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ABSTRACT: For unrelated samples, principal component (PC) analysis has been established as a simple and effective approach
to adjusting for population stratification in association analysis of common variants (CVs, with minor allele frequencies MAF
> 5%). However, it is less clear how it would perform in analysis of low-frequency variants (LFVs, MAF between 1% and
5%), or of rare variants (RVs, MAF < 5%). Furthermore, with next-generation sequencing data, it is unknown whether
PCs should be constructed based on CVs, LFVs, or RVs. In this study, we used the 1000 Genomes Project sequence data
to explore the construction of PCs and their use in association analysis of LFVs or RVs for unrelated samples. It is shown
that a few top PCs based on either CVs or LFVs could separate two continental groups, European and African samples, but
those based on only RVs performed less well. When applied to several association tests in simulated data with population
stratification, using PCs based on either CVs or LFVs was effective in controlling Type I error rates, while nonadjustment
led to inflated Type I error rates. Perhaps the most interesting observation is that, although the PCs based on LFVs could
better separate the two continental groups than those based on CVs, the use of the former could lead to overadjustment in
the sense of substantial power loss in the absence of population stratification; in contrast, we did not see any problem with

the use of the PCs based on CVs in all our examples.
Genet Epidemiol 37:99-109, 2013. © 2012 Wiley Periodicals, Inc.
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Introduction

With the availability of next-generation sequencing data,
there has been increasing interest in studying associations
between complex traits and low-frequency variants (LFVs,
with minor allele frequency [MAF] between 1% and 5%) or
rare variants (RVs, with MAF < 1%); see two recent reviews
[Asimit and Zeggini, 2010; Bansal et al., 2010]. Due to the
low MAFs of LFVs and RVs, statistical tests developed for
common variants (CVs, with MAF > 5%) in genome-wide
association studies (GWASs) may no longer be powerful.
Accordingly, there have been intensive efforts in develop-
ing new statistical tests for LFVs and RVs. Basu and Pan
[2011] conducted a comprehensive review and comparison
of many existing association tests for LFVs and RVs with un-
related samples. Although there does not exist a uniformly
most powerful test, they used simulated data to demonstrate
the generally good performance of the sum of squared score
(SSU) test, which has been shown [Pan, 2011] to be closely
related to an empirical Bayes test for high-dimensional data
[Goeman et al., 2006], kernel machine regression (KMR)
[Kwee et al., 2008; Wu et al., 2010, 2011b], genomic-distance
based regression (GDBR) [Wessel and Schork, 2006], and the
C-alpha test [Neale et al., 2011]. A limitation of their study is
the lack of use of real sequence data. Furthermore, Basu and
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Pan [2011] also did not consider the small sample size issue
and use of covariates, which may include principal compo-
nents (PCs) to adjust for population stratification. Here we
use a low-coverage whole-genome sequencing dataset gen-
erated by the 1000 Genomes Project [1000 Genomes Project
Consortium, 2010] to address the above issues.

Intuitively, population stratification can arise in association
studies of LFVs and RVs, and some existing techniques for
CVs, for example, PC analysis, might be applicable to LFVs
and RVs [Lin and Tang, 2011]. However, two recent studies
[Baye et al., 2011; Siu et al., 2012] achieved different conclu-
sions on the relative effectiveness of CV- or RV-based PCs in
uncovering population structures. More importantly, to our
knowledge, the issue has not been experimentally demon-
strated in the context of association tests. Among the many
existing techniques for CVs, Wu et al. [2011a] demonstrated
that adding a few top PCs as covariates in a regression analysis
is a simple and effective approach to adjusting for popula-
tion stratification for unrelated samples. Hence, we adopt
this approach throughout. Furthermore, with the availability
of sequence data, as pointed out by Price et al. [2010a], it
is not completely clear whether LFVs or RVs can be used to
infer genetic ancestry. If so, importantly, it is natural to ask
whether using LFVs or RVs (or both LFVs/RVs and CVs)
can perform better than using CVs alone in adjusting for
population stratification. We show that, in agreement with
Siu et al. [2012], based on the 1000 Genomes Project data for
two continental groups, 174 African (AFR) and 283 European
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(EUR) samples, the top PC based on a large number of LFVs
could better separate the two groups than that based on CVs;
however, the PCs based on either CVs, LFVs, or RVs could
not separate the underlying subgroups. More interestingly
and perhaps surprisingly, although using PCs based on ei-
ther CVs or LFVs can effectively control inflated Type I error
rates in the presence of population stratification, using PCs
based on CVs maintained power while using PCs based on
some randomly selected LFVs might suffer from substantial
power loss in the absence of population stratification, which
was likely due to the high linkage disequilibrium (LD) among
the randomly selected LFVs.

