizes �’s and Ve were determined so that the
heritability of each variant (we call it “marginal heritability”)
was fixed at 0.05%, 0.1%, 0.15%, or 0.2% under the alterna-
tive hypothesis. The relationship between MAFs and �’s is
shown by Supplementary Figure S5. The total sample size
was set at 2,000. After generating the traits, the genotypes of
all the causal variants were removed from our data sets. HG
[Zhu et al., 2010] and WHG [Li et al., 2010] were proposed
for case-control studies; therefore, they were not included
in the comparisons for analyzing continuous traits.

In addition to specifying a normally distributed error
term (e), we also studied the situation when the random
error came from a Gamma distribution with a shape pa-
rameter of 1 and a scale parameter of

√
Ve . The Ve and the

effect sizes �’s (see Equation 8) were determined so that
the marginal heritability was fixed at 0.05%, 0.1%, 0.15%, or
0.2% under the alternative hypothesis.

SIMULATION RESULTS

TYPE-I ERROR RATES
By setting the PAR or the marginal heritability at exactly

0%, we used the 200 simulated data sets to evaluate the
type-I error rates. For each data set, 200 replications were
performed. In the package “haplo.stats,” the default of the
minimum number of counts for a haplotype to be included
in the model is 5. Therefore, by default, haplotypes with
frequencies less than 0 = 0.125% (= 5/(2 × 2000), where
2,000 is the total number of subjects) would be lumped
into a single baseline group when using the “haplo.stats”
package. To evaluate the influence of the choice of 0, we
specified 0 = 0.125%, 0.25%, and 1%, respectively. The
corresponding minimum numbers of counts for a hap-
lotype to be included in the model were 5, 10, and 40,
respectively.

For similarity-based tests, following a practical strategy
to provide robustness to genotyping errors [Lin and Lee,
2010; Lin and Schaid, 2009; Sha et al., 2007], we merged a
haplotype with frequency less than a cutoff value 0 with
its most similar haplotype with frequency larger than 0.
This 0 is not necessary to be identical to the 0 used in
“haplo.stats.” However, to have a parallel comparison, we
here also let 0 = 0.125%, 0.25%, and 1% (where 1% is the
cutoff value suggested by Sha et al. [2007]), respectively.
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Fig. 1. Type-I error rates. The x-axis is the nominal significance level (where the leftmost point is 10−4 and the rightmost point is 10−2),
and the y-axis is the type-I error rate. The different panels in the figure are arranged such that the cutoff value of haplotype frequencies
is 0.125%, 0.25%, and 1% (from top to bottom) and the trait is binary, continuous with a normally distributed error term, and continuous
with a Gamma-distributed error term (from left to right). In each panel, there are two curves for the global test (one is based on asymptotic
P-values whereas the other is based on permutation P-values). For panels G and H, both the two curves for the global test are on the line
y = x (the black bold line). For other panels, the one on the line y = x is for the global test based on permutation P-values and the one
off the line y = x is for the global test with asymptotic P-values. Note that the ranges of the y-axis for the three trait distributions are
different in order to present the curve of the global test based on asymptotic P-values.

Figure 1 presents the type-I error rates under various
nominal significance levels, based on the 40,000 replications
across the 200 simulated data sets, for each trait distribution
and each 0. When 0 = 0.125% or 0.25%, the asymptotic
results of the global test are somewhat conservative for bi-
nary trait (panels A and D), but anticonservative for the
continuous trait with a normally distributed error term
(panels B and E) and the continuous trait with a Gamma-
distributed error term (panels C and F). When 0 = 1%,
the asymptotic results of the global test are valid for binary

trait (panel G) and the continuous trait with a normally dis-
tributed error term (panel H), but still somewhat anticon-
servative for the continuous trait with a Gamma-distributed
error term (panel I). All the other tests, including the global
test based on permutation P-values, are valid in the sense
that their type-I error rates correspond to the nominal sig-
nificance levels. To have a fair comparison in power, we use
permutations to evaluate the statistical significance for the
global test (permutations are also required for max and VT).
In the following simulations, the significances of global and
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max are obtained with 1,000–20,000 permutations by a se-
quential Monte Carlo algorithm [Besag and Clifford, 1991],
according to the default of the package “haplo.stats” [Schaid
et al., 2002]. Moreover, 0 is specified at 0.125% in the follow-
ing simulations (as the default cutoff value in “haplo.stats”)
for the global, max, and the similarity-based tests.