Methods

Data

We downloaded a low-coverage whole genome sequencing
dataset released in August 2010 on the 1000 Genomes Project
web site. The dataset included 629 individuals: 174 Africans
(AFR), 283 Europeans (EUR), and 194 Asians; we only used
the data from the first two groups. In the first two continen-
tal groups, there were four and six subgroups, respectively
(Table I). Due to the small sample size, we mainly focus on
the two continental groups for association testing with chro-
mosome 1 data, though we will also explore the use of PCA
in separating the subgroups with the whole genome data. We
defined RVs as single nucleotide polymorphisms (SNPs) with
MAFsless than 1%, LFVs as those with MAFs between 1% and
5%, and CVs as those with MAFs greater than 5%. On chro-
mosome 1,among the 694,231 common SNPs in both groups,
there were 478,208 CVs, 146,353 LFVs, and 69,670 RVs.

For the purpose of this project, we selected a few regions of
multiple LFVs or RVs associated with the continental group.
As pointed out by Price et al. [2010a], because spurious asso-
ciations often arise at differentiated variants whose MAFs are
unusually different between different ancestral groups, it is
crucial to consider these SNPs when correcting for population
stratification. We used sliding windows with various sizes on
chromosome 1 and tested the association between the conti-
nental group and the LFVs or RVs inside each window using
a few statistical tests (discussed below). We identified three
regions, termed R1 to R3, as representatives for unusually
differentiated LFVs or RVs with various characteristics.

For each region, based on a statistical model and the se-
lected LFVs or RVs from the sequence data, we generated
simulated datasets with a simulated disease status for each
subject. Then we tested possible association between the gen-
erated disease status and the observed SNPs in each region,
based on which and the truth we assessed the performance of
each test in terms of its statistical power and Type I error. Of

Table l. A summary of the two continental groups

particular interest was to investigate how the performance of
a test depended on whether and how to use PCs constructed
from the genome-wide sequence data.

Statistical Tests

We applied two sets of some representative statistical tests
for association analysis of LFVs or RVs. The first set in-
cludes the score test, the sum of squared score (SSU) test, the
weighted sum of squared score (SSUw) test, the Sum test, and
the univariate minimum P-value (UminP) test [Pan, 2009],
while the second includes the T1, T5, Fp, VT, and EREC tests
[Lin and Tang, 2011]. We will first introduce the first set
of the five tests. They were chosen based on the following
reasons. The score test is a classical test in general statistical
applications, asymptotically equivalent to the Wald test and
likelihood ratio test. The UminP test is perhaps most popular
in association analysis of CVs, as used in GWASs. The Sum
test is a representative of the so-called pooled association
tests [Han and Pan, 2010], similar to the well-known CAST
[Morgenthaler and Thilly, 2007] and CMC test [Li and Leal,
2008]. The SSU test is closely related to GDBR [Wessel and
Schork, 2006], KMR [Wu et al., 2010, 2011b], and C-alpha
test [Neale et al., 2011]; in an extensive simulation study, Basu
and Pan [2011] found that the SSU test performed similarly
to the KMR and C-alpha, and was an overall winner with the
highest or close to the highest power in association analysis of
RVs. With either CVs or RVs, the SSUw test often performed
similarly to the SSU test; however, with both RVs and CVs,
the SSUw test might perform better [Basu and Pan, 2011].
All the five tests are based on the score vector of a regres-
sion model, for example, a generalized linear model (GLM),
hence only a reduced model under the null hypothesis Hy
is to be fitted, leading to their being computationally faster
and numerically more stable than those based on fitting a
full model, for example, the Wald or likelihood ratio test.
Importantly, because the tests are formulated in the general
regression framework, it is easy to incorporate covariates or
extend them to other more complex studies, for example,
with censored event times as traits, correlated family data, or
multiple traits.

For a binary trait Y; for subject i with k SNPs X, =
(Xi1, ..., Xi) and covariates Z; = (Z;, ..., Z;), all the
five tests are based on the null model

J

LogitPr(Y; = 1) :,30+szj)/j,
j-1

which is simpler than the full model:

k ]
LogitPr(Yi=1) = Bo+ Y Xifj+ Y Zj¥.

j=1 j=1

Group EUR AFR

Subgroups CEU FIN GBR TSI MXL PUR YRI LWK ASW PUR2
No. of samples 90 36 43 92 17 5 78 67 24 5
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We use the additive coding for each SNP; that is, X; =0,
1, or 2 is the the number of minor alleles in SNP j. Due
to the extremely low MAF, it is unlikely to have two copies
of the minor allele for a given RV, and thus there is little
difference between various coding schemes for RVs. In the
current context, for population stratification, we include the
top J PCs as covariates.

All the five tests are global tests with the null hypothesis Hy:
B=(Bi,-..,Br) =0;it is global in the sense of not identi-
fying specific zero subcomponents of 8. Given a score vector
U=(U,,..., Uy and its covariance estimate V = Cov(U),
the five test statistics are, respectively:

Score = UV'U,

k
SSU=UU=> U,

j-1

k
SSUW = U'diag(V)' U= U>/Vj,
j=1
k
Smn:YU:E:Uﬁ
j-1
UminP = r?lfalx U?j/\/j.,
where diag(V) is a diagonal matrix with diagonal elements
(Vjj’s) of V.

Under Hj, based on the asymptotic Normality of U,
U~ N(0, V), the asymptotic distribution of the first four
tests can be easily derived and used to obtain their P-values
[Pan, 2009], while numerical integrations with a multivariate
normal density can be used for the UminP test [Conneely and
Boehnke, 2007]. For relatively small sample sizes, especially
with RVs, the above asymptotics may not be applicable. Alter-
natively, as suggested by other authors [Lin and Tang, 2011;
Wu et al., 2011a], we can apply the parametric bootstrap
[Efron and Tibshirani, 1993] in the following steps:

(1) fit the null model;

(2) use the fitted null model to generate Y;,’s as the bth
bootstrap dataset withb=1, ..., B;

(3) calculate a test statistic T'with the original data (Y;, X;)’s,
and T;, with the bth bootstrap data (Y}, X;)'s;

(4) the P-valueis Y,  I(|T| > | Ty|)/B.

We used B = 200 throughout (and using B = 1, 000 gave
similar results in all the simulations), though in practice we
might need to use a much larger B to achieve a higher level
of statistical significance.

As to be shown, for the score test and to a lesser degree for
the UminP test, the asymptotics might give inflated Type I
error rates, while the bootstrap gave much better results; in
contrast, the SSU and SSUw tests are more robust to small
samples with Type I error rates always close to the nominal
level in all our experiments.

For comparison, we also included the T1, T5, Fp, VT,
and EREC tests [Lin and Tang, 2011], all implemented in

software SCORE-Seq available at http://www.bios.unc.edu/
dlin/software/SCORE-Seq/

As shown by Lin and Tang [2011], a general class of the
score-based association tests can be formulated as

k
To =) 45U
j=1

where g is a weight for SNP j. Different choices of the weights
lead to a variety of tests:

(1) the T1 (or T5) test corresponds to & = 1 if the MAF of
SNP j is less than 1% (or 5%) and & = 0 otherwise;

(2) intheFp test,wehave & = 1/,/p;(1-p;), where p; isan
estimate of the MAF of SNP j with pseudocounts from
the pooled sample, giving higher weights to rarer SNPs
[Madsen and Browning, 2009];

(3) the VT test combines multiple tests based on multiple
thresholds, and for each threshold, § =1 if the MAF
of SNP j is less than the threshold and ¢ = 0 otherwise
[Price etal., 2010b]; it is a form of the adaptive Neyman’s
test [Pan and Shen, 2011];

(4) the EREC test uses & = Bj + ¢ with ,B]- as the (univariate)
maximum likelihood estimate of 8; and ¢ = 1 for binary
traits.

Although an asymptotic null distribution is available for
each of the first three tests, it is not available for the EREC test.
Furthermore, the asymptotic approximations might result in
inflated Type I error rates for RVs. Hence, we only show
the results of the second set of the tests with their P-values
calculated by the parametric bootstrap with the minimum
allowable B = 10° resamples.

We also note that the score, SSU, SSUw, and Sum tests
are also special cases of the general Ty test. In particular,
the SSUw test uses the weight ¢ = U;/V;; = Bj [Pan, 2009],
suggesting its close connection to the EREC test, whose weight
& can be regarded as shrinking B; toward constants ¢ or —c.

Results

Data Description

As shown in Figure 1, there are clear differences between
the MAF distributions of the two continental groups. In par-
ticular, the difference seems to be larger for low MAFs than
for high MAFs.

We selected three regions, named R1 to R3: the first two
contained 19 and 40 consecutive LFVs (and only LFVs) re-
spectively, while the third one consisted of 40 consecutive RVs
(and only RVs); we calculated the MAF of any SNP based on
the pooled sample. The LFVs or RVs within each region were
associated with the continental group; that is, the MAFs of
the SNPs were different between the AFR and EUR groups
(Figure 2). These three regions also showed different LD pat-
terns (Figure 3): LD was weak in R1, moderate in R3, and
strong in R2.

We randomly selected a large number of CVs (or LFVs)
from chromosome 1 to construct PCs. As shown in
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Figure 1. Distributions of MAFs for the EUR and AFR groups.
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Figure 2. Comparison of the MAFs between the EUR and AFR groups for the SNPs in regions R1-R3.

Figure 4, the top PC based on CVs could largely separate the
two AFR and EUR groups; however, perhaps surprisingly, the
top PC based on LFVs did better in completely separating the
two groups. When using some randomly selected SNPs, in-
cluding CVs, LFVs, and RVs, the results were between those
based on either CVs or LFVs alone (not shown). We will
present and discuss results based on RVs later. Because the
results with 100,000 CVs (or LFVs) (not shown) were similar,
in the following, we used a few top PCs based on either 10,000
CVs or 10,000 LFVs.