POWER COMPARISONS—BINARY TRAITS
Figure 2 presents the power averaged over the 200 data

sets representing a wide range of LD patterns, when the
trait is binary. For each scenario (each combination of r,
PAR, and d) within each simulated data set, we performed
100 replications. The results show that the pooling methods
such as the VT test are underpowered because they pool
signals of common SNPs that do not well represent the
information of uncommon variants. The global, wei-SIMc-
matching, and max tests are the three most powerful tests.
Specifically, the max test is slightly more powerful than the
other two competitors when the PAR of each causal variant
is smaller than or equal to 0.4% (the middle column of Figure
2) or when the number of causal variants is smaller than
20 (the right column of Figure 2). When there are more
causal variants (d ≥ 20), there are usually more categories of
disease-contributing haplotypes. In this situation, global, an
omnibus test of all haplotype categories, is more powerful
than max.

Overall, global is slightly more powerful than wei-SIMc-
matching. The test statistic of SIMc is a summed product
of genomic similarities and covariate-adjusted phenotypes
(see Equation (4)). When the causal variants are all uncom-
mon (MAF < 5%), SIMc is underpowered because few sub-
jects have the causal variants and most subjects are sim-
ilar by having no causal variants. By contrast, global lets
each haplotype category (common or uncommon, as long
as the frequency is larger than the cutoff 0) account for an
equal one degree of freedom (see Equation (3) of [Schaid
et al., 2002]). Therefore, the association of uncommon hap-
lotypes is more likely to be detected by global, rather than
by SIMc.

The wei-SIMc-matching test, a variant of SIMc, is thus de-
veloped to enhance the ability of similarity-based approach
to detect uncommon causal variants. The weight used in the
wei-SIMc-matching test is in the order of 1/2 from the bino-
mial standard deviation viewpoint. Through this work, we
see that the SIMc test with this weight on haplotypes still
cannot compete with the global test, when all the causal vari-
ants are uncommon (MAF < 5%). A larger order of weight
can further boost the power to detect uncommon causal
variants, however it will inevitably suffer from power loss
if there are some common causal variants in that region
[Tzeng et al., 2011].

Comparing SIMc with SIMp, the former is more powerful
because it takes not only the within-group similarity but also
the between-group similarity into considerations [Allen and
Satten, 2009; Lin et al., 2012; Nolte et al., 2007; Sha et al.,
2007]. SIMp has good power only when the causal variant
was introduced at a common haplotype [Lin et al., 2012].
In our simulations, the disease status was influenced by
multiple variants that usually resulted in multiple disease-
contributing haplotypes with low frequencies. Therefore,
SIMp was underpowered in this situation. Comparing the
counting measure with the matching measure, the latter
is more powerful because it captures the information of

identical-by-descent sharing more precisely [Lin and Lee,
2010; Lin and Schaid, 2009; Tzeng et al., 2009].

HG [Zhu et al., 2010] and WHG [Li et al., 2010] were not
as powerful as the global, wei-SIMc-matching, and max tests.
A main reason is that the data were split into a training
set and a testing set. Both HG and WHG can be improved
by using the entire sample for the co-classification stage
and the same entire sample for the association stage, with
permutations to adjust for the statistical significance. This
strategy is computationally feasible when handling only top
genes [Feng and Zhu, 2010]. However, it is computationally
demanding for our comprehensive simulations.

POWER COMPARISONS—CONTINUOUS
TRAITS

Figure 3 presents the power averaged over the 200 data
sets when the trait is continuous (100 replications for each
scenario within each data set), given the nominal signif-
icance level of 10−3. The result given the nominal signif-
icance level of 10−4 is presented in Supplementary Figure
S7. When the error term is simulated from a normal distribu-
tion, the wei-SIMc-matching, global, and max tests are, again,
the three most powerful tests. The global test is more robust
to the percent of variants among the d causal variants that
increase the trait value (the left upper panel of Figure 3). The
global and max tests are slightly more powerful than the wei-
SIMc-matching test when the marginal heritability of each
causal variant is smaller than or equal to 0.1% (the middle
upper panel of Figure 3) or when the number of causal vari-
ants is smaller than or equal to 20 (the right upper panel of
Figure 3).

Note that different from other tests, the power of the
VT test is not V-shaped, when the x-axis is the per-
cent of variants among the d causal variants that in-
crease the trait value (the first columns of Figure 3
and Supplementary Figure S7). This is because VT per-
forms a right-tailed test in the program (http://genetics.
bwh.harvard.edu/rare variants/). Revising it to a two-
tailed test can improve its power under a small r (the percent
of variants among the d causal variants that increase the trait
value).