Association Testing With LFVS: Type | Error

We first generated simulated data under H, with popu-
lation stratification. Specifically, we randomly selected 90%
of the EUR samples and 10% of AFR samples as cases (i.e.,
102
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Y; = 1), while the remaining ones as controls (i.e., ¥; = 0). In
this way, none of the SNPs caused the “disease,” and there
was a clear association between the continental group and the
“disease” (i.e., population stratification). We applied the five
tests to the two LFV regions with 1,000 simulated datasets
for each case. Because the results are similar for PCs based
on either CVs or LFVs, we only show that for the former.
Table II lists the Type I error rates at the nominal level
a = 0.05. It is clear that, without adjustment for population
stratification, all the tests could have dramatically inflated
Type I error rates (except the Sum test for R1), suggest-
ing the necessity of adjusting for population stratification.
With PCs, including with even just the single top PC (i.e.,
#PCs=1), the problem with inflated Type I error rates largely
disappeared; there was almost no difference between using
various numbers of PCs, as long as at least one PC was used.
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Figure 3. LD plots in r? for the EUR (top row) and AFR (bottom row) groups in regions R1-R3.
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Figure 4. The top two PCs constructed with CVs or LFVs.

It is noted that the asymptotics-based score test could have
severely inflated Type I error rates, even in the presence of
PCs for region R2, and that the asymptotics-based UminP
test could also have slightly inflated Type I error rates. The
bootstrap-based tests all had their Type I error rates better

controlled.

Association Testing With LFVS: Power

We generated a disease status from the following logistic
regression model:

ky
LogitPr(Yi=1) = o+ ¥ X;B;.
j=1
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Table Il. Type | error rates with population stratification. The PCs were constructed using 10,000 CVs

Asymptotics Bootstrap
Loc Test #PCs=0 1 5 10 #PCs=0 1 5 10
R1 Score 0.693 0.055 0.052 0.048 0.716 0.044 0.044 0.042
SSU 0.618 0.062 0.039 0.035 0.647 0.061 0.039 0.044
SSUw 0.620 0.052 0.036 0.035 0.642 0.053 0.038 0.037
Sum 0.067 0.066 0.050 0.047 0.070 0.044 0.048 0.048
UminP 0.201 0.084 0.065 0.067 0.232 0.068 0.039 0.047
R2 Score 0.155 0.180 0.192 0.171 0.624 0.062 0.071 0.061
SSU 0.709 0.053 0.055 0.054 0.684 0.047 0.051 0.055
SSUw 0.700 0.052 0.055 0.054 0.669 0.049 0.052 0.055
Sum 0.684 0.054 0.055 0.055 0.652 0.049 0.059 0.056
UminP 0.677 0.052 0.061 0.066 0.685 0.044 0.050 0.047
Table lll. Empirical power of various tests based on the parametric bootstrap for the two regions with k causal SNPs. The PCs were
constructed using 10,000 CVs
Loc Test #PCs=0 1 5 10 #PCs=0 1 5 10
Bi ~ U(-log3,log3) Bi ~ U(0, log3)
Rlk =8 Score 0.489 0.489 0.489 0.496 0.838 0.836 0.824 0.826
SSU 0.500 0.492 0.497 0.501 0.882 0.880 0.891 0.881
SSUw 0.507 0.480 0.481 0.486 0.883 0.883 0.889 0.886
Sum 0.240 0.230 0.234 0.230 0.860 0.860 0.856 0.852
UminP 0.401 0.397 0.393 0.383 0.813 0.820 0.813 0.802
Bi ~ U(-log2,log2) Bi ~ U(0, log 1.5)
Rk =19 Score 0.483 0.467 0.479 0.475 0.504 0.504 0.493 0.479
SSU 0.507 0.493 0.511 0.492 0.773 0.771 0.758 0.738
SSUw 0.479 0.479 0.483 0.477 0.769 0.764 0.765 0.756
Sum 0.207 0.202 0.201 0.204 0.842 0.839 0.839 0.832
UminP 0.288 0.286 0.280 0.287 0.558 0.544 0.546 0.541
Bi ~ U(-log 3, log3) Bi ~ U(0, log2)
R2k =4 Score 0.256 0.240 0.251 0.244 0.707 0.702 0.699 0.687
SSU 0.401 0.406 0.400 0.406 0.786 0.787 0.785 0.793
SSUw 0.404 0.404 0.403 0.408 0.783 0.787 0.787 0.795
Sum 0.405 0.406 0.406 0.409 0.784 0.785 0.789 0.793
UminP 0.360 0.344 0.347 0.349 0.761 0.763 0.758 0.756
Bi ~ U(-log2,log2) Bi ~ U(0,log1.1)
R2 k; =30 Score 0.364 0.365 0.362 0.366 0.776 0.761 0.765 0.761
SSU 0.601 0.602 0.607 0.606 0.871 0.868 0.871 0.869
SSUw 0.601 0.603 0.607 0.610 0.873 0.867 0.872 0.869
Sum 0.599 0.601 0.602 0.605 0.874 0.866 0.869 0.869
UminP 0.563 0.550 0.546 0.544 0.848 0.834 0.836 0.835

where X; was the jth SNP of the ith subject (AFR or EUR),
Bo = —log 3 was chosen to generate a background disease in-
cidence of 25% (when all X;; = 0), and the causal effect sizes
B; were randomly generated from a uniform distribution
U(-a, a) or U(0, a) for a constant a > 0. With U(-a, a), some
causal effects were deleterious while others were protective
against disease; with U(0, a), all causal effects were in the
same direction of being deleterious. We used k; < k:ifk; < k,
we randomly selected a subset of the SNPs to be causal while
others were neutral or noncausal, but a test was always applied
to all the k SNPs; it is important to assess a test’s robustness
to the number of noncausal SNPs, since in practice we expect
causal SNPs to be mixed with some neighboring noncausal
ones. Each subject i’s genotype was input to the above model
to generate his/her disease status. In such a way, we generated
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a dataset of 457 subjects with various numbers of cases and
controls.