When the error term is simulated from a Gamma distribu-
tion, wei-SIMc-matching is consistently the best method un-
der all scenarios we evaluated (the bottom rows of Figure 3
and Supplementary Figure S7). In the package “haplo.stats,”
the only choice of trait type for a continuous trait is “gaus-
sian.” Therefore, we also specify “gaussian” as the trait
type, when analyzing the continuous trait with a Gamma-
distributed error term. Because the trait is skewed and is not
following the normal (gaussian) distribution, the global and
max tests (both performed with the package “haplo.stats”)
suffer from power loss. This problem can be remedied by
taking a logarithmic transformation on the trait. However,
the skewness of an error term is not always easy to be rec-
ognized from the observed trait values. By contrast, the
performances of the similarity-based tests are robust to the
distribution of the traits (comparing the top rows and the
bottom rows of Figure 3 and Supplementary Figure S7).

We also present the power stratified by the marginal her-
itability (given d = 40, and r = 100%) and then sorted by
the percent of rare causal variants with MAF < 0.5% (top
rows of Supplementary Figures S10 and S11). Given many
rare causal variants (MAF < 0.5%), wei-SIMc-matching is
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Fig. 2. Comparison of power by r (the percent of high-risk variants among the d causal variants), PAR, and d (the number of causal
variants), given a binary trait. The figure shows the power comparison by r (the left column, given PAR = 0.5% and d = 40), PAR (the
middle column, given d = 20 and r = 100%), and d (the right column, given r = 100% and PAR = 0.5%), respectively. The nominal
significance levels were set at 10−3 (top row) and 10−4 (bottom row), respectively.

underpowered because very few subjects have the causal
variants and most subjects are similar by having no causal
variants. Furthermore, we also sorted the power by the LD
pattern between the causal variants and the surrounding
markers (bottom rows of Supplementary Figures S10 and
S11). As expected, the power of all the tests improves as
the average r2 increases. Generally speaking, global is more
powerful than wei-SIMc-matching when the average r2 is
smaller, whereas wei-SIMc-matching is more powerful when
the average r2 is larger (d = 40, the average r2 was obtained
by averaging the 40 × 20 r2’s of any one causal variant and
each of the 20 surrounding markers).

CHOICE OF THE CUTOFF VALUE �0

In the above power comparisons, the cutoff value for hap-
lotype frequencies was set at 0 = 0.125%, the default value
used in “haplo.stats.” The haplotypes with frequencies less
than 0 were pooled into a single baseline group when we

used “haplo.stats.” Besides, in the similarity-based tests, a
haplotype with frequency less than 0 was merged with its
most similar haplotype with frequency larger than 0. Be-
cause the matching measure is a phase-dependent metric,
the choice of 0 may affect the performance of the SIMp-
matching, SIMc-matching, and wei-SIMc-matching tests. To
evaluate the influence on power of the five tests (global,
max, SIMp-matching, SIMc-matching, and wei-SIMc-matching
tests) with a different 0, we further performed simulations
with 0 = 1%. In Supplementary Figures S12–S14, we com-
pare the result given 0 = 0.125% with that given 0 = 1%.

When analyzing binary traits (Supplementary Figure
S12), all the five tests (global, max, SIMp-matching, SIMc-
matching, and wei-SIMc-matching tests) became less power-
ful given an increased 0 of 1%. As shown by Supplemen-
tary Figure S3, among all the causal variants in our sim-
ulation, the percent of rare causal variants (MAF < 1%) is
73.7%, whereas the percent of extremely rare causal variants
(MAF < 0.125%) is 18.5%. The power loss given an increased
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Fig. 3. Comparison of power by r (the percent of variants among the d causal variants that increase the trait value), the marginal heritability,
and d (the number of causal variants), given a continuous trait. The figure shows the power comparison by r (the left column, given
the marginal heritability = 0.2% and d = 40), the marginal heritability (the middle column, given d = 40 and r = 100%), and d (the
right column, given r = 100% and the marginal heritability = 0.2%), respectively. The nominal significance level was set at 10−3. The
trait is continuous with a normally distributed error term (top row) and continuous with a Gamma-distributed error term (bottom row),
respectively. The result given the nominal significance level of 10−4 is shown by Supplementary Figure S7.

0 of 1% is expected because haplotypes with frequencies
less than 1% are more likely to tag the rare causal variants
(MAF < 1%). However, they are lumped into a single base-
line group when performing global and max, or merged with
other commoner haplotypes when performing the SIMp-
matching, SIMc-matching, and wei-SIMc-matching tests.