Because the general conclusions remained the same, we
only chose a small subset of results to present in Tables III
and IV. Recall that there were weak and strong LD, and a small
and a large number of LFVs, in the two regions R1 and R2,
respectively. The PCs were constructed based on the 10,000
randomly selected CVs. First, because all the SNPs had MAF
between 1% and 5%, the T1 test was not applicable (with all
weights & = 0), and the T5 test (with all weights & = 1) was
essentially the same as the Sum test. In addition, because the
causal SNPs were selected randomly and were not correlated
with lower or higher MAFs, the Fp and VT tests were not
expected to improve over the T5 and Sum tests. Second,
because there was no population stratification, it is good to



Table IV. Empirical power of various tests based on the parametric bootstrap for region R1. The PCs were constructed using either

10,000 CVs or 10,000 LFVs

10,000 CVs 10,000 LFVs
Loc Test #PCs=0 1 5 10 #PCs=0 1 5 10
Bi ~ U(-log 3, log 3) Bi ~ U(-log 3, log 3)

Rl1k =8 T5 0.200 0.207 0.195 0.188 0.200 0.205 0.193 0.182
Fp 0.203 0.197 0.186 0.192 0.203 0.195 0.184 0.179
VT 0.214 0.212 0.208 0.199 0.214 0.211 0.202 0.195
EREC 0.401 0.399 0.381 0.375 0.401 0.401 0.373 0.368

Bi ~ U(0, log 3) Bi ~ U(0, log 3)

Rl1k; =8 T5 0.872 0.878 0.869 0.857 0.872 0.876 0.866 0.812
Fp 0.872 0.873 0.864 0.852 0.872 0.872 0.856 0.805
VT 0.838 0.832 0.826 0.813 0.838 0.820 0.784 0.755
EREC 0.916 0.914 0.903 0.891 0.916 0.912 0.873 0.850

Bi ~ U(-log2,log2) Bi ~ U(-log2,log2)

R1k; =19 T5 0.222 0.225 0.223 0.216 0.222 0.232 0.215 0.193
Fp 0.220 0.223 0.214 0.209 0.220 0.219 0.208 0.198
VT 0.230 0.235 0.228 0.229 0.230 0.225 0.233 0.200
EREC 0.395 0.396 0.398 0.382 0.395 0.390 0.392 0.375

Bi ~ U(0,log1.5) Bi ~ U(0,log1.5)

R1k; =19 T5 0.844 0.846 0.845 0.828 0.844 0.843 0.823 0.768
Fp 0.849 0.852 0.837 0.827 0.849 0.852 0.806 0.762
VT 0.779 0.779 0.752 0.747 0.779 0.760 0.729 0.685
EREC 0.826 0.820 0.807 0.796 0.826 0.817 0.782 0.698

see that using or not using PCs, or using different numbers
of PCs, gave similar results for all the tests. We emphasize
that this is a desired property. In practice, for a given dataset,
population stratification may or may not be present; to be
safe in avoiding spurious associations, we might still want to
apply an adjustment, for example, based on PCs. Hence, it
would be desirable to have no or minimum power loss when
adjusting for population stratification. Third, the identity of
the most powerful tests varied with the setup. For example,
in region R1,

(1) with all 19 causal SNPs being deleterious, the Sum, T5,
Fp, and EREC tests performed similarly and were most
powerful;

(2) with the 19 causal SNPs with opposite association di-
rections, as expected, the Sum, T5, and Fp tests were
low powered, while the SSU, SSUw, and score tests were
most powerful. Although there was no uniformly most
powerful test, the SSU and SSUw tests seemed to be the
overall winners.

Fourth, due to the small sample size, the asymptotics-based
score test might lose power as compared to the bootstrap-
based score test (not shown). In contrast, other tests seemed
to be more robust to small samples: their asymptotics-based
version and bootstrap-based version always gave similar re-
sults (not shown).

Because the PCs based on LFVs could better separate the
AFR and EUR groups, it would be interesting to see the
performance of the tests with PCs constructed from LFVs.
In many situations, a test with LFV-based PCs and with
CV-based PCs performed similarly; however, as shown in

Tables IV and V, when all the causal effects were in the same
direction, it is clear that adjusting with more than one PC
led to power loss, which was often substantial. For exam-
ple, in the setup with 30 causal SNPs with positive effects
in region R2 (Table V), the SSU and SSUw tests were most
powerful; however, with 1, 5, and 10 PCs, the power of the
SSU test monotonically decreased from 0.871 to 0.865, 0.803,
and 0.781, respectively. This is a case called overadjustment
in the sense of losing substantial power when adjusting for
population stratification (or more generally, confounders).
This phenomenon was not specific to the first set of the five
tests shown in Table V; it also appeared for the second set
(Table IV): for example, for region R1 with k; = 8 causal
SNPs with the same effect direction, the power of the T5, Fp,
VT, and EREC tests reduced, respectively, from 0.872, 0.872,
0.838, and 0.916 with no PC to 0.812, 0.805, 0.755, and 0.850
with 10 PCs constructed from 10,000 LFVs. It is interesting
to note that, in all our examples, using only the top PC could
largely control the Type I error rate while maintaining the
power (with no or negligible power loss).

We explored the reason for the overadjustment. We first hy-
pothesized that the LFV-based PCs might reflect some hidden
ethnic structure. When adjusting for ancestry using either re-
ported two continental groups or reported ethnic subgroups,
the test results were similar to those with no or only one
PC; in other words, there was no loss of power. Second, we
regressed the binary trait on the top 10 PCs and referred to
the corresponding linear combination of the top 10 PCs as
a PCs-defined group score. We found that in the cases with
overadjustment, the PCs-defined group score was much more
significantly associated with the sum of the LFVs to be tested
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Table V. Empirical power of various tests based on the parametric bootstrap for the two regions with k; causal SNPs. The PCs were
constructed using 10,000 LFVs

Loc Test #PCs=0 1 5 10 #PCs=0 1 5 10
Bi ~ U(-log 3, log 3) Bi ~ U(0, log 3)
Rl k =8 Score 0.489 0.498 0.499 0.486 0.838 0.836 0.805 0.787
SSU 0.500 0.502 0.495 0.506 0.882 0.881 0.880 0.851
SSUw 0.507 0.490 0.489 0.493 0.883 0.885 0.882 0.857
Sum 0.240 0.223 0.226 0.219 0.860 0.857 0.850 0.821
UminP 0.401 0.402 0.386 0.396 0.813 0.822 0.792 0.753
Bi ~ U(-log2,log2) Bi ~ U(0, log 1.5)
Rlk =19 Score 0.483 0.474 0.481 0.490 0.504 0.497 0.465 0.452
SSU 0.507 0.501 0.507 0.503 0.773 0.765 0.724 0.663
SSUw 0.479 0.476 0.484 0.488 0.769 0.763 0.727 0.681
Sum 0.207 0.202 0.194 0.180 0.842 0.835 0.819 0.791
UminP 0.288 0.286 0.273 0.283 0.558 0.547 0.498 0.441
Bi ~ Ul-log3.log3) Bi ~ U0, log2)
R2k; =4 Score 0.256 0.242 0.233 0.229 0.707 0.703 0.628 0.616
SSU 0.401 0.410 0.386 0.382 0.786 0.790 0.734 0.713
SSUw 0.404 0.408 0.384 0.380 0.783 0.791 0.737 0.713
Sum 0.405 0.407 0.384 0.380 0.784 0.786 0.737 0.712
UminP 0.360 0.341 0.330 0.317 0.761 0.762 0.703 0.672
Bi ~ U(-log2,log2) Bi ~ U(0,log1.1)
R2 ky =30 Score 0.364 0.361 0.347 0.337 0.776 0.761 0.657 0.634
SSU 0.601 0.604 0.585 0.582 0.871 0.865 0.803 0.781
SSUw 0.601 0.600 0.583 0.580 0.873 0.866 0.805 0.782
Sum 0.599 0.604 0.579 0.578 0.874 0.863 0.804 0.787
UminP 0.563 0.546 0.511 0.503 0.848 0.833 0.770 0.737

than those in other cases. Although the LFVs were randomly
selected to construct PCs, we found that surprisingly many of
them were highly correlated, as shown by an exome sequence
dataset from the 1000 Genomes Project [Tintle et al., 2011].
For CVs, it is highly recommended to use only nearly inde-
pendent SNPs to construct PCs [Lee et al., 2011; Patterson,
2006] to avoid the resulting PCs’ representing some peculiar
features of the data. Hence, we first tried to remove highly
correlated LFVs by using PLINK with a threshold of * < 0.5
or * < 0.05, respectively. Then using the top 10 PCs con-

structed with the remaining LFVs, we obtained the results
(not shown) similar to those without adjustment (or to using
CV-based PCs). In conclusion, the multiple PCs based on the
original possibly highly correlated LEVs perhaps represented
some unknown and possibly artificial structure in the data.