When analyzing continuous traits, again, similarity-
based tests have a decrease in power when 0 is increased to
1%, especially for the wei-SIMc-matching test whose power
is boosted from up-weighting the similarities contributed
by uncommon haplotypes. For global and max, however,
generally the power improves when 0 is increased to 1%.
This contradicts the previous result for binary traits. Scor-
ing many rare haplotypes (frequencies between 0.125% and
1%) in a model may weaken the power of the global and max
tests, although we are unclear why this phenomenon only
appears in analyzing continuous traits. On average, in each
replication, ∼18 haplotypes with frequencies larger than

1% and ∼20 haplotypes with frequencies between 0.125%
and 1% (see Supplementary Figures S15 and S16). There-
fore, compared with 0 = 1%, ∼20 more haplotypes need
to be scored in the model given 0 = 0.125%. The many
rare haplotypes (frequencies between 0.125% and 1%) may
cause unstable estimation of the score vector U
 and/or the
variance-covariance matrix V
 .

COMPUTATIONAL BURDEN
The computational burden to perform the wei-SIMc-

matching test is reasonable because no permutation is re-
quired. When analyzing binary traits given PAR = 0.2%,
d = 20, r = 100%, and the cutoff values for haplotype fre-
quencies 0 = 0.125%, the wei-SIMc-matching test on average
takes, respectively, 0.9, 6.9, and 23.3 sec for a 20-SNP mul-
timarker set on 1,000, 2,000, and 3,000 subjects, given an
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Intel Xeon workstation with 3.0 GHz of CPU and 2.0 GB
of memory. The global test with 1,000–20,000 permutations
on average takes 13.6, 61.3, and 145.9 sec, for analyzing
1,000, 2,000, and 3,000 subjects, respectively. The range of
the required time for the global test is quite large (shown
in Supplementary Figure S17), depending on the number
of permutations (may range from 1,000 to 20,000) in each
replication.

SUMMARY OF SIMULATION
RESULTS

The purposed wei-SIMc-matching test is among the most
powerful tests for detecting uncommon causal variants
(MAF < 5%), although it still cannot compete with the global
test when most causal variants are very rare (MAF < 0.5%)
or when the average r2 between the causal variants and the
surrounding markers is extremely low (≤0.01), as clearly
shown by Supplementary Figure S10. However, the perfor-
mance of the wei-SIMc-matching test is more robust to the
trait distributions and the cutoff values for haplotype fre-
quencies (0). Furthermore, it does not require permutations
to obtain reliable statistical significance.

APPLICATION TO A POPULATION-BASED
RESEQUENCING STUDY FOR THE ANGPTL4
GENE

We then applied the eight (for a continuous trait) or 10
(for a binary trait) tests to a population-based resequenc-
ing study for the ANGPTL4 gene [Romeo et al., 2007, 2009].
To understand the role of ANGPTL4 in lipid metabolism,
Romeo et al. [2007, 2009] sequenced seven exons and the
intron-exon boundaries of ANGPTL4. There were 3,551 sub-
jects coming from a population-based probability sample
of Dallas County residents, including 1,830 African Amer-
icans, 601 Hispanics, 1,045 European Americans, and 75
other ethnicities. In our analysis, we evaluated the perfor-
mance of the various tests to detect associations between
the plasma triglyceride levels and the uncommon variants
in ANGPTL4, pretending that all the uncommon variants
were not genotyped. We excluded the 75 subjects of other
ethnicities from our analysis. Among the 93 variants, we
kept two variants with MAF > 5% in the sample of the
3,476 (3,551−75 other ethnicities) subjects: P307P (MAF =
6.6%) and P389P (MAF = 6.5%). We deliberately excluded
the variants with MAF less than 5% in order to mimic a
commercial SNP array. To the best of our knowledge, E40K
(MAF = 0.73%) and R278Q (MAF = 3.1%) are the only two
variants reported to be associated with plasma triglyceride
levels, based on the analyses for this resequencing data set
[King et al., 2010; Maxwell et al., 2010; Romeo et al., 2007; Yi
et al., 2011]. Our objective is to see whether the haplotype-
based methods can detect the signal caused by the two re-
ported uncommon variants (MAF < 5%), E40K and R278Q,
which were both deliberately excluded from our analyses.