Subgroup Analysis With RVS

We used a subset of 786,487 nonmonomorphic RVs from
chromosomes 2 to 22 to construct PCs. We first used PLINK

2nd PC

S,

15t PC

(a) PC1 vs PC2

3rd PC
0
I
! B0

15t PC

(b) PC1 vs PC3

Figure 5. The top three PCs constructed with 10,000 RVs. The red/dark ones are the EUR samples and the green/gray ones are the AFR samples.
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Table VI. The P-values of the Tracy-Widom (TW) test and
one-way ANOVA applied to the eigenvalues or PCs constructed
from 10,000 RVs

# Eigenvalue 2-group 10-subgroup
or PC ™ ANOVA ANOVA

1 0 6.667x 10724 2.955 x 102
2 0 3.061x1072! 9.428x 10728
3 0 1.212x1028 6.830 x10°%
4 0 0.1283 0.0393

5 0 3.165x1073 8.635 x 107
6 0 6.745x1071° 1.593 x10°%7
7 0 9.098 x 1078 5310 x107'®
8 0 0.0349 1.002 x 102
9 0 0.1118 1.221x107°
10 0 0.0002 3.654 x 107
11 0 0.2260 1.376 x107°
12 0 0.9646 0.9393

13 0 0.0013 9.934 x107°
14 0 0.1094 0.3517

15 0 0.2797 0.3142

16 0 0.8881 0.1215

17 0 0.4054 0.0243

18 3.800 x 107 0.9982 0.9916

19 4.230 x1072 0.1583 0.7185

20 1.580 x 107! 0.7069 0.3861

[Purcell et al., 2007] to prune correlated SNPs with a sliding
window of size 50 (shifted by 5) and a threshold of * < 0.05;
after this thinning process, we had 305,036 RVs. We then
selected a random set of 10,000 RVs to construct PCs. As
shown in Figure 5, the first PC could largely separate the two
continental groups, but not the 10 subgroups. Several PUR
and PUR2 samples appeared to be outliers, which might have
unduly influenced the PCA results; on the other hand, it may
be argued that the RVs could better separate the PUR and
PUR2 samples from other subgroups.

We applied the Tracy-Widom (TW) test [implemented in
R package EigenCorr, Lee et al.,, 2011], yielding a statisti-
cally significant P-value less than 0.05 for each of the top 19
eigenvalues (Table VI). We also applied one-way ANOVA to
test the significance of each PC with varying mean values
across the two continental groups or the 10 subgroups; in
both cases, the most significant PCs were in the top 13.

A visual examination of the scatter plots of the top PCs did
not reveal that the top PCs could separate the 10 subgroups.
Hence, we applied finite Gaussian mixture model-based clus-
tering (implemented in R packagemclust) to top 10, 20, and
50 PCs. Based on the Rand index (calculated using R package
clue), using top 20 PCs led to the highest agreement be-
tween the resulting 12 clusters and 10 true subgroups (with a
Rand index value of 0.812 and an adjusted Rand index value
of 0.408). As shown in Table VII, in agreement with Fig-
ure 5, although the two continental groups could be largely
but not perfectly separated, the subgroups in the EUR group
could not be distinguished: most of them were mixed into
two clusters.

Association Testing With RVS

We also conducted a simulation study with the 40 RVs
in region R3. To assess the Type I error rates, we generated

Table VII. The numbers of samples assigned to each of the 12
clusters based on top 20 PCs constructed from 10,000 RVs

Subgroup/

Cluster Cl C2 C3 C4 C5 C6 C7 C8 C9 Cl0 C11 CI12
CEU 76 14 0 0 0 0 0 0 0 0 0 0
FIN 9 27 0 0 0 0 0 0 0 0 0 0
GBR 29 13 0 0 0 0 1 0 0 0 0 0
TSI 78 14 0 0 0 0 0 0 0 0 0 0
MXL 0 0 0 0 0 3 14 0 0 0 0 0
PUR 0 0 0 0 0 0 0 1 1 1 1 1
YRI 0 0 68 1 9 0 0 0 0 0 0 0
LWK 0 0 0 38 24 5 0 0 0 0 0 0
ASW 0 0 1 0o 14 9 0 0 0 0 0 0
PUR2 0 0 0 0 0 0 0 1 1 1 1 1

Table VIIl. Type | error and power for region R3. The PCs were
constructed using 10,000 RVs

Type I error Power

Test #PCs=0 1 10 20 #PCs=0 1 10 20

Score 0.972 0.521  0.114  0.086 0.525 0.519  0.504  0.537
SSU 0.995 0.301  0.040  0.052 0.654 0.639  0.623  0.640
SSUw 0.992 0.542  0.056  0.070 0.659 0.652  0.634  0.652
Sum 0.995 0.818  0.076  0.050 0.671 0.664  0.628  0.630
UminP 0.900 0.561  0.108  0.088 0.492 0.476  0.427  0.434
T1,T5 0.995 0.821  0.061  0.038 0.663 0.673  0.624  0.608
Fp 0.993 0.816  0.064  0.041 0.658 0.654  0.615  0.606
VT 0.984 0.647  0.056  0.057 0.605 0.590  0.537  0.533
EREC 0.997 0.119  0.012  0.066 0.662 0.648  0.609  0.594

a binary trait as before under population stratification; for
power, we randomly selected k; = 15 RVs as causal ones with
their effect sizes g; ~ U(0, log(3)). We used the parametric
bootstrap for P-value calculation for each test. Note that
because all the 40 SNPs had MAF less than 1%, the results
for the T1 and T5 tests were exactly the same. As shown in
Table VIII, under Hy, if no adjustment was made, all the tests
resulted in dramatically inflated Type I errors. Because the
first PC could not completely separate the two continental
groups (Fig. 5), using only the top PC still yielded largely
inflated Type I error rates. In contrast, using the top 10 or
20 PCs could largely remedy the problem, though there were
still some slightly inflated Type I error rates for some tests,
which could be due to the fact that even the top PCs could not
completely separate the two continental groups (Fig. 5 and
Table VII). For power, with the exception of the score, SSU
and SSUw tests, all other tests seemed to have some power
loss with 20 PCs.

Discussion

We have used a low-coverage whole-genome sequencing
dataset generated by the 1000 Genomes Project to empir-
ically investigate some characteristics of LFVs or RVs that
are relevant to their association analysis. For example, some
might argue that, due to the low MAFs, LFVs, and RVs are
expected to be independent; we have demonstrated that the
neighboring LFVs or RVs in a region may be in either low,
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moderate, or high LD, suggesting that future studies on the
performance of any association test should consider varying
LD as a factor. Furthermore, as a useful complement to the
extensive simulation studies of Basu and Pan [2011], we have
used real sequence data to demonstrate the power properties
of the various tests with or without PCs, though it was not
the main aim of the current study. In particular, it is con-
firmed that the Sum test, a representative of simple pooled
association tests [Dering et al., 2011], is not powerful in the
presence of different association directions or of many non-
causal SNPs; in contrast, the SSU and SSUw tests are much
more powerful in these situations. It is also shown that the
asymptotics of the Sum, SSU, and SSUw tests seemed to work
well with a reasonable sample size for LFVs, much more ro-
bust than the score test. Of course, with small samples sizes or
RVs with extremely low MAFs, one has to be cautious in using
asymptotics. As shown here and in other places [Tang and Lin,
2011; Wu et al., 2011b], the parametric bootstrap is a useful
alternative. Given the generally good performance of the SSU
and SSUw tests, we would recommend their use in practice; if
the applicability of the asymptotics is of concern, a two-step
procedure can be taken: one could first use the asymptotics-
based SSU or SSUw test to quickly scan the genome, then
apply the more computing-intensive bootstrap-based SSU or
SSUw test to the more significant regions identified in the
first step.

Perhaps the most interesting finding of this study is that,
in accordance with Siu et al. [2012] but differing from Baye
et al. [2011], PCs constructed with LFVs could potentially
separate different continental or ethnic groups better than
those with CVs, though either can be used to adjust for pop-
ulation stratification effectively. We note that Siu et al. [2012]
used a similar whole genome sequence dataset as ours while
Baye et al. [2011] used a smaller subset of the exome se-
quence dataset with much fewer LFVs or RVs. In addition,
differing from Mathieson et al. [2012], we focused on two
relatively well-separated populations, that is, AFR and EUR
samples; further studies are warranted for other more chal-
lenging cases. In all our numerical examples, in contrast to
that using PCs based on CVs led to no or little power loss
in the absence of population stratification, surprisingly using
multiple PCs based on LFVs might result in overadjustment
in the sense of substantial power loss. It is also interesting to
note that, in all our examples, using only the top PC based
on LFVs could largely control the Type I error rate while
maintaining the power (with no or minimum power loss).
The overadjustment with multiple PCs based on LFVs in our
experiments was likely due to the use of many LFVs in high
LD; once we used LFVs not in high LD, the problem largely
disappeared. This is in agreement with two known results:
first, it is highly recommended to use only almost indepen-
dent CVs to construct PCs [Lee et al., 2011; Patterson et al.,
2006]; second, for unknown reasons, there seems to exist
long-range correlations among LFVs or RV in real sequence
data [Tintle et al., 2011]. Hence, one has to be careful in
selecting LFV's or RVs to construct PCs; in particular, a ran-
dom subset of far-away LFVs or RVs may not be sufficient.
Furthermore, our preliminary analysis also shows that PCA
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of RVs with MAFs < 1% might not be effective in separat-
ing subpopulations. One possible reason is the sensitivity of
PCA to outliers, which are present with some diverse sub-
populations and largely varying numbers of subpopulation
samples; it would be interesting to apply other more robust
methods [e.g., Lee et al., 2011]. We also emphasize that our
conclusions are based on the use of a low-coverage whole-
genome sequencing dataset, which may be different from
high-coverage sequencing data; for example, high-coverage
sequencing tends to uncover more RVs [Tennessen et al.,
2012]. Importantly, we only considered using CVs, LFVs, or
RVs, but not their combined use; it remains to be investigated
how to select and combine CVs, LFVs, and RVs to best cap-
ture population structures. Finally, because our current study
focuses on unrelated samples and the PC-based adjustment
for population stratification, it would be interesting to inves-
tigate the same issues with other adjustment methods [e.g.,
Engelhardt and Stephens, 2010; Guan et al., 2009; Lee et al.,
2010; Pritchard et al., 2000; Zhu et al., 2002, Zhu et al., 2008]
or for family studies [Feng et al., 2011; Zhu et al., 2010].
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