The log-transformed plasma triglyceride levels were first
adjusted for age, sex, body mass index (BMI), and eth-
nicity (including three levels: African American, Hispanic,
and European American) by performing a linear regres-
sion of log-transformed plasma triglyceride levels on these
four covariates. The residuals (yi − �̂i )’s were treated as
continuous traits used in Equations (3) and (4) to per-

form the similarity-based tests. Because there were 468 sub-
jects missing in age or BMI, the actual number of sub-
jects for the analysis of the continuous trait was 3,008 (=
3,551−75−468). Following Romeo et al. [2007], we also cre-
ated a binary trait by coding subjects in the top and bottom
quartiles of the residuals as 1 (755 subjects) and 0 (744 sub-
jects), respectively. The remaining subjects were excluded
from the analysis. Therefore, the number of subjects for
the analysis of the binary trait was 1,499 (= 755 + 744).
We then tested for the association between the continu-
ous/binary trait and the haplotypes formed by the two vari-
ants (P307P and P389P). There were 93 variants, generating
4,278 (= (93

2

)
) possible combinations of any two variants.

We set the significance level at 1.16 × 10−5 (= 0.05/4278).
The tests yielding significant results included SIMc-counting
(P-value of the analysis for the continuous/binary trait =
3.6 × 10−10/2.2 × 10−9), global (< 10−6/ < 10−6, with 106 per-
mutations), max (6 × 10−6/5 × 10−6, with 106 permutations),
and wei-SIMc-matching (6.3 × 10−6/1.8 × 10−5). The above
four tests can detect the association between the plasma
triglyceride levels and the uncommon variants in ANGPTL4
(E40K and R278Q [King et al., 2010; Maxwell et al., 2010;
Romeo et al., 2007; Yi et al., 2011]), even when the uncom-
mon variants were not genotyped. The results for the con-
tinuous trait and the binary trait were very similar.

DISCUSSION

When performing haplotype-based tests, the question of
how to choose the size of a multimarker set is still open
[Schaid, 2004]. Although we let 20 SNPs form a multimarker
set in our simulations, we also performed simulations by us-
ing only 10 SNPs to form a set (Supplementary Figures S18–
S20). The relative power performances were very similar to
the results by using 20 SNPs, but generally each test was less
powerful than that by using 20 SNPs in a multimarker set.
This is because larger multimarker sets may allow for mea-
suring sharing over longer genomic sequences and lead to
more power gains [Allen and Satten, 2009; Lin et al., 2012].

Through systematic simulations while considering a wide
range of LD patterns, we find that although wei-SIMc-
matching cannot compete with global in some situations (es-
pecially when most causal variants are very rare [MAF <
0.5%] or when the average r2 between the causal variants
and the surrounding markers is extremely low (≤ 0.01), as
shown by Supplementary Figure S10), it is one of the best
approaches for detecting uncommon causal variants (MAF
< 5%) with surrounding common SNPs (MAF > 5%). In
addition to the power, the merits of wei-SIMc-matching also
include its robustness to the trait distributions and the cut-
off values for haplotype frequencies (0). Furthermore, it is
computationally feasible in the sense that no permutation
is required to obtain reliable P-values.

Although max is slightly more powerful than global and
wei-SIMc-matching under certain situations when analyzing
binary traits, there is no analytic form for the distribution
function of the max test statistic and permutation P-values
are required. Permutation procedure is also required to ob-
tain more reliable P-values for global, when the frequencies
of some haplotype categories are low or when the trait is
skewed (see Figure 1 or [Schaid et al., 2002]). When the
significance level is much smaller than 0.05 as in whole-
genome association studies, the estimation of P-values with
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permutation procedures can be computationally challeng-
ing [Tong et al., 2010]. By contrast, wei-SIMc-matching pro-
vides reliable asymptotic P-values. As shown by Figure 1,
its type-I error rates exactly correspond to the nominal sig-
nificance levels.

The max test may not be very ideal because it evaluates the
significance of a haplotype by assuming no effect of other
haplotypes on the trait. Recall that the statistic for global is
Tglobal = U


T V

−1U
 , where U
 is the score vector evalu-

ated at � = 0 (
 k = 0 for all k, in which 
 k is the kth element
of �). When performing max with the package “haplo.stats,”

the test statistic is Tmax = max
k

(U
2

 ,�

/
V
 ,�,�

), where Uψ,κ is the

kth element of U� that is evaluated at ψ k = 0 for all k. It will
be more precise to calculate the test statistic of max based on
U∗

ψ,κ (instead of Uψ,κ ), where U∗
ψ,κ is evaluated at ψ k = 0 and


 l = 
̂ l (l 	= k, 
̂ l is the maximum likelihood estimate of the
effect of haplotype l in the unconstrained model). That is,
U∗


 ,� evaluates the significance of haplotype k while leaving
the effects of the rest of haplotypes unconstrained.

In conclusion, compared with the other tests considered
in this work, the wei-SIMc-matching test is to be recom-
mended for the detection of uncommon causal variants with
surrounding common SNPs, in light of its power and com-
putational feasibility.
